

Data Mining on an OLTP System (Nearly) for Free

Erik Riedel *Hewlett-Packard Labs*

Greg Ganger, Christos Faloutsos, Dave Nagle *Carnegie Mellon University*

Active Disks

Data Mining for Free

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Motivation

Freeblock Scheduling

Scheduling Trade-Offs

Performance Details

Applications

Related Work

Conclusion & Future Work

Active Disks

Data Mining for Free

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Disk Trends

	1980	1987	1990	1994	1999	80-99
Model	IBM 3330	Fujitsu M2361A	Seagate ST-41600n	Seagate ST-15150n	Quantum Atlas 10k	Annual Improvement
Average Seek	38.6 ms	16.7 ms	11.5 ms	8.0 ms	5.0 ms	11% / year
Rotational Speed	3,600 rpm	3,600 rpm	5,400 rpm	7,200 rpm	10,000 rpm	6% / year
Capacity	0.09 GB	0.6 GB	1.37 GB	4.29 GB	18.2 GB	32% / year
Bandwidth	0.74 MB/s	2.5 MB/s	3-4.4 MB/s	6-9 MB/s	18-22 MB/s	20% / year
8 KB Transfer	65.2 ms	28.3 ms	18.9 ms	13.1 ms	9.6 ms	11% / year
1 MB Transfer	1,382 ms	425 ms	244 ms	123 ms	62 ms	18% / year

Trends in single drive performance

- huge capacity increases
- bandwidth doesn't keep pace
- seek/rotation lagging far behind

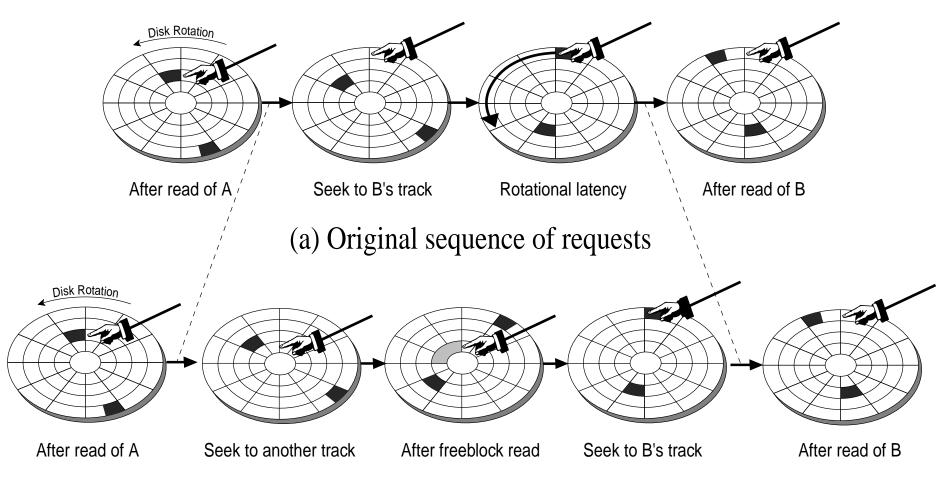
Motivation

Freeblock Scheduling

Scheduling Trade-Offs

Performance Details

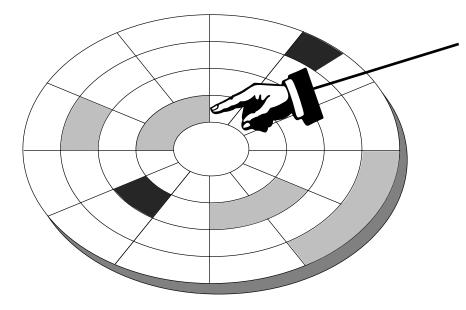
Applications

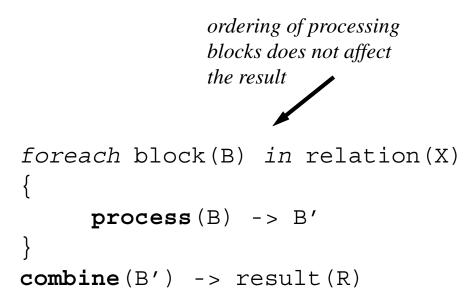

Related Work

Conclusion & Future Work

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Freeblock Scheduling




(b) Sequence with freeblock scheduling

Background work during positioning time

• process sequential workload during "idle" foreground time

Freeblock Opportunities

Freeblock choices

Most effective background workloads

- scan across a large number of blocks
- order of processing blocks doesn't matter
- "opportunistic" performance acceptable

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Motivation

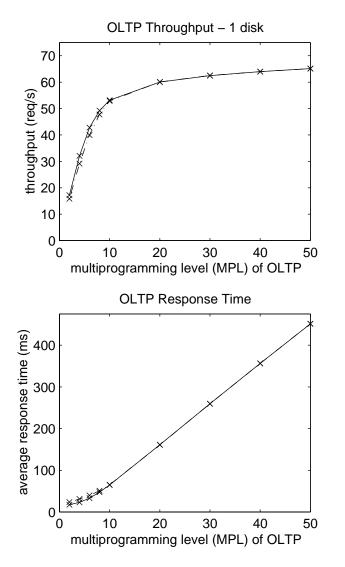
Freeblock Scheduling

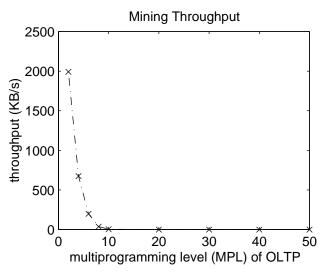
Scheduling Trade-Offs

Performance Details

Applications

Related Work

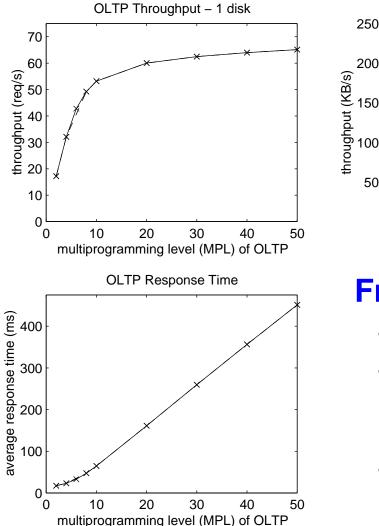

Conclusion & Future Work

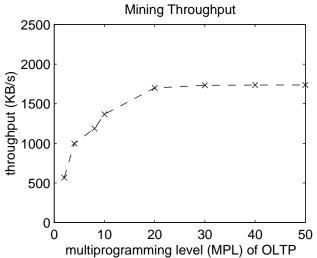


Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

On-Disk Scheduling

read background blocks only when queue is empty

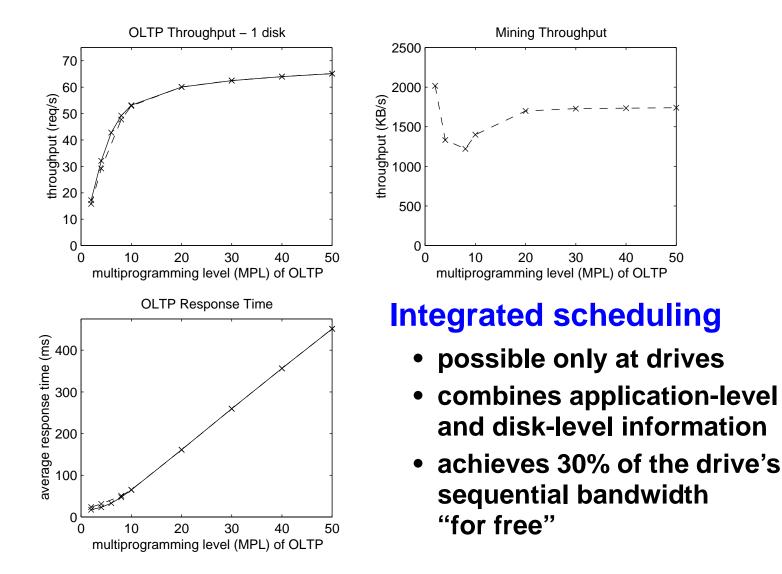



Background scheduling

- vary multiprogramming level - total number of pending requests
- background forced out at high foreground load
- up to 30% response time impact at low load

On-Disk Scheduling

read background blocks only when completely "free"



Freeblock scheduling

- opportunistic read
- constant background bandwidth, even at highest loads
- no impact on foreground respond time

On-Disk Scheduling

combine background and "free" blocks

Motivation

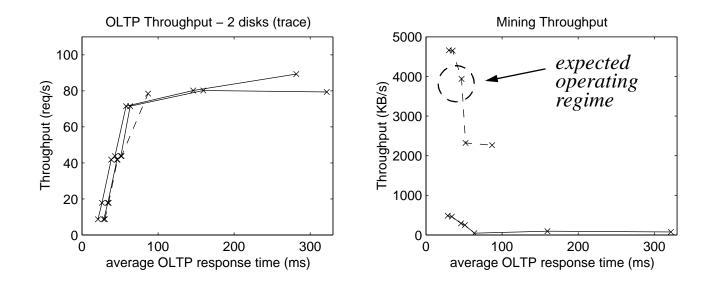
Freeblock Scheduling

Scheduling Trade-Offs

Performance Details

Applications

Related Work


Conclusion & Future Work

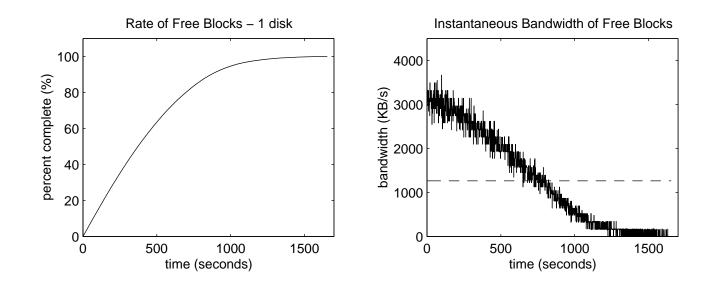
Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Validation - Traced Workload

• using TPC-C disk trace, two disks

Performance validation

- predicted benefit possible with real workload
- very good performance at "normal" usage



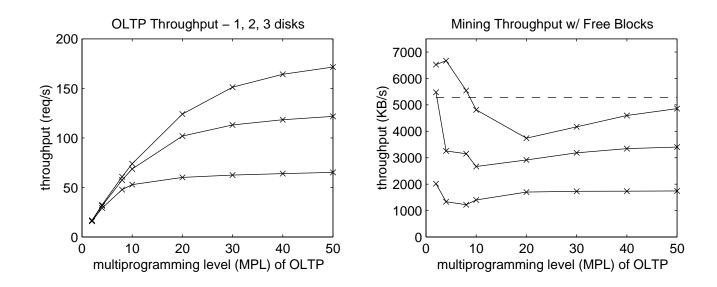
Active Disks

Data Mining for Free

Freeblock Bandwidth

• pessimistic - read the entire disk

Performance details


- 85% of disk read in 1/2 total time
- bandwidth drops as only "edge" blocks remain
- affected by relative layout of relations on disk

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Multiple Disks

data striped across multiple disks

Increase number of disks

- additive performance, as expected
- three freeblock disks equivalent to a single disk "dedicated" to mining

Active Disks

Data Mining for Free

Motivation

Freeblock Scheduling

Scheduling Trade-Offs

Performance Details

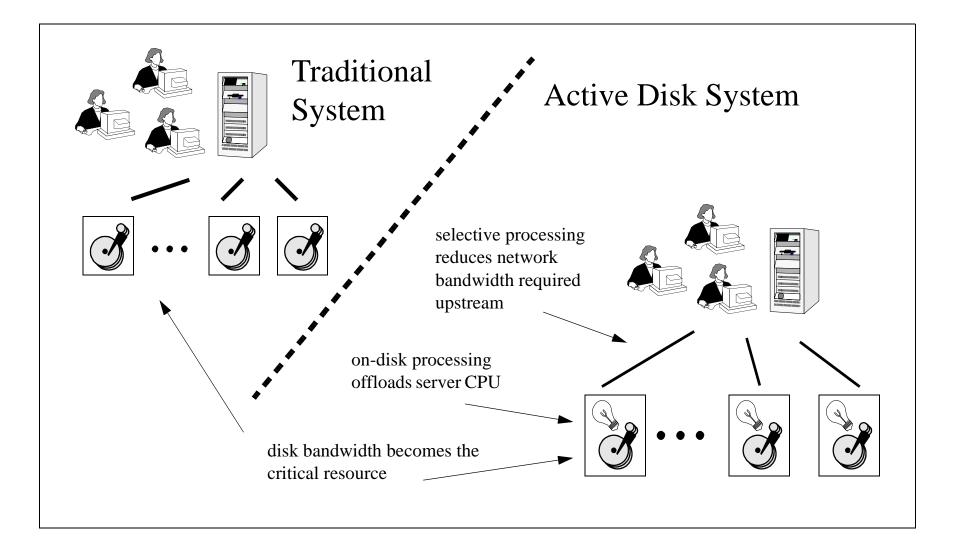
Applications

Related Work

Conclusion & Future Work

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Data Mining for Free


- scans
 - parallel table scans
 - search, association rules, ratio rules & SVD, clustering
- sampling
 - statistical mining, histogram maintenance
 - assuming a slightly modified "random" is acceptable
- assuming that CPU and memory resources are available

Background Utilities

- layout optimization
- incremental backup
- virus scan, fast find
- assures "some" progress, even on busy disks

Synergy with Active Disks

resources required: cpu, memory, network, disk

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

Motivation

Freeblock Scheduling

Scheduling Trade-Offs

Performance Details

Applications

Related Work

Conclusion & Future Work

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

On-drive Optimization

Request Scheduling

- fcfs, scan, look, elevator, sptf
- limited by short queues

Interface Advances

- MFM direct control
- SCSI abstracted interface, fixed size blocks, linear addresses
 - cylinder groups, block remapping, ...
- current debates which higher-level interface?
 - Network-Attached Storage (NAS)
 - Object-Based Disks (OBD)

How to Get More Information from Applications

- operating system interfaces limited
- "hints" informed prefetching and caching
- Active Disks push application knowledge to disks

Disk Scheduling

• studied for many years [Denning67, ..., Worthington94]

Combined OLTP and Mining

- memory in mixed workload [Brown92, Brown93]
 - multiple workload classes, boundary shifts
- OLTP and DSS on same system [Paulin97]
 - 35% 100% impact
 - disk is critical resource
- Sun/IBM benchmark system [TPC97]
 - separate CPUs, separate memory
 - (mostly) separate disks

On-disk Optimization

- zero-latency reads for prefetch
- fast writes [Wang99]

Active Disks

Data Mining for Free

Conclusion & Further Work

Exploit technology trends

- disk bandwidth and positioning time not keeping pace
- use scheduling knowledge at the disks

Novel functionality

- data mining for free close to 30% bandwidth "for free"
- even at high foreground loads

Interface design

- how to get more information into the disk
- where is the best to place processing resources

Further Work

- details of interface, what file system extensions?
- explore interaction/synergy with data layout
- quantify costs/benefits in a running system

Future Work

Evaluation of All Database Operations

- optimization for index-based scans
- update performance, combine with fast writes

Programming Model - Application Layers

- get information through the file system interface
 - storage layout
 - access patterns

Implementation Details

- drive resource requirements
 - memory low
 - cpu medium
- demonstrate a "real" background workload
 - implement combined OLTP/mining
 - or a utility operation

Active Disks

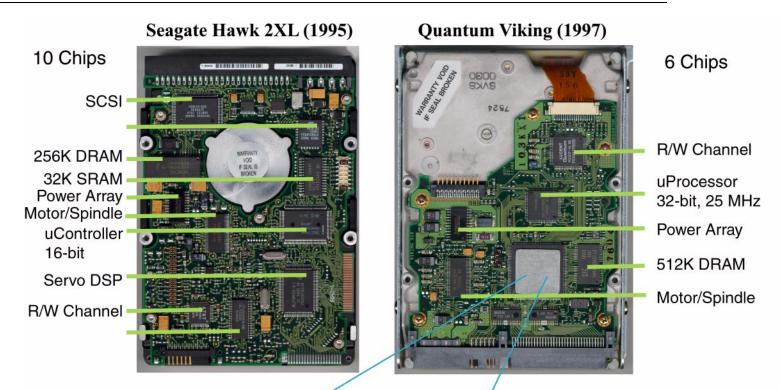
Data Mining for Free

Extra Slides

Parallel Data Laboratory www.pdl.cs.cmu.edu/Active

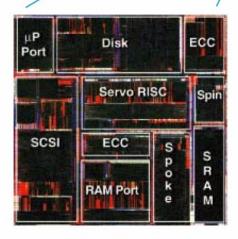
Excess Device Cycles Are Here

Higher and higher levels of integration in electronics


- specialized drive chips combined into single ASIC
- technology trends push toward integrated control processor
- Siemens TriCore 100 MHz, 32-bit superscalar today
 - to 500 MIPS within 2 years, up to 2 MB on-chip memory
- Cirrus Logic 3CI ARM7 core today
 - to ARM9 core at 200 MIPS in next generation

High volume, commodity product

- 145 million disk drives sold in 1998
 - about 725 petabytes of total storage
- manufacturers looking for value-added functionality



Evolution of Disk Drive Electronics



Integration

- reduces chip count
- improves reliability
- reduces cost
- future integration to processor on-chip
- but there must be at least one chip

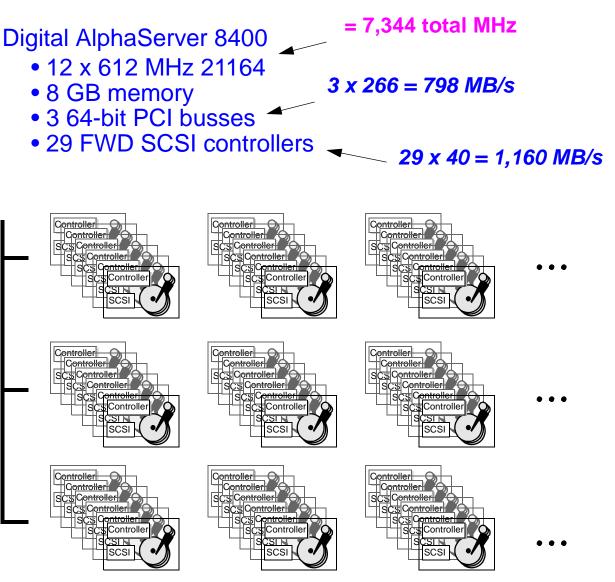
Trident ASIC

Future Generation ASIC

Opportunity

TPC-D 300 GB Benchmark, Decision Support System

Database Server



Storage

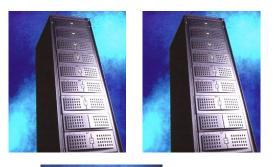
- 520 rz29 disks
- 4.3 GB each
- 2.2 TB total

= 104,000 total MHz (with 200 MHz drive chips)

= 5,200 total MB/s (at 10 MB/s per disk)

Active Disks execute application-level code on drives

Basic advantages of an Active Disk system


- parallel processing lots of disks
- **bandwidth reduction** filtering operations are common
- scheduling little bit of "strategy" can go a long way

Characteristics of appropriate applications

- execution time dominated by data-intensive "core"
- allows parallel implementation of "core"
- cycles per byte of data processed computation
- data reduction of processing selectivity

Network "Appliances" Can Win Today

NASRaQ System

512 MB cache, dual link controllers, additional 630F cabinet,				
20 x 9 GB FC disks, software support, installation				
Dell PowerEdge 6350	\$9,210 x 12 =	110,520		
500 MHz PIII, 512 MB RAM, 27	GB disk			
3Com SuperStack II 3800 Switch		6,679		
10/100 Ethernet, Layer 3, 24-port				
Rack Space for all that		20,710		
		20,710		

Dell PowerEdge & PowerVault System

Dell PowerVault 650F

Comparison

\$46,549 x 12 =558,588

Cobalt NASRaQ	\$1,617 x 240 =	388,080
250 MHz RISC, 32 MB RAM, 2 x	10 GB disks	
Extra Memory (to 128 MB each)	\$174 x 240=	41,760
3Com SuperStack II 3800 Switch	\$6,679 x 11=	76,736
240/24 = 10 + 1 to connect those 1	0	
Dell PowerEdge 6350 Front-End		9,210
Rack Space (estimate 4x as much	82,840	
Installation & Misc	50,000	

	Dell	Cobalt
Storage	2.1 TB	4.7 TB
Spindles	240	480
Compute	6 GHz	60 GHz
Memory	12.0 GB	30.5 GB
Power	23,122 W	12,098 W
Cost	\$696,794	\$648,626