
Written by: Jonathan Tjioe
Last Updated: 2010-10-25

Introduction
I spent several days trying to get DiskSim 3.0 running and had several issues. Through much effort, help
from users on the DiskSim email list, Mahmood’s guide, and Ajay’s guide, I was able to get it running.
When I first started trying to use DiskSim, I wished that there was a detailed, step-by-step guide that
told me which OS to use, which packages to add, what to modify, etc. What follows is my attempt at
creating that guide.

Helpful Links
DiskSim Users Email list
https://sos.ece.cmu.edu/mailman/listinfo/disksim-users

Ajay’s Guide for DiskSim
http://www.cs.rice.edu/~gulati/

Original DiskSim Website
http://www.pdl.cmu.edu/DiskSim/

Environment
With all the different Linux distributions out there, every developer’s environment will be a little bit
different. But for the sake of this guide, here is what I know works and what I have setup. I will be
installing Ubuntu 10.10 (32-bit) in a virtual machine using Parallels Desktop 6.0 on my MacBook Pro
2.66GHz i7, which is x86 based and running OS X 10.6.4. Of course, you should be able to virtualize
Ubuntu on any x86 based Virtualization software and it should work fine. However, to my knowledge,
DiskSim 3.0 does not work on 64-bit hardware. This may not hold true for the latest version, but I’m
pretty sure 3.0 only works on 32-bit.

Software
Parallels Desktop 6.0 (Mac) or some other virtualization software
Ubuntu 10.10 (32-bit)
gcc-3.3 (3.3.6)
g++-3.3 (3.3.6)
bison 2.4.1
flex 2.5.4
DiskSim3.0 (packaged by Ajay)

Procedures
High-level Instructions

1. Install Parallels Desktop 6.0 (Mac) or some other virtualization software
2. Install Ubuntu in a Virtual Machine (VM)
3. Downgrade gcc and g++ and add other required software
4. Extract Ajay’s tar file and modify accordingly

Written by: Jonathan Tjioe
Last Updated: 2010-10-25

5. Test out DiskSim 3.0

Detailed Instructions
Note: I won’t cover installing a VM as you can use any virtualization product similar to Parallels
Desktop, VMWare workstation, etc. However, I would make sure you setup the network card of your
VM to be NAT. This will allow Internet access from the VM, which will be important to get the right
packages using Ubuntu’s Synaptic Package Manager. Also, it will probably make your life easier if you
install Parallels Tools, VMWare Tools, or whatever your product’s virtualization tools are called.

1. Download Ubuntu 10.10 from here:
http://www.ubuntu.com/

2. Install Ubuntu in a VM.
3. Verify current version of gcc is not 3.3.6:

gcc –v
4. sudo gedit /etc/apt/sources.list and enter the following lines at the end of the file:

All officially supported packages, including security‐ and other updates
deb http://archive.ubuntu.com/ubuntu dapper main restricted
deb http://security.ubuntu.com/ubuntu dapper-security main restricted
deb http://archive.ubuntu.com/ubuntu dapper‐updates main restricted

The source packages (only needed to recompile existing packages)
deb-src http://archive.ubuntu.com/ubuntu dapper main restricted
deb-src http://security.ubuntu.com/ubuntu dapper-security main restricted
deb-src http://archive.ubuntu.com/ubuntu dapper-updates main restricted

All community supported packages, including security- and other updates
deb http://archive.ubuntu.com/ubuntu dapper universe multiverse
deb http://security.ubuntu.com/ubuntu dapper-security universe multiverse
deb http://archive.ubuntu.com/ubuntu dapper-updates universe multiverse

The source packages (only needed to recompile existing packages)
deb-src http://archive.ubuntu.com/ubuntu dapper universe restricted
deb-src http://security.ubuntu.com/ubuntu dapper-security universe restricted
deb-src http://archive.ubuntu.com/ubuntu dapper-updates universe restricted

5. Verify that Update Manager still functions properly:
System > Administration > Update Manager

Note: Hidden characters or improperly formatted/encoded text can cause the Update Manager to
return an error. If an error comes up, edit the /etc/apt/sources.list file again and enter the text
manually.

6. Once Update Manager can be opened successfully, close it. Open up Synaptic Package Manager:
System > Administration > Synaptic Package Manager

Written by: Jonathan Tjioe
Last Updated: 2010-10-25

7. Click Reload to ensure all repositories show the latest software packages. At the “Could not
download all repository indexes” prompt, click Close.

8. Search for and mark the following packages for installation:
gcc-3.3 base
gcc-3.3-doc
gcc-3.3 (3.3.6)
g++-3.3 (3.3.6)
bison (2.4.1)
flex-old (2.5.4a-8)
flex-old-doc (2.5.4a-8)

Note: If the packages do not show up, try Reloading (Step 7) again.

Note: Synaptic Package Manager automatically calculates dependencies between software
packages. So if you are prompted to install other packages due to dependencies, install those as
well.

After selecting the desired software packages, click Apply 2 times. On the “Changes Applied”
box, click Close. Then Close Synaptic Package Manager.

9. Shift the priority of the older gcc-3.3.6 to be above gcc-4.4.5 which came preinstalled with
Ubuntu 10.10:
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-3.3 60 --
slave /usr/bin/g++ g++ /usr/bin/g++-3.3

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.4 40 --
slave /usr/bin/g++ g++ /usr/bin/g++-4.4

10. Verify that the default gcc is now 3.3.6:
update-alternatives –-config gcc

gcc -v

11. Verify that the version of flex (2.5.4) and bison (2.4.1) are correct:
bison --version
flex --version

12. From the Ubuntu VM, download Ajay’s tar file:

http://www.cs.rice.edu/%7Egulati/tools/disksim-3.0-ajay.tar.gz

13. Extract the file to your home directory:
cp <Download Path>/disksim-3.0-ajay.tar.gz ~
cd ~

Written by: Jonathan Tjioe
Last Updated: 2010-10-25

gunzip disksim-3.0-ajay.tar.gz
tar –xvf disksim-3.0-ajay.tar

14. Modify the newly extracted directory of DiskSim 3.0 according to the instructions below:

Note: Ajay’s original instructions can be found here: ~/disksim-3.0/HOW-TO-COMPILE.Ajay.
I’ve made a few updates and the modified instructions are what follow.

Note: For all entires that have “/home/mooncold”, replace this with your path to the disksim-3.0
directory.

Compiling libddbg
cd /home/mooncold/disksim-3.0/libddbg
make all

Compiling libparam
cd /home/mooncold/disksim-3.0/libparam

#update the LIBDDBG_PREFIX in the .paths.in file to be the path
LIBDDBG_PREFIX=/home/mooncold/disksim-3.0/libddbg

cp .paths.in .paths
make

Compiling diskmodel
cd /home/mooncold/disksim-3.0/diskmodel

#update the LIBPARAM_PREFIX and LIBDDBG_PREFIX in the .paths.in file
export LIBPARAM_PREFIX=/home/mooncold/disksim-3.0/libparam
export LIBDDBG_PREFIX=/home/mooncold/disksim-3.0/libddbg

cp .paths.in .paths
make

Compiling the src directory
cd /home/mooncold/disksim-3.0/src

#update the LIBPARAM_PREFIX and LIBDDBG_PREFIX in the .paths.in file
export LIBPARAM_PREFIX=/home/mooncold/disksim-3.0/libparam
export LIBDDBG_PREFIX=/home/mooncold/disksim-3.0/libddbg
export DISKMODEL_PREFIX=/home/mooncold/disksim-3.0/diskmodel

cp .paths.in .paths
make

15. Verify that disksim is running properly.
cd /home/mooncold/disksim-3.0/valid
./runvalid

Written by: Jonathan Tjioe
Last Updated: 2010-10-25

Note: The rms values for the hardware and simulation results should be very similar. If it is, this
means that DiskSim compiled successfully.

16. Run a sample simulation. From the valid directory, run the following:
../src/disksim barracuda.parv test.out ascii 0 1

Note: The output will be in test.out.

