
The Open Group Base Specifications Issue 6
IEEE Std 1003.1, 2004 Edition

Copyright © 2001-2004 The IEEE and The Open Group, All Rights reserved.

NAME

open - open a file

SYNOPSIS

[OH] #include <sys/stat.h>

#include <fcntl.h>

fh_t *openg(const char *path, int oflag, fh_t *handle, ...);

DESCRIPTION

The openg() function shall establish the connection between a file and
a file handle. It shall return a file handle that refers to a file. The file
handle is used by the sutoc() function to refer to that file and
complete the task of acquiring an open file descriptor. The path
argument points to a pathname naming the file.

The file status flags and file access modes of the file handle shall be
set according to the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from
the following list, defined in <fcntl.h>. Applications shall specify
exactly one of the first three values (file access modes) below in the
value of oflag:

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR
Open for reading and writing. The result is undefined if this flag
is applied to a FIFO.

Any combination of the following may be used:

O_APPEND
If set, the file offset shall be set to the end of the file prior to
each write.

O_CREAT
If the file exists, this flag has no effect except as noted under
O_EXCL below. Otherwise, the file shall be created; the user ID
of the file shall be set to the effective user ID of the process; the
group ID of the file shall be set to the group ID of the file's
parent directory or to the effective group ID of the process; and
the access permission bits (see <sys/stat.h>) of the file mode
shall be set to the value of the third argument taken as type
mode_t modified as follows: a bitwise AND is performed on the
file-mode bits and the corresponding bits in the complement of
the process' file mode creation mask. Thus, all bits in the file
mode whose corresponding bit in the file mode creation mask is
set are cleared. When bits other than the file permission bits are
set, the effect is unspecified. The third argument does not affect
whether the file is open for reading, writing, or for both.
Implementations shall provide a way to initialize the file's group
ID to the group ID of the parent directory. Implementations
may, but need not, provide an implementation-defined way to
initialize the file's group ID to the effective group ID of the
calling process.

O_DSYNC
[SIO] Write I/O operations on the final file descriptor shall
complete as defined by synchronized I/O data integrity
completion.

O_EXCL
If O_CREAT and O_EXCL are set, openg() shall fail if the file
exists. The check for the existence of the file and the creation of
the file if it does not exist shall be atomic with respect to other
threads executing openg() naming the same filename in the
same directory with O_EXCL and O_CREAT set. If O_EXCL and
O_CREAT are set, and path names a symbolic link, openg() shall
fail and set errno to [EEXIST], regardless of the contents of the
symbolic link. If O_EXCL is set and O_CREAT is not set, the
result is undefined.

O_RSYNC
[SIO] Read I/O operations on the file descriptor shall complete
at the same level of integrity as specified by the O_DSYNC and
O_SYNC flags. If both O_DSYNC and O_RSYNC are set in oflag,
all I/O operations on the file descriptor shall complete as defined
by synchronized I/O data integrity completion. If both O_SYNC
and O_RSYNC are set in flags, all I/O operations on the file
descriptor shall complete as defined by synchronized I/O file
integrity completion.

O_SYNC

[SIO] Write I/O operations on the file descriptor shall complete
as defined by synchronized I/O file integrity completion.

O_TRUNC
If the file exists and is a regular file, and the file is successfully
opened O_RDWR or O_WRONLY, its length shall be truncated to
0, and the mode and owner shall be unchanged. It shall have no
effect on FIFO special files or terminal device files. Its effect on
other file types is implementation-defined. The result of using
O_TRUNC with O_RDONLY is undefined.

If O_CREAT is set and the file did not previously exist, upon successful
completion, openg() shall mark for update the st_atime, st_ctime, and
st_mtime fields of the file and the st_ctime and st_mtime fields of the
parent directory.

If O_TRUNC is set and the file did previously exist, upon successful
completion, openg() shall mark for update the st_ctime and st_mtime
fields of the file.

[SIO] If both the O_SYNC and O_DSYNC flags are set, the effect is as
if only the O_SYNC flag was set.

 [XSI] If path names the master side of a pseudo-terminal device, then
it is unspecified whether openg() locks the slave side so that it cannot
be opened. Conforming applications shall call unlockpt() before
opening the slave side.

A pointer to an application opaque buffer must be provided by handle.
The buffer content is updated always, even on error.

The largest value that can be represented correctly in an object of type
off_t shall be established as the offset maximum in the open file
description.

RETURN VALUE

Upon successful completion, the function shall return a non-NULL
pointer to the update application opaque buffer passed in. Otherwise,
NULL shall be returned and errno set to indicate the error. No files
shall be created or modified if the function returns NULL.

ERRORS

The openg() function shall fail if:

[EACCES]
Search permission is denied on a component of the path prefix,
or the file exists and the permissions specified by oflag are
denied, or the file does not exist and write permission is denied
for the parent directory of the file to be created, or O_TRUNC is
specified and write permission is denied, or the file is a device or
pseudo-device file.

[EEXIST]
O_CREAT and O_EXCL are set, and the named file exists.

[EINTR]
A signal was caught during openg().

[EINVAL]
[SIO] The implementation does not support synchronized I/O for
this file.

[EISDIR]
The named file is a directory and oflag includes O_WRONLY or
O_RDWR.

[ELOOP]
A loop exists in symbolic links encountered during resolution of
the path argument.

[ENOENT]
O_CREAT is not set and the named file does not exist; or
O_CREAT is set and either the path prefix does not exist or the
path argument points to an empty string.

[ENOSPC]
The directory or file system that would contain the new file
cannot be expanded, the file does not exist, and O_CREAT is
specified.

[ENOTDIR]
A component of the path prefix is not a directory.

[ENXIO]
O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set,
and no process has the file open for reading.

[ENXIO]
The named file is a character special or block special file, and the
device associated with this special file does not exist.

[EOVERFLOW]
The named file is a regular file and the size of the file cannot be
represented correctly in an object of type off_t.

[EROFS]
The named file resides on a read-only file system and either
O_WRONLY, O_RDWR, O_CREAT (if the file does not exist), or
O_TRUNC is set in the oflag argument.

The openg() function may fail if:

[EAGAIN]
[XSI] The path argument names the slave side of a pseudo-
terminal device that is locked.

[EINVAL]
The value of the oflag argument is not valid.

[ELOOP]
More than {SYMLOOP_MAX} symbolic links were encountered
during resolution of the path argument.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the
path argument, the length of the substituted pathname string
exceeded {PATH_MAX}.

[ETXTBSY]
The file is a pure procedure (shared text) file that is being
executed and oflag is O_WRONLY or O_RDWR.

The following sections are informative.

EXAMPLES

Opening a File for Writing by the Owner

The following example opens the file /tmp/file, either by creating it
(if it does not already exist), or by truncating its length to 0 (if it does
exist). In the former case, if the call creates a new file, the access
permission bits in the file mode of the file are set to permit reading
and writing by the owner, and to permit reading only by group
members and others.

If the call to openg() is successful, the file is opened for writing.

#include <fcntl.h>
...
fh_t fhandle, *fh;
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *filename = "/tmp/file";
...
fh = openg(filename, O_WRONLY | O_CREAT | O_TRUNC, &fhandle, mode);
...

Opening a File Using an Existence Check

The following example uses the openg() function to try to create the
LOCKFILE file and open it for writing. Since the openg() function

specifies the O_EXCL flag, the call fails if the file already exists. In that
case, the program assumes that someone else is updating the
password file and exits.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
fh_t pfhandle, *pfh; /* Integer for file descriptor returned by openg()
call. */
...
if ((pfh = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,
 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH), &pfhandle) == -1)
{
 fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
 exit(1);
}
...

Opening a File for Writing

The following example opens a file for writing, creating the file if it
does not already exist. If the file does exist, the system truncates the
file to zero bytes.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

#define LOCKFILE "/etc/ptmp"
...
fh_t pfhandle, *pfh;
char filename[PATH_MAX+1];
...
if ((pfh = open(filename, O_WRONLY | O_CREAT | O_TRUNC,
 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH), &pfhandle) == -1)
{
 perror("Cannot open output file\n"); exit(1);
}
...

APPLICATION USAGE

None.

RATIONALE

Except as specified in this volume of IEEE Std 1003.1-2001, the flags
allowed in oflag are not mutually-exclusive and any number of them
may be used simultaneously.

Devices and pseudo-devices may not be specified by the path
argument.

See getgroups() about the group of a newly created file.

IEEE Std 1003.1-2001 permits [EACCES] to be returned for conditions
other than those explicitly listed.

In historical implementations the value of O_RDONLY is zero. Because
of that, it is not possible to detect the presence of O_RDONLY and
another option. Future implementations should encode O_RDONLY and
O_WRONLY as bit flags so that:

O_RDONLY | O_WRONLY == O_RDWR

In general, the openg() function follows the symbolic link if path
names a symbolic link. However, the openg() function, when called
with O_CREAT and O_EXCL, is required to fail with [EEXIST] if path
names an existing symbolic link, even if the symbolic link refers to a
nonexistent file. This behavior is required so that privileged
applications can create a new file in a known location without the
possibility that a symbolic link might cause the file to be created in a
different location.

For example, a privileged application that must create a file with a
predictable name in a user-writable directory, such as the user's home
directory, could be compromised if the user creates a symbolic link
with that name that refers to a nonexistent file in a system directory.
If the user can influence the contents of a file, the user could
compromise the system by creating a new system configuration or
spool file that would then be interpreted by the system. The test for a
symbolic link which refers to a nonexisting file must be atomic with the
creation of a new file.

The POSIX.1-1990 standard required that the group ID of a newly
created file be set to the group ID of its parent directory or to the
effective group ID of the creating process. FIPS 151-2 required that
implementations provide a way to have the group ID be set to the
group ID of the containing directory, but did not prohibit
implementations also supporting a way to set the group ID to the

effective group ID of the creating process. Conforming applications
should not assume which group ID will be used. If it matters, an
application can use chown() to set the group ID after the file is
created, or determine under what conditions the implementation will
set the desired group ID.

FUTURE DIRECTIONS

None.

SEE ALSO

chmod(), close(), creat(), dup(), fcntl(), lseek(), read(), sutoc(),
umask(), unlockpt(), write(), the Base Definitions volume of
IEEE Std 1003.1-2001, <fcntl.h>, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY

Proposed.

End of informative text.

UNIX ® is a registered Trademark of The Open Group.
POSIX ® is a registered Trademark of The IEEE.

[Main Index | XBD | XCU | XSH | XRAT]

