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Abstract

Optimally partitioning application and
filesystem functionality within a cluster of
clients and servers is a difficult problem due
to dynamic variations in application behavior,
resource availability, and workload mixes. This
paper presentsABACUS, a run-time system
that monitors and dynamically changes function
placement for applications that manipulate large
data sets. Several examples of data-intensive
workloads are used to show the importance of
proper function placement and its dependence
on dynamic run-time characteristics, with
performance differences frequently reaching
2–10X. We evaluate how well theABACUS

prototype adapts to run-time system behavior,
including both long-term variation (e.g., filter
selectivity) and short-term variation (e.g.,
multi-phase applications and inter-application
resource contention). Our experiments with
ABACUS indicate that it is possible to adapt in
all of these situations and that the adaptation
converges most quickly in those cases where the
performance impact is most significant.

1 Introduction

Effectively utilizing cluster resources remains
a difficult problem for distributed applications.
Because of the relatively high cost of remote
versus local communication, the performance of
a large number of these applications is sensitive
to the distribution of their functions across the
network. As a result, the effective use of cluster
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resources requires not only load balancing, but
also proper partitioning of functionality among
producers and consumers. While software
engineering techniques (e.g., modularity and
object orientation) have given us the ability to
partition applications into a set of interacting
functions, we do not yet have solid techniques
for determining where in the cluster each
of these functions should run, and deployed
systems continue to rely on complex manual
decisions made by programmers and system
administrators.

Optimal placement of functions in a cluster
is difficult because the right answer is usually
“it depends.” Specifically, optimal function
placement depends on a variety of cluster
characteristics (e.g., communication bandwidth
between nodes, relative processor speeds among
nodes) and workload characteristics (e.g., bytes
moved among functions, instructions executed
by each function). Some are basic hardware
characteristics that only change when something
fails or is upgraded, and thus are relatively
constant for a given system. Other characteristics
cannot be determined until application invocation
time, because they depend on input parameters.
Worst of all, many change at run-time due to
an application changing phases or competition
between concurrent applications over shared
resources. Hence, any “one system fits all”
solution will cause suboptimal, and in some cases
disastrous, performance.

In this paper, we focus on an important
class of applications for which clusters are
very appealing: data-intensive applications that
selectively filter, mine, sort, or otherwise
manipulate large data sets. Such applications
benefit from the ability to spread their data-
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parallel computations across the source/sink
servers, exploiting the servers’ computational
resources and reducing the required network
bandwidth. Effective function partitioning for
these data-intensive applications will become
even more important as processing power
becomes ubiquitous, reaching devices and
network-attached appliances. This abundance of
processing cycles has recently led researchers
to augment storage servers with support for
executing application-specific code. We refer
to all such servers, which may be Jini-
enhanced storage appliances [25], much-evolved
commodity active disks [1, 19, 24] or file servers
allowing remote execution of applications, as
programmable storage servers, or simplystorage
servers.

In addition to their importance, we observe
that these data-intensive applications have
characteristics that simplify the tasks involved
with dynamic function placement. Specifically,
these applications all move and process
significant amounts of data, enabling a
monitoring system to quickly learn about
the most important inter-object communication
patterns and per-object resource requirements.
This information allows the run-time system
to rapidly identify functions that should be
moved to reduce communication overheads or
resource contention. In our prototype system,
called ABACUS, functions associated with
particular data streams are moved back and
forth between clients and servers in response
to dynamic conditions. In our implementation,
programmers explicitly partition the functions
associated with data streams into distinct
components, conforming to an intuitive object-
based programming model. The ABACUS run-
time system monitors the resource consumption
and communication of these components,
without knowing anything about their internals
(black box monitoring). The measurements are
used with a cost-benefit model to decide when to
relocate components to more optimal locations.

In this paper, we describe the design and
implementation of ABACUS and a set of
experiments evaluating its ability to adapt to
changing conditions. Specifically, we explore
how well ABACUS adapts to variations in
network topology, application cache access
pattern, application data reduction (filter
selectivity), contention over shared data, phases

in application behavior, and dynamic competition
for resources by concurrent applications. Our
preliminary results are quite promising: ABACUS

often improves application response time by
2–10X. In all of our experiments, ABACUS

selects the best placement for each function,
“correcting” placement when the function is
initially started on the “wrong” node. Further,
ABACUS often outperforms any static one-time
placement in situations where dynamic changes
cause the proper placement to vary during an
application’s execution. ABACUS is able to
effectively adapt function placement based on
only black box monitoring, removing from
programmers the burden of considering function
placement.

The remainder of this paper is organized as
follows. Section 2 discusses how ABACUS

relates to prior work. Section 3 describes
the design of ABACUS. Section 4 discusses
the ABACUS programming model and several
example applications built upon it. Section 5
describes the run-time system. Section 6 presents
a variety of experiments to demonstrate the value
of dynamic function placement and ABACUS’s
ability to effectively adapt to dynamic conditions.
Section 7 summarizes the paper’s contributions.

2 Related work

There exists a large base of excellent research
and practical experiences related to code mobility
and cluster computing—far too large to fully
enumerate here. This section discusses the
most relevant previous work on adaptive function
placement and how it relates to ABACUS.

Several previous systems such as Coign and
others [16, 22] have demonstrated that function
placement decisions can be automated given
accurate profiles of inter-object communication
and per-object resource consumption. All
of these systems use long-term histories to
make good installation-time or invocation-
time function placement decisions. ABACUS

complements these previous systems by looking
at how to dynamically adapt placement decisions
to run-time conditions.

River [4] is a system that dynamically adjusts
per-consumer rates to match production rates,
and per-producer rates to meet consumption
rate variations. Such adjustments allow it



to adapt to run-time non-uniformities among
cluster systems performing thesame task.
ABACUS complements River by adapting
function placement dynamically in the presence
of multipledifferenttasks.

Equanimity is a system that, like ABACUS,
dynamically balances service between a single
client and its server [14]. ABACUS builds
on this work by developing mechanisms for
dynamic function placement in realistic cluster
environments, which include such complexities
as resource contention, resource heterogeneity,
and workload variation.

Hybrid shipping [10] is a technique proposed
to dynamically distribute query processing load
between clients and servers of a database
management system. This technique usesa
priori knowledge of the algorithms implemented
by the query operators to estimate the best
partitioning of work between clients and servers.
Instead, ABACUS applies to a wider class
of applications by relying only on black-box
monitoring to make placement decisions, without
knowledge of the semantics or algorithms
implemented by the application components.

Process migration systems such as Condor [7]
and Sprite [8] developed mechanisms for
coarse-grain load-balancing among cluster
systems, but did not explicitly support fine-grain
function placement or adapt to inter-function
communication. Mobile programming systems
such as Emerald [18] and Rover [17] do support
fine-grain mobility of application objects, but
they leave migration decisions to the application
programmer. Similarly, mobile agent systems,
such as Mole [26] and Agent Tcl [12], enable
agent migration but do not provide algorithms
or mechanisms to decide where agents should
be placed. ABACUS builds on such work by
providing run-time mechanisms that automate
migration decisions.

3 Overview of ABACUS

To explore the benefits of dynamic function
placement, we designed and implemented the
ABACUS prototype system and ported several
test applications to it. ABACUS consists of a
programming model and a run-time system. Our
goal was to make the programming model easy
for application programmers to use. Further, we

wanted it to simplify the task of the run-time
system in migrating functions and in monitoring
the resources they consume. As for the run-
time system, our goals were to improve overall
performance, through effective placement, and
to achieve low monitoring overhead. Moreover,
it was designed to scale to large cluster sizes.
Our first ABACUS prototype largely meets these
goals.

The ABACUS programming model encourages
the programmer to compose data-intensive
applications from explicitly-migratable,
functionally independent components or objects.
Thesemobile objects provide explicit methods
that checkpointand restore their state during
migration. At run-time, an application and
filesystem can be represented as a graph of
communicating mobile objects. This graph can
be thought of as rooted at the storage servers
by anchored (non-migratable)storage objects
and at the client by an anchoredconsoleobject.
The storage objects provide persistent storage,
while the console object contains the part of the
application that must remain at the node where
the application is started. Usually, the console
part is not data intensive. Instead, it serves to
interact with the user or the rest of the system at
the start node and typically consists of themain
function in a C/C++ program. This console part
initiates invocations that are propagated by the
ABACUS run-time to the rest of the graph.

As shown in Figure 1, the ABACUS run-time
system consists of (i) a migration and location-
transparent invocation component, orbinding
managerfor short; and (ii) a resource monitoring
and management component, orresource manger
for short. The first component is responsible
for the creation of location-transparent references
to mobile objects, for the redirection of method
invocations in the face of object migrations,
and for enacting object migrations. Also, each
machine’s binding manager notifies the local
resource manager of each procedure call to and
return from a mobile object.

The resource manager uses the notifications
to collect statistics about bytes moved between
objects and about the resources used by the
objects (e.g., amount of memory allocated,
number of instructions executed per byte
processed). A resource manager also monitors
the load on its local processor and the
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Figure 1: An illustration of an ABACUS object
graph, the principal ABACUS components, and their
interactions. This example shows a filter application
accessing a striped file. Functionality is partitioned
into objects. Dark ovals depict mobile objects, while
clear ovals mark anchored objects. Inter-object method
invocations are transparently redirected by the location
transparent invocation component of the ABACUS run-
time. This component also updates a local resource
monitoring component on each procedure call and
return from a mobile object (machine-local arrows
labeled “U”). Clients periodically send digests of this
collected information to the server. Resource managers
at the server collect the relevant statistics and initiate
migration decisions (arrows labeled “M”).

experienced stall time on network transfers
to and from the storage servers that are actively
accessed by local mobile objects. Server-side
resource managers collect statistics from client-
side resource managers and employ an analytic
model to predict the performance benefit of
moving to an alternative placement. The model
also takes into account the cost of migrations,
including the time wasted waiting until the
object is quiescent and the time wasted for
checkpointing the object, transferring its state,
and restoring it on the target node. Using this
analytic model, the server-side resource manager
arrives at the placement with the bestnet benefit.
If this placement is different from the current
configuration, the necessary object migrations
take place.

The ABACUS prototype is written in C++. We
leverage the language’s object-oriented features
to simplify writing our mobile objects. For our
inter-node communication transport, we use DCE

RPC. Because the focus of our prototype is on
function placement decisions, we do not address
several important but orthogonal mobile code
issues. For example, we sidestep the issues of
code mobility [27] and dynamic linking [6] by
requiring that all migratable modules be statically
linked into an ABACUS process on both clients
and servers. Further, issues of inter-module
protection [28, 23, 9] are not addressed. While
these will be important issues for production
systems, they are tangential to the questions
addressed in this paper.

4 Programming model

The ABACUS programming model has
two principal aspects:mobile objects, which
represent the unit of migration and placement,
and aniterative processing model, which defines
how mobile objects are composed into entire
data processing applications.

4.1 Mobile objects

A mobile object in ABACUS is explicitly
declared by the programmer as such. It consists
of state and the methods that manipulate that
state. A mobile object is required to implement
a few methods to enable the run-time system to
create instances of it and migrate it. Mobile
objects are usually of medium granularity—they
are not meant to be simple primitive types—
performing a self-contained processing step that
is data intensive, such as parity computation,
caching, searching, or aggregation.

Mobile objects have private state that is not
accessible to outside objects, except through
the exported interface. The implementation of
a mobile object is internal to that object and
is opaque to other mobile objects and to the
ABACUS run-time system. The private state
consists of embedded objects and references to
external objects. A mobile object is responsible
for saving its private state, including the state of
all embedded objects, when itsCheckpoint()
method is called by ABACUS. It is also
responsible for reinstating this state, including
the creation and initialization of all embedded
objects, when the run-time system invokes the
Restore() method, after it has been migrated to
a new node. TheCheckpoint() method saves
the state to either an in-memory buffer or to a file.
The Restore() method can reinstate the state



from either location. Both methods are invoked
when there is no external invocation active within
the mobile object.

Each storage server (i.e., a server with a data
store) provides local storage objects exporting a
flat file interface. Storage objects are accessible
only at the server that hosts them and therefore
never migrate. The migratable portion of the
application lies between the storage objects on
one side and the console object on the other.
Applications can declare other objects to be
non-migratable. For instance, an object that
implements write-ahead logging can be declared
by the filesystem as non-migratable, effectively
anchoring it to the storage server where it is
started (usually the server hosting the log).

4.2 Iterative processing model

Synchronous invocations start at the top-
level console object and propagate down the
object graph. Each invocation returns back
to the console object with a result after a
specified number of application records have
been processed. Once an invocation returns to
the console, objects in the graph are usually no
longer active. Objects are activated again by the
nextiteration, which starts with a new invocation
initiated by the console. Sometimes, objects
may become “spontaneously” active, initiating
invocations before any request is received from
top-level objects. This occurs when objects
perform background work (such as write-behind
in a cache object), although that is not assumed
to be the common mode of operation.

The amount of data moved in each invocation
is an application-specific number of records, and
not the entire file or data set at once. This
iterative property is required by our monitoring
and migration system. ABACUS accumulates
statistics on return from method invocations for
use in making object migration decisions. If
the program makes a single procedure call down
a stack of objects, ABACUS will not collect
this valuable information until the end of the
program, at which point any migration would be
useless.

4.3 Examples

To stress the ABACUS programming model
and evaluate the benefit of adaptive function

placement, we have implemented an object-based
distributed filesystem and a few data intensive
applications. We describe them in this section
and report on their performance in Section 6.

Object-based distributed filesystem.
Applications often require a variety of services
from the underlying storage system. ABACUS

enables filesystems to be composed of explicitly
migratable objects, each providing storage
services such as reliability (e.g., RAID), caching,
and application-specific functionality. This
approach was pioneered by the stackable and
composable filesystem work [13, 21] and by the
Spring object-oriented operating system [20].

The ABACUS filesystem provides coherent file
and directory abstractions atop the flat file space
exported by base storage objects. A file is
associated with a stack of objects when it is
created representing the services that are bound
to that file. For instance, only “important” files
include a RAID object in their stack. When a
file is opened, the top-most object is instantiated,
which in turn instantiates all the lower level
objects in the object graph. Access to a file
always starts at the top-most object in the stack
and the run-time system propagates accesses
down to lower layers as needed.

The prototype filesystem is distributed.
Therefore, it must contain, in addition to
the layers that are typically found in local
filesystems (such as caching and RAID), services
to support inter-client file and directory sharing.
In particular, the filesystem allows both file
data and directory data (data blocks) to be
cached and manipulated at trusted clients.
Because multiple clients can be concurrently
sharing files, we implement AFS style callbacks
for cache coherence [15]. Similarly, because
multiple clients can be concurrently updating
directory blocks, the filesystem includes a
timestamp-ordering protocol to ensure that
updates performed at the clients are consistent
before they are committed at the server. This
scheme is highly scalable in the absence of
contention because it does not require a lock
server or any lock traffic. In Section 6.5, we
describe how ABACUS automatically changes
the concurrency control protocol during high
contention to a locking scheme by simply
adapting object placement.
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Figure 2: The architecture of the object-based
distributed filesystem built atop ABACUS. The
figure shows a typical file and directory object stack
(a). The object placement shown is the default for
high-bandwidth networks and trusted clients. Also
shown are the component filesystem objects which are
implemented to date and a brief description of their
function (b).

By default, each file’s graph consists of a
filesystem object providing the VFS interface to
applications, a cache object, an optional RAID 5
object, and one or more storage objects. To
ensure that parity is not corrupted by races
involving concurrent writes to the same stripe,
a RAID isolation/atomicity object is anchored
to each storage server. This object intercepts
all reads and writes to the base storage object
and verifies the consistency of updates before
committing them. The protocols used by this
isolation object are highly scalable and are
described elsewhere [2]. The cache object keeps
an index of a particular object’s blocks in the
shared cache kept by the ABACUS filesystem
process. The RAID 5 object stripes and maintains
parity for individual files across sets of storage
servers. The storage objects provide flat storage
and can be configured to use either the standard
Linux ext2 filesystem or CMU’s Network-
Attached Secure Disks (NASD) prototype [11] as
backing store. Figure 2 shows a sketch of typical
file and directory stacks.

Each directory’s graph consists of a directory
object, an isolation/atomicity object and a
storage object. The directory object provides
POSIX-like directory calls and caches directory

entries. The isolation/atomicity object provides
support for both cache coherence and optimistic
concurrency control, and also ensures the
atomicity of multi-block writes to a directory.
For performance reasons, the implementation
of the isolation/atomicity object is specialized
to directory semantics and is therefore different
from the RAID 5 isolation/atomicity object
described above. This object ensures cache
coherence by interposing on read and write calls,
installing callbacks on cached blocks during
read calls and breaking relevant callbacks during
writes. It ensures proper concurrency control
among simultaneous updates by timestamping
cache blocks [5] and exporting a special
CommitAction() method that checks specified
readSetsand writeSetsfor conflicts.1 Finally,
the atomicity of multi-block writes is provided
by ensuring that a set of blocks (possibly from
differing objects and devices) are either updated
in their entirety or not updated at all, by using a
write-ahead log that is shared among all of the
instances of the isolation/atomicity object.

The ABACUS filesystem can be accessed in
two ways. First, applications that include
ABACUS objects can directly append per-file
object subgraphs onto their application object
graphs for each file opened. Second, the
ABACUS filesystem can be mounted as a
standard filesystem, via VFS-layer redirection.
Unmodified applications using the standard
POSIX system calls can thus interact with the
ABACUS filesystem. Although it does not allow
legacy applications to be migrated, this second
mechanism does allow legacy applications to
benefit from the filesystem objects adaptively
migrating beneath them.

Object-based applications. Data-intensive
applications can be similarly decomposed into
objects that perform operations such as search,
aggregation, or data mining. Porting a data-
intensive application, such as search, to ABACUS

is straightforward. Most search applications
already iterate over input data by invoking
successiveread calls to the filesystem and
operating on a buffer at a time. Porting this

1The readSet (writeSet) consists of the list of blocks
read (written) by the client. A directory operation such as
MkDir() requires reading all the directory blocks to ensure
the name does not exist then updating one block to insert the
new name and inode number. The readSet in this case would
contain all the directory blocks and their timestamps and the
writeSet would contain the block that was updated.



kind of application simply requires encapsulating
the filtering component of the search into a
C++ object and writingcheckpoint/restore
methods for it. These methods are also relatively
straightforward, since the state often consists of
just the positions in the input and output files, and
the contents of the current buffer.

5 Run-time system

The ABACUS run-time system consists of per-
node binding managers and resource managers.
Each binding manager is responsible for the
instantiation of mobile objects and the invocation
of their methods in a location-transparent
manner (Section 5.1) and for the migration of
objects between cluster nodes (Section 5.2).
The resource managers collect statistics about
resource usage and availability (Section 5.3)
and use these measurements to adapt placement
decisions to improve total application response
time (Section 5.4).

5.1 Object instantiation and invocation

The two kinds of nodes in an ABACUS cluster
are clients and servers. Servers are nodes on
which at least one base storage object resides
and clients are nodes that execute applications
that access storage servers. Since servers can
also execute applications, one storage server can
potentially be a client of another server.

Applications instantiate mobile objects by
making a request to the ABACUS run-time
system. For example, when filtering a file, the
application console object will request a filter
object to be created. The run-time system creates
the object in memory by invoking the thenew
operator of the C++ run-time.

ABACUS also allocates and returns to the caller
a network-wide unique run-time identifier, called
a rid, for the new object.2 The caller uses
the rid to invoke the new mobile object. The
rid acts as a layer of indirection, allowing
objects to refer to other objects without knowing
their current location. The ABACUS binding
manager mediates method invocations and uses
rids to forward them to the object’s current

2Therid is a network-wide identifier, which is generated
by concatenating the node identifier where the object is
created and a local object identifier that is unique within that
node.

location. ABACUS maintains the information
necessary to perform inter-object invocations in
a per-node hash table that maps anrid to a
(node, objectreferencewithin node) pair. As
mobile objects move between nodes, this table
is updated to reflect the new node and the new
object reference at that node. Therid is passed
as the first argument of each method invocation,
allowing the system to properly redirect method
calls.

At run-time, this web of objects constitutes
a graph whose nodes represent objects and
whose edges represent invocations between
objects. For objects in the same address space,
invocations are implemented via procedure calls,
and data is passed without any extra copies.
For objects communicating across machines or
address spaces, remote procedure calls (RPCs)
are employed.

5.2 Object migration

In addition to properly routing object calls,
ABACUS binding managers are responsible for
enacting migration. Consider migrating a given
object from asource nodeto a target node. First,
the binding manager at the source node blocks
new calls to the migrating object. Then, the
binding manager waits until all active invocations
in the migrating object have drained (returned).
Migration is cancelled if this step takes too long.

Next, the object is checkpointed locally by
invoking itsCheckpoint() method. The object
allocates an in-memory buffer to store its state or
writes to the filesystem if the checkpoint size is
large. This state is then transferred and restored
on the storage node. Then, the location tables
at the source and target nodes are updated to
reflect the new location. Finally, invocations are
unblocked and are redirected to the proper node
via the updated location table. This procedure
extends to migrating subgraphs of objects.

Location tables are not always accurate.
Instead, they provide hints about an object’s
location, which may become stale. Nodes other
than the source and target that have cached hints
about an object’s location will not be updated
when a migration occurs. However, stale data is
detected and corrected when these nodes attempt
to invoke the object at the old node. At that
time, the old node notifies them that the object



has migrated.

For scalability reasons, nodes are not required
to maintain forwarding pointers for objects that
they have hosted at some point in the past.
Consequently, the old node may not be able
to inform a caller of the current location of an
object. In this case, the old node will redirect the
caller to the node at which the object originated,
called thehome node. The home node can be
easily determined because it is encoded in the
object’s rid. The home node always has up-
to-date information about the object’s location
because during each migration its location table
is updated in addition to the tables at the source
and target nodes. Because objects usually
move between a client (an object’s home node)
and one of the servers, extra messaging is not
usually required to update location tables during
migration.

5.3 Resource monitoring

The run-time system uses its intermediary role
in redirecting calls to collect all the necessary
statistics. By only interposing monitoring code
at procedure call and return from mobile objects,
ABACUS does not slow down the execution of
methods within a mobile object. This section
explains how the needed statistics are collected.

On a single node, threads can cross the
boundaries of multiple mobile objects by making
method invocations that propagate down the
stack. The resource manager must charge the
time a thread spends computing or blocked to
the appropriate object. Similarly, it must charge
any allocated memory to the proper object. The
ABACUS run-time collects the required statistics
over the previousH seconds of execution,
which we refer to as the observation window.
We describe how some of these statistics are
collected:

Data flow graph. The bytes moved
between objects are monitored by inspecting the
arguments on procedure call and return from a
mobile object. The number of bytes transferred
between two objects is then recorded in a timed
data flow graph. This graph maintains moving
averages of the bytes moved between every pair
of communicating objects in a graph. These
data flow graphs are of tractable size because
most data-intensive applications do the bulk of

their processing in a stream-like fashion through
a small stack of objects.

Memory consumption. ABACUS monitors
the amount of memory dynamically allocated by
an object as follows. On each procedure call
or return from a mobile object, thepid of the
thread making the call is recorded. Thus, for at
any point in time, the run-time system knows the
currently processing mobile object for each active
thread in that address space. Wrappers around
each memory allocation routine (e.g., malloc,
free) inspect thepid of the thread invoking the
memory allocation routine and use thatpid to
determine the current object. This object is then
charged for the memory that was allocated or
freed.

Instructions executed per byte. Given
the number of bytes processed by an object,
computing the instructions/byte amounts to
monitoring the number of instructions executed
by the object during the observation window.
Given the processing rate on a node, this amounts
to measuring the time spent computing within
an object. We use a combination of the Linux
interval timers and the Pentium cycle counter to
keep track of the time spent processing within a
mobile object.

Stall time. To estimate the amount of
time a thread spends stalled in an object,
one needs more information than is currently
provided by the POSIX system timers. We
extend the getitimer/setitimer system
calls to support a new type of timer, which
we denote ITIMER BLOCKING. This timer
decrements whenever a thread is blocked and
is implemented as follows: When the kernel
updates the system, user, and real timers for
the active thread, it also updates the blocking
timers of any threads in the queue that are
marked as blocked (TASK INTERRUPTIBLE or
TASK UNINTERRUPTIBLE).

5.4 Dynamic Placement

The resource manager on a given server seeks
to perform the migrations that will result in the
minimal average application response time across
all the applications that are accessing it. This
amounts to figuring out what subset of objects
executing currently on clients can benefit most
from computing closer to the data. Migrating an



object to the server could potentially reduce the
amount of stall time on the network, but it could
also extend the time the object spends computing
if the server’s processor is overloaded.

Resource managers at the servers use an
analytic model to determine which objects should
be migrated from the clients to the server and
which objects, if any, should be migrated back
from the server to the clients. The analytic model
considers alternative placement configurations
and selects the one with the bestnet benefit,
which is the difference between the benefit
of moving to that placement and the cost of
migrating to it. This net benefit represents the
estimated reduction in execution time over the
nextH seconds.

A migration is actually enacted only if
the server-side resource manager finds a new
placement whose associated net benefit exceeds
a configurable threshold,BThresh. This threshold
value is used to avoid migrations that chase
small improvements, and it can be set to reflect
the confidence in the measurements and the
models used by the run-time system. Server-
side resource managers do not communicate with
one another to figure out the globally optimal
placement. A server-side resource manager
decides on the best alternative placement
considering only the application streams that
access it. This design decision was taken for
robustness and scalability reasons.

The details of the computation required to
estimate the net benefit are discussed in an
associated technical report [3]. Here, we outline
the intuition behind the computation. The server-
side resource manager receives the per-object
measurements described above. It also receives
statistics about the client processor speed and
current load and collects similar measurements
about the local system and locally executing
objects. Given the data flow graph between
objects, the measured stall time of client-side
objects, and the latency of the client-server
link, the model estimates the change in stall
time if an object changes location. Given the
instructions per byte and the relative load and
speed of the client/server processors, it estimates
the change in execution time if the object changes
placement. In addition to the change in execution
time for the migrated object, the model also
estimates the change in execution time for the

other objects executing at the target node (as
a result of the increased load on the node’s
processor). When considering different object
placements, we treat the memory available at
the server as a fixed constraint. Together, the
changes in stall time and execution time amount
to the benefit of the new placement. In computing
this benefit, our analytic model assumes that
history will repeat itself over the next window
of observation (the nextH seconds). The cost
associated with a placement is estimated as the
sum of a fixed cost (the time taken to wait until
the object is quiescent) plus the time to transfer
the object’s state between source and destination
nodes. This latter value is estimated from the
size of the checkpoint buffer and the bandwidth
between the nodes.

6 Performance evaluation

In this section, we show how performance
depends on the appropriate placement of
function. The subsections that follow give
increasingly difficult cases where ABACUS can
adapt function placement even when the correct
location is hard or impossible to anticipate
at design-time. This includes scenarios in
which the objects’ correct location is based on
hardware characteristics, application run-time
parameters, application data access patterns,
and inter-application contention over shared
data. This also includes scenarios that stress
adaptation under dynamic conditions: phases of
application behavior and contention by multiple
applications. We could not perform a fair
comparison of applications running on ABACUS

to those running on a network filesystem, such
as NFS, because our filesystem implementation
differs from that of Linux’s NFS. The differences
give ABACUS applications advantages that have
little to do with adaptive function placement.

6.1 Evaluation environment

Our evaluation environment consists of eight
clients and four storage servers. All twelve nodes
are standard PCs running RedHat Linux 5.2
and are equipped with 300MHz Pentium II
processors and 128MB of main memory. None
of our experiments exhibited significant paging
activity. Each server contains a single Maxtor
84320D4 IDE disk drive (4GB, 10ms average
seek, 5200RPM, up to 14MB=s media transfer
rate). Our environment consists of two networks:



a switched 100Mbps Ethernet, which we refer to
as theSAN (server-area network) and a shared
10Mbps segment, which we refer to as theLAN
(local-area network). All four storage servers are
directly connected to the SAN, whereas four of
the eight clients are connected to the SAN (called
SAN clients), and the other four clients reside
on the LAN (the LAN clients). The LAN is
bridged to the SAN via a 10Mbps link. While
these networks are of low performance by today’s
standards, their relative speeds are similar to
those seen in high-performance SAN and LAN
environments (Gbps in the SAN and 100Mbps in
the LAN).

The bar graphs in the following sections
adhere to a common format. Each graph shows
the elapsed time of several configurations
of an experiment with a migrating object.
For each configuration, we report three
numbers: the object (1) statically located at
the client, (2) beginning at the client, but with
ABACUS dynamically monitoring the system and
potentially migrating the object, and (3) statically
at the storage server. Graphs with confidence
intervals report averages over five runs with
90% confidence. We have intentionally chosen
smaller benchmarks to underscoreABACUS’s
ability to adapt quickly. We note that the
absolute benefit achieved by dynamic function
placement is often a function of the duration
of a particular benchmark, and that longer
benchmarks operating on larger files would
amortize adaptation delays more thoroughly.
Throughout the experiments in this section, the
observation window,H, was set to 1 second, and
the threshold benefit,BThresh, was set to 30% of
the observation window.

6.2 Adapting to network topology/speed

Issue. Network topology/speed dictate
the relative importance of cross-network
communication relative to server load. Here
we evaluate the ability of ABACUS to adapt
to different network topologies. We default to
executing function at clients to offload contended
servers. However, ABACUS moves function to a
server if a client would benefit and the server has
the requisite cycles. The goal is to see whether
ABACUS can decide when the benefit of server-
side execution due to the reduction in network
stall time exceeds the possible slowdown due to
slower server-side processing.
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Figure 3: This figure shows a file bound to an
application accessing a RAID object which maintains
per-file parity code and accesses storage objects
running on the storage devices. We show one
binding of the stack (Client A) where the RAID object
runs at the client, and another binding (Client B)
where the RAID object runs at one of the storage
devices. Thicker lines represent more data being
moved. The appropriate configuration is dependent
on the bandwidth available between the client and
storage devices. If the client LAN is slow, Client B’s
partitioning would lead to lower access latencies.

Experiment. Software RAID is an example
of a function that moves a significant amount
of data and often touches every byte (computes
the bitwise XOR of the contents of multiple
blocks). Files in the ABACUS filesystem can be
bound to a RAID object that provides storage
striping and fault-tolerance. The RAID object
maintains parity on a per-file basis, stripes data
across multiple storage servers, and is distributed
to allow concurrent accesses to shared stripes by
clients by using a timestamp-based concurrency
control protocol [2]. The RAID object can
execute at either the client nodes or the storage
servers. The object graph used by files for this
experiment is shown in Figure 3.

The proper placement of the RAID object
largely depends on the performance of the
network connecting the client to the storage
servers. Recall that a RAID small write involves
four I/Os, two to pre-read the old data and
parity and two to write the new data and parity.
Similarly, when a disk failure occurs, a block
read requires reading all the blocks in a stripe and
XORing them together to reconstruct the failed
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Figure 4: This figure shows the results of our RAID
benchmark. Contention on the server’s CPU resources
make client-based RAID more appropriate, except in
the LAN case, where the network is the bottleneck.

data. This can result in substantial network traffic
between the RAID object and the storage servers.

We construct two workloads to evaluate RAID
performance on ABACUS. The first consists
of two clients writing two separate 4MB files
sequentially. The stripe size is 5 (4 data + parity)
and the stripe unit is 32KB. The second workload
consists of the two clients reading the files back
in degraded mode (with one disk marked failed).

Results. As shown in Figure 4, executing the
RAID object at the server improves RAID small
write performance in the LAN case by a factor
of 2.6 over executing the object at the host. The
performance of the experiment when ABACUS

adaptively places the object is within 10% of
optimal. Conversely, in the SAN case, executing
the RAID object locally at the client is 1.3X faster
because the client has a lower load and is able
to perform the RAID functionality more quickly.
Here, ABACUS arrives within 1% of this value.
The advantage of client-based RAID is slightly
more pronounced in the more CPU-intensive
degraded read case, in which the optimal location
is almost twice as fast as at the server. Here,
ABACUS arrives within 30% of optimal. In every
instance, ABACUS automatically selects the best
location for the RAID object.

6.3 Adapting to run-time parameters

Issue. Applications can exhibit drastically
different behavior based on run-time parameters.

 3
6.

24

 4
.8

2

 4
0.

73

 3
7.

12

 8
.5

5

 2
.0

2

 4
0.

84

 3
6.

13

 6
.9

1

 1
.3

8

 7
3.

07

 2
5.

66

High selectivity,
LAN

High selectivity,
SAN

Low selectivity,
SAN,

Loaded drive

Low selectivity,
LAN

0

20

40

60

80

E
la

ps
ed

 ti
m

e 
(s

)

At client
Adaptive
At server

Figure 5: The performance of our filter benchmark is
shown in this figure. Executing the filter at the storage
server is advantageous in all but the third configuration,
in which the filter is computationally expensive and
runs faster on the client, has more CPU resources
available.

In this section, we show that the data being
accessed by a filter (which is set by an argument)
determines the appropriate location for the filter
to run. For example, there’s a drastic difference
betweengrep kernel Bible.txt and grep

kernel LinuxBible.txt.

Experiment. As data sets in large-scale
businesses continue to grow, an increasingly
important user application is high-performance
search, or data filtering. Filtering is often a highly
selective operation, consuming a large amount
of data and producing a smaller fraction. We
constructed a synthetic filter object that returns
a configurable percentage of the input data to the
object above it. Highly selective filters represent
ideal candidate for execution close to the data, so
long as storage resources are available.

In this experiment, we varied both the filter’s
selectivity and CPU consumption from low to
high. We define selectivity as(1�output=input).
A filter labeled low selectivity outputs 80% of
the data that it reads, while a filter with high
selectivity outputs only 20% of its input data.
A filter with low CPU consumption does the
minimal amount of work to achieve this function,
while a filter with high CPU consumption
simulates traversing large data structures (e.g.,
the finite state machines of a text search program
like grep).
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Figure 6: The figure shows that client-side caching
is essential for workloads exhibiting reuse (Scan), but
causes pathological performance when inserting small
records (Insert). ABACUS automatically enables and
disables the client caching by placing the cache object
at the client or at the server.

Results. Figure 5 shows the elapsed time
to read and filter a 16MB file in a number
of configurations. In the first set of numbers,
ABACUS migrates the filter from the client to
the storage server, coming within 25% of the
ideal case, which is over 5X better than filtering
at the client. Similarly, ABACUS migrates the
filter in the second set. While achieving better
performance than statically locating the filter at
the client, ABACUS reaches only within 50% of
optimal because the time required for ABACUS to
migrate the object is a bigger fraction of total run-
time. In the third set, we run a computationally
expensive filter. We simulate a loaded or slower
storage server by making the filter twice as
expensive to run on the storage server. Here, the
filter executes 1.8X faster on the client. ABACUS

correctly detects this case and keeps the filter on
the client. Finally, in the fourth set of numbers,
the value of moving is too low for ABACUS to
deem it worthy of migration. Recall that the
migration threshold is 30%, and note that this
applies to theestimatedbenefit computed by
ABACUS and not the real benefit.

6.4 Adapting to data access patterns

Issue.Client-side caches in distributed file and
database systems often yield dramatic reduction
in storage access latencies because they avoid
slow client networks, increase the total amount
of memory available for caching, and reduce the

load on the server. However, enabling client-
side caching can yield the opposite effect under
certain access patterns. In this subsection, we
show that ABACUS appropriately migrates the
per-file cache object in response to data access
patterns via black-box monitoring.

Experiment. Caching in ABACUS is provided
by a mobile cache object. Consider an
application that inserts small records into files
stored on a storage server. These inserts require a
read of the block from the server (aninstallation
read) and then a write-back of the entire block.
Even when the original block is cached, writing
a small record in a block requires transferring
the entire contents of each block to the server.
Now, consider an application reading cached
data. Here, we desire the cache to reside on the
client.

We carried out the following experiments to
evaluate the impact of and ABACUS’s response
to application access patterns. In the first
benchmark,table insert, the application inserts
1,500 128byte records into a 192KB file. An
insert writes a record to a random location in the
file. In the second benchmark,table scan, the
application reads the 1,500 records back, again
in random order. The cache, which uses a block
size of 8KB, is large enough for the working set
of the application. Before recording numbers, the
experiment was run to warm the cache.

Results. As shown in Figure 6, locating the
cache at the server for the insert benchmark is
2.7X faster than at a client on the LAN, and
1.5X faster than at a client on the SAN. ABACUS

comes within 10% of optimal for the LAN case,
and within 15% for the SAN case. The difference
is due to the relative length of the experiments,
causing the cache to migrate relatively late in the
SAN case (which runs for only a few multiples
of the observation window). The table scan
benchmark highlights the benefit of client-side
caching when the application workload exhibits
reuse. In this case, ABACUS leaves the cache at
the client, cutting execution time over caching at
the server by over 40X and 8X for the LAN and
SAN tests respectively.

6.5 Adapting to contention over shared
data

Issue. Filesystem functionality, such as



caching or namespace updates/lookups, is often
distributed to improve scalability [15]. When
contention for the shared objects between clients
is low, executing objects at the client(s) accessing
them yields higher scalability and better cache
locality. When contention over a shared object
increases, a server-based execution becomes
more efficient. In this case, client invocations
are serialized locally on the server, avoiding the
overhead of retries over the network. This kind of
adaptation also solves performance cliffs caused
by false sharing in distributed file caches. When
several clients are writing to ranges in a file that
happen to share common blocks, the invalidation
traffic can degrade performance so that write-
through to the server would be preferable.

Experiment. We chose a workload that
performs directory inserts in a shared namespace
as our contention benchmark. Directories in
ABACUS present a hierarchical namespace like
all UNIX filesystems and are implemented using
the object graph shown in Figure 7.

When clients access disjoint parts of the
directory namespace (i.e.: there are no concurrent
conflicting accesses), the optimistic scheme in
which concurrency control checks are performed
by the isolation object (recall Section 4.3)
works well. Each directory object at a client
maintains a cache of the directories accessed
frequently by that client, making directory
reads fast. Moreover, directory updates are
minimally cheap because no metadata pre-
reads are required, and no lock messaging
is performed. Further, offloading the bulk
of the work from the server results in better
scalability and frees storage devices to execute
demanding workloads from competing clients.
When contention is high, however, the number
of retries and cache invalidations seen by the
directory object increases, potentially causing
several round-trip latencies per operation. When
contention increases, we desire the directory
object to migrate to the storage device. This
would serialize client updates through one object,
thereby eliminating retries.

We constructed two benchmarks to evaluate
how ABACUS responds to different levels of
directory contention. The first is a high
contention workload, where four clients insert
200 files each in a shared directory. The
second is a low contention workload where four
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Figure 7: This figure shows directory updates from
multiple contending clients. While distributing
directory management to clients is beneficial under low
contention, under high contention it results in a flurry
of retries per directory operation. When the object is
moved to the storage device, multiple client requests
are serviced by (multiple threads in) the same object,
serializing them locally without the cost of multiple
cross-network retries.

clients insert 200 files each in private (unique)
directories.

Results. As shown in Figure 8, ABACUS

reduces execution time for the high contention
workload by migrating the directory object to
the server. In the LAN case, ABACUS is within
10% of the optimal. The optimal is 8X better
than locating the directory object at the host.
ABACUS comes within 25% of optimal for the
high contention, SAN case (which is 2.5X better
than the worst case). ABACUS estimates that
moving it closer to the isolation object would
make retries cheaper. It adapts more quickly in
the LAN case because the estimated benefit is
greater. ABACUS had to observe far more retries
and revalidation traffic on the SAN case before
deciding to migrate the object.

Under low contention, ABACUS makes
different decisions in the LAN and SAN cases,
migrating the directory object to the server in
the former and not migrating it in the latter.
We started the benchmark from a cold cache,
causing many installation reads. Hence, in the
case where there is little contention and the
application is running over the LAN, ABACUS

estimates that migrating the directory object
to the storage server is worthwhile, because
it avoids the latency of the low-speed LAN.
However, in the SAN case, the network is
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Figure 8: This figure shows the time to execute our
directory insert benchmark under different levels of
directory contention. ABACUS migrates the directory
object in all but the fourth case.

Insert Scan Insert Scan Tot.
Client 26.0 0.4 28.3 0.4 55.2
Adapt. 11.7 7.2 12.1 3.5 34.5
Server 7.8 29.2 7.7 26.0 70.7
Opt. 7.8 0.4 7.7 0.4 16.3

Table 1: Inter-application phases. This table shows
the performance of a multiphasic application in the
static cases and under ABACUS. The application goes
through an insert phase, followed by a scan phase, back
to inserting, and concluding with another scan. The
table shows the completion time in seconds of each
phase under each scheme.

fast enough that ABACUS cost-benefit model
estimates the installation read network cost to be
limited. Indeed, the results show that the static
client and storage server configurations for the
SAN case differ by less than 30%, our migration
threshold. This benchmark does not exhibit
a case where client-side placement is better
because our client population is of limited size
(only four nodes). Note also that the directory
objects from different clients need not all migrate
to the server at the same time. The server can
decide to migrate them independently, based
on its estimates of the migration benefit for
each client. Correctness is ensured even if only
someobjects migrate, because all operations are
verified to have occurred in timestamp order by
the underlying isolation/atomicity object.

6.6 Adapting to application phases

Issue. Having established that optimal
placement depends on several system and
workload characteristics, we further note that
these characteristics change with time on most
systems. In this subsection, we are concerned
with characteristics that vary with algorithmic
changes within the lifetime of the application.
Applications rarely exhibit the same behavior or
consume resources at the same rate throughout
their lifetimes. Instead, an application may
change phases at a number of points during
its execution in response to input from a
user or a file or as a result of algorithmic
properties. Multiphasic applications make a
particularly compelling case for the dynamic
function relocation that ABACUS provides.

Experiment. To explore multiphasic behavior,
we revisit our file caching example. Specifically,
we run a benchmark that does an insert phase,
followed by scanning, followed by inserting, and
concluding with another scan phase. The goal is
to determine whether the benefit estimates at the
server will eject an application that changed its
behavior after being moved to the server. Further,
we wish to see whether ABACUS recovers from
bad history quickly enough to achieve adaptation
that is useful to an application that exhibits
multiple contrasting phases.

Results.Table 1 shows that ABACUS migrates
the cache to the appropriate location based on
the behavior of the application over time. First,
ABACUS migrates the cache to the server for the
insert phase. Then, ABACUS ejects the cache
object from the server when it detects that the
cache is being reused by the client. Both static
choices lead to bad performance in alternating
phases. Consequently, ABACUS outperforms
both static cases—by 1.6X compared to the
client case, and by 2X compared to the server
case. The optimal row refers to the minimum
execution time picked alternatively from the
client and server cases. We see that ABACUS

is approximately twice as slow as the optimal.
This is to be expected, as this extreme scenario
changes phases fairly rapidly.

6.7 Adapting to competition

Issue. Shared storage server resources are
rarely dedicated to serving one workload. An



additional complexity addressed by ABACUS

is provisioning storage server resources to
competing clients. Toward reducing global
application execution time, ABACUS resolves
competition among objects that would execute
more quickly at the server by favoring those
objects that would derive a greater benefit from
doing so.

Experiment. In this experiment, we run
two filter objects on a 32MB file on our LAN.
The filters have different selectivities, and hence
derive different benefits from executing at the
storage server. In detail, Filter 1 produces 60%
of the data that it consumes, while Filter 2, being
the more selective filter, outputs only 30% of the
data it consumes. The storage server’s memory
resources are restricted so that it can only support
one filter at a time.

Results. Figure 9 shows the cumulative
progress of the filters over their execution, and
the migration decisions made by ABACUS. The
less selective Filter 1 is started first. ABACUS

shortly migrates it to the storage server. Soon
after, we start the more selective Filter 2. Shortly
thereafter, ABACUS migrates the highly selective
Filter 2 to the server, kicking back the other to its
original node. The slopes of the curves show that
the filter currently on the server runs faster than
when not, but that Filter 2 derives more benefit
since it is more selective. Filters are migrated
to the server after a noticeable delay because
the estimated benefit was close to the configured
threshold. Longer history windows will amortize
the migration cost over a longer window of
benefit, resulting in migration occurring sooner.
In general, the history window should be at
least long enough to capture many iterations
up and down the object stack, so that the
statistics collected by ABACUS are representative
of application behavior.

ABACUS does place a run-time overhead
compared to traditional implementations. A
filter implemented and running on ABACUS

runs up to 25% slower than one implemented
directly atop of the Unix Filesystem, in the
case where no migrations occur.3 Furthermore,
ABACUS can, under pathological conditions,
result in worse performance than either static

3The size of the file filtered was 8 MB. We believe that
part of this overhead can be eliminated with a more optimized
implementation.
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Figure 9: This figure plots the cumulative number
of blocks searched by two filters versus elapsed
time. ABACUS’s competition resolving algorithm
successfully chooses the more selective Filter 2 over
the Filter 1 for execution at the storage server.

placement. Consider the case of an application
that completely changes behavior right after
ABACUS decides to migrate it, inducing a
migration back to the original node, only to
change its behavior again and start another cycle.
In this case, the application will always be placed
on the “wrong” node and will incur additional
migration costs that are linear with the migration
frequency, which is about once every history
window. This worst case behavior is currently
bounded by noticing objects that rapidly ping-
pong back and forth between locations and
anchoring them in one default placement until the
application terminates.

7 Conclusions

In this paper, we demonstrate that optimal
function placement depends on system and
workload characteristics that are impossible to
predict at application design or installation time.
We propose a dynamic approach where function
placement is continuously adapted by a run-time
system based on resource usage and availability.
Measurements demonstrate that placement can
be decided based on black-box monitoring of
application objects, in which the system is
oblivious to the function being implemented.
Preliminary evaluation shows that ABACUS,
our prototype system, can improve application
response time by 2–10X. These encouraging



results indicate a promising future for this
approach.
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