
A NEW UTILITY FUNCTION
• Properties desired:

› Larger object → smaller utility
› Sooner-to-be-accessed → larger utility
› Group size one → Belady’s MIN

(weighted by size)
› Easy and accurate to track online

LEARNING IN GL-CACHE
• Static + dynamic features: write rate, 

miss ratio, request rate, mean object size, 
age, # requests, # active objects 

• Model: gradient-boosting trees
• Objective: regression
• Eviction in GL-Cache

GL-Cache: Group-level Learning for Efficient and 
High-performance Caching

Introduction
Juncheng Yang (Carnegie Mellon), Ziming Mao (Yale University), Yao Yue (Pelikan Foundation), K. V. Rashmi (Carnegie Mellon)

• Cache is widely deployed to support the modern Internet 
• Two metrics are important for a cache: efficiency 

(measured by hit ratio) and throughput performance
• Many recent works improve the efficiency of caches 

using machine learning

Design of GL-Cache

• Many challenges:
› How does GL-Cache group objects?
› What and How does GL-Cache learn?
› How does GL-Cache evict?

Evaluation
• Efficiency

› GL-Cache-E is slightly better than state-of-the-art algorithms
› GL-Cache-T is close to LRB

Summary
• Group-level learning

1.  Amortizes the overhead of learning, and 
2.  Accumulates more information for 

learning
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• Throughput
› GL-Cache-E is faster than all state-of-the-art algorithms
› GL-Cache-T is significantly faster

Background: Learned Caches
• We categorize the existing learned caches into 3 types:

• Existing learned caches either compromise on throughput or 
cannot leverage multiple features 
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3. Object-level learning

2. Learning from probability distribution, e.g., LHD

1. Learning from simple experts, e.g., LeCaR 
and CACHEUS

Group-level Learning
• Amortizes the cost of learning across multiple objects
• Can accumulate more information for learning since most 

objects have very few requests

utilizes multiple features, while amortizes overheads
groups accumulate more information and are easier to learn
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Group-level learned cache

GL-Cache Architecture

INSERTION-TIME-BASED GROUPING

A UTILITY FUNCTION TO MEASURE USEFULNESS OF A GROUP
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Merge-based eviction
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