
Current stat/fstat/lstat Linux Man Page

NAME

stat, fstat, lstat - get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char *file_name, struct stat *buf);
int fstat(int filedes, struct stat *buf);
int lstat(const char *file_name, struct stat *buf);

DESCRIPTION

These functions return information about the specified file. You do not need any access rights
to the file to get this information but you need search rights to all directories named in the
path leading to the file.

stat stats the file pointed to by file_name and fills in buf.

lstat is identical to stat, except in the case of a symbolic link, where the link itself is stat-ed,
not the file that it refers to.

fstat is identical to stat, only the open file pointed to by filedes (as returned by open(2)) is
stat-ed in place of file_name.

They all return a stat structure, which contains the following fields:

struct stat {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device)
*/
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
};

The value st_size gives the size of the file (if it is a regular file or a symlink) in bytes. The size
of a symlink is the length of the pathname it contains, without trailing NUL.

The value st_blocks gives the size of the file in 512-byte blocks. (This may be smaller than
st_size/512 e.g. when the file has holes.) The value st_blksize gives the "preferred" blocksize
for efficient file system I/O. (Writing to a file in smaller chunks may cause an inefficient read-
modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some file system types allow
mounting in such a way that file accesses do not cause an update of the st_atime field. (See
`noatime' in mount(8).)

The field st_atime is changed by file accesses, e.g. by execve(2), mknod(2), pipe(2),
utime(2) and read(2) (of more than zero bytes). Other routines, like mmap(2), may or may
not update st_atime.

The field st_mtime is changed by file modifications, e.g. by mknod(2), truncate(2),
utime(2) and write(2) (of more than zero bytes). Moreover, st_mtime of a directory is
changed by the creation or deletion of files in that directory. The st_mtime field is not changed
for changes in owner, group, hard link count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group,
link count, mode, etc.).

The following POSIX macros are defined to check the file type:

S_ISREG(m)
is it a regular file?
S_ISDIR(m)
directory?
S_ISCHR(m)
character device?
S_ISBLK(m)
block device?
S_ISFIFO(m)
fifo?
S_ISLNK(m)
symbolic link? (Not in POSIX.1-1996.)
S_ISSOCK(m)
socket? (Not in POSIX.1-1996.)

The following flags are defined for the st_mode field:

S_IFMT 0170000 bitmask for the file type bitfields
S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 fifo
S_ISUID 0004000 set UID bit
S_ISGID 0002000 set GID bit (see below)
S_ISVTX 0001000 sticky bit (see below)
S_IRWXU 00700 mask for file owner permissions
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission

S_IXUSR 00100 owner has execute permission
S_IRWXG 00070 mask for group permissions
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission
S_IRWXO 00007 mask for permissions for others (not in group)
S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permisson
S_IXOTH 00001 others have execute permission

The set GID bit (S_ISGID) has several special uses: For a directory it indicates that BSD
semantics is to be used for that directory: files created there inherit their group ID from the
directory, not from the effective gid of the creating process, and directories created there will
also get the S_ISGID bit set. For a file that does not have the group execution bit (S_IXGRP)
set, it indicates mandatory file/record locking. The `sticky' bit (S_ISVTX) on a directory means
that a file in that directory can be renamed or deleted only by the owner of the file, by the
owner of the directory, and by root.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

EBADF
filedes is bad.

ENOENT
A component of the path file_name does not exist, or the path is an empty string.

ENOTDIR
A component of the path is not a directory.

ELOOP
Too many symbolic links encountered while traversing the path.

EFAULT
Bad address.

EACCES
Permission denied.

ENOMEM
Out of memory (i.e. kernel memory).

ENAMETOOLONG
File name too long.

CONFORMING TO

The stat and fstat calls conform to SVr4, SVID, POSIX, X/OPEN, BSD 4.3. The lstat call
conforms to 4.3BSD and SVr4. SVr4 documents additional fstat error conditions EINTR,
ENOLINK, and EOVERFLOW. SVr4 documents additional stat and lstat error conditions
EACCES, EINTR, EMULTIHOP, ENOLINK, and EOVERFLOW. Use of the st_blocks and st_blksize
fields may be less portable. (They were introduced in BSD. Are not specified by POSIX. The
interpretation differs between systems, and possibly on a single system when NFS mounts are
involved.)

POSIX does not describe the S_IFMT, S_IFSOCK, S_IFLNK, S_IFREG, S_IFBLK, S_IFDIR,
S_IFCHR, S_IFIFO, S_ISVTX bits, but instead demands the use of the macros S_ISDIR(), etc.

The S_ISLNK and S_ISSOCK macros are not in POSIX.1-1996, but both will be in the next
POSIX standard; the former is from SVID 4v2, the latter from SUSv2.

Unix V7 (and later systems) had S_IREAD, S_IWRITE, S_IEXEC, where POSIX prescribes the
synonyms S_IRUSR, S_IWUSR, S_IXUSR.

OTHER SYSTEMS

Values that have been (or are) in use on various systems:
hex name ls octal description
f000 S_IFMT 170000 mask for file type
0000 000000 SCO out-of-service inode, BSD unknown type
 SVID-v2 and XPG2 have both 0 and 0100000 for ordinary file
1000 S_IFIFO p| 010000 fifo (named pipe)
2000 S_IFCHR c 020000 character special (V7)
3000 S_IFMPC 030000 multiplexed character special (V7)
4000 S_IFDIR d/ 040000 directory (V7)
5000 S_IFNAM 050000 XENIX named special file
 with two subtypes, distinguished by st_rdev values 1, 2:
0001 S_INSEM s 000001 XENIX semaphore subtype of IFNAM
0002 S_INSHD m 000002 XENIX shared data subtype of IFNAM
6000 S_IFBLK b 060000 block special (V7)
7000 S_IFMPB 070000 multiplexed block special (V7)
8000 S_IFREG - 100000 regular (V7)
9000 S_IFCMP 110000 VxFS compressed
9000 S_IFNWK n 110000 network special (HP-UX)
a000 S_IFLNK l@ 120000 symbolic link (BSD)
b000 S_IFSHAD 130000 Solaris shadow inode for ACL (not seen by userspace)
c000 S_IFSOCK s= 140000 socket (BSD; also "S_IFSOC" on VxFS)
d000 S_IFDOOR D> 150000 Solaris door
e000 S_IFWHT w% 160000 BSD whiteout (not used for inode)

0200 S_ISVTX 001000 ̀ sticky bit': save swapped text even after use (V7)
 reserved (SVID-v2)
 On non-directories: don't cache this file (SunOS)
 On directories: restricted deletion flag (SVID-v4.2)
0400 S_ISGID 002000 set group ID on execution (V7)
 for directories: use BSD semantics for propagation of gid
0400 S_ENFMT 002000 SysV file locking enforcement (shared w/ S_ISGID)
0800 S_ISUID 004000 set user ID on execution (V7)
0800 S_CDF 004000 directory is a context dependent file (HP-UX)

A sticky command appeared in Version 32V AT&T UNIX.

SEE ALSO

chmod(2), chown(2), readlink(2), utime(2)

Proposed statlite/fstatlite/lstatlite Linux Man Page

NAME

statlite, fstatlite, lstatlite - get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int statlite(const char *file_name, struct statlite *buf);
int fstatlite(int filedes, struct statlite *buf);
int lstatlite(const char *file_name, struct statlite *buf);

DESCRIPTION

These functions return some manditory and possibly some optional information information
about the specified file. You do not need any access rights to the file to get this information
but you need search rights to all directories named in the path leading to the file. This family
of stat calls, the lite family, is provided to allow for file I/O performance not to be comprimised
by frequent use of stat information lookup and for lower overhead for stat operations in
general.

statlite stats the file pointed to by file_name and fills in buf.

lstatlite is identical to statlite, except in the case of a symbolic link, where the link itself is
statlite-ed, not the file that it refers to.

fstatlite is identical to stat, only the open file pointed to by filedes (as returned by open(2))
is statlited-ed in place of file_name.

They all return a stat structure, which contains the following fields:

struct statlite {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device)*/
unsigned long st_litemask; /* bit mask for optional field
accuracy */
/* The st-litemask field can be used as an input parameter to
specify which of the optional fields below are required to be
guaranteed to be accurate at the time of the call. Setting the
mask bit associated with the optional field to a 1 value requires
the associated optional field to be returned accurately. Setting
the mask bit associated with the optional field to a 0 value
allows the file system to return an unreliable value in that
optional field.

In all cases, the st_litemask field will be returned with the
accuracy information for every optional field. A value of 1
means the field is accurate; a value of 0 means the value may not
be accurate. If all the call is made with st_litemask as all
zeros directs the file system to do a low overhead stat operation
and fill in optional fields as appropriate and accuracy bits in
the st_litemask as appropriate for that file systems version of a
low overhead stat operation.
 /* Fields below here are optionally provided and are
 guaranteed to be correct only if there corresponding bit is set
to 1 in the manditory st_litemask field, with the lite versions
of the stat family of calls */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */

 /* End of optional fields */

};

The following POSIX macros are defined to check to see if an optional field is accurate, a
1 means the field is accurate a 0 means accuracy is not guaranteed for that field:

SLITE_SIZET(m)
SLITE_BLKSIZE(m)
SLITE_BLOCKS(m)
SLITE_ATIME(m)
SLITE_MTIME(m)
SLITE_CTIME(m)

The following POSIX macros are defined to set the accuracy bit in the st_litemask field
for the corresponding optional field.

S_SLITE_SIZET(m)
S_SLITE_BLKSIZE(m)
S_SLITE_BLOCKS(m)
S_SLITE_ATIME(m)
S_SLITE_MTIME(m)
S_SLITE_CTIME(m)

The value st_size gives the size of the file (if it is a regular file or a symlink) in bytes. The size
of a symlink is the length of the pathname it contains, without trailing NUL.

The value st_blocks gives the size of the file in 512-byte blocks. (This may be smaller than
st_size/512 e.g. when the file has holes.) The value st_blksize gives the "preferred" blocksize
for efficient file system I/O. (Writing to a file in smaller chunks may cause an inefficient read-
modify-rewrite.)

Not all of the Linux filesystems implement all of the time fields. Some file system types allow
mounting in such a way that file accesses do not cause an update of the st_atime field. (See
`noatime' in mount(8).)

The field st_atime is changed by file accesses, e.g. by execve(2), mknod(2), pipe(2),
utime(2) and read(2) (of more than zero bytes). Other routines, like mmap(2), may or may
not update st_atime.

The field st_mtime is changed by file modifications, e.g. by mknod(2), truncate(2),
utime(2) and write(2) (of more than zero bytes). Moreover, st_mtime of a directory is
changed by the creation or deletion of files in that directory. The st_mtime field is not changed
for changes in owner, group, hard link count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group,
link count, mode, etc.).

The following POSIX macros are defined to check the file type:

S_ISREG(m)
is it a regular file?
S_ISDIR(m)
directory?
S_ISCHR(m)
character device?
S_ISBLK(m)
block device?
S_ISFIFO(m)
fifo?
S_ISLNK(m)
symbolic link? (Not in POSIX.1-1996.)
S_ISSOCK(m)
socket? (Not in POSIX.1-1996.)

The following flags are defined for the st_mode field:

S_IFMT 0170000 bitmask for the file type bitfields
S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 fifo
S_ISUID 0004000 set UID bit
S_ISGID 0002000 set GID bit (see below)
S_ISVTX 0001000 sticky bit (see below)
S_IRWXU 00700 mask for file owner permissions
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission
S_IRWXG 00070 mask for group permissions
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission

S_IRWXO 00007 mask for permissions for others (not in group)
S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permisson
S_IXOTH 00001 others have execute permission

The set GID bit (S_ISGID) has several special uses: For a directory it indicates that BSD
semantics is to be used for that directory: files created there inherit their group ID from the
directory, not from the effective gid of the creating process, and directories created there will
also get the S_ISGID bit set. For a file that does not have the group execution bit (S_IXGRP)
set, it indicates mandatory file/record locking. The `sticky' bit (S_ISVTX) on a directory means
that a file in that directory can be renamed or deleted only by the owner of the file, by the
owner of the directory, and by root.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

EBADF
filedes is bad.

ENOENT
A component of the path file_name does not exist, or the path is an empty string.

ENOTDIR
A component of the path is not a directory.

ELOOP
Too many symbolic links encountered while traversing the path.

EFAULT
Bad address.

EACCES
Permission denied.

ENOMEM
Out of memory (i.e. kernel memory).

ENAMETOOLONG
File name too long.

CONFORMING TO

The statlite and fstatlite calls conform to SVr4, SVID, POSIX, X/OPEN, BSD 4.3, with the
exception of the optional fields. The lstatlite call conforms to 4.3BSD and SVr4 with the
exception of the optional fields. SVr4 documents additional error conditions EINTR, ENOLINK,
and EOVERFLOW in fstat that are relevant for fstatlite. SVr4 documents additional error
conditions EACCES, EINTR, EMULTIHOP, ENOLINK, and EOVERFLOW in stat and lstat that are
relevant for statlite and lstatlite. Use of the st_blocks and st_blksize fields may be less
portable. (They were introduced in BSD. Are not specified by POSIX. The interpretation differs
between systems, and possibly on a single system when NFS mounts are involved.)

POSIX does not describe the S_IFMT, S_IFSOCK, S_IFLNK, S_IFREG, S_IFBLK, S_IFDIR,
S_IFCHR, S_IFIFO, S_ISVTX bits, but instead demands the use of the macros S_ISDIR(), etc.
The S_ISLNK and S_ISSOCK macros are not in POSIX.1-1996, but both will be in the next
POSIX standard; the former is from SVID 4v2, the latter from SUSv2.

Unix V7 (and later systems) had S_IREAD, S_IWRITE, S_IEXEC, where POSIX prescribes the
synonyms S_IRUSR, S_IWUSR, S_IXUSR.

OTHER SYSTEMS

Values that have been (or are) in use on various systems:
hex name ls octal description
f000 S_IFMT 170000 mask for file type
0000 000000 SCO out-of-service inode, BSD unknown type
 SVID-v2 and XPG2 have both 0 and 0100000 for ordinary file
1000 S_IFIFO p| 010000 fifo (named pipe)
2000 S_IFCHR c 020000 character special (V7)
3000 S_IFMPC 030000 multiplexed character special (V7)
4000 S_IFDIR d/ 040000 directory (V7)
5000 S_IFNAM 050000 XENIX named special file
 with two subtypes, distinguished by st_rdev values 1, 2:
0001 S_INSEM s 000001 XENIX semaphore subtype of IFNAM
0002 S_INSHD m 000002 XENIX shared data subtype of IFNAM
6000 S_IFBLK b 060000 block special (V7)
7000 S_IFMPB 070000 multiplexed block special (V7)
8000 S_IFREG - 100000 regular (V7)
9000 S_IFCMP 110000 VxFS compressed
9000 S_IFNWK n 110000 network special (HP-UX)
a000 S_IFLNK l@ 120000 symbolic link (BSD)
b000 S_IFSHAD 130000 Solaris shadow inode for ACL (not seen by userspace)
c000 S_IFSOCK s= 140000 socket (BSD; also "S_IFSOC" on VxFS)
d000 S_IFDOOR D> 150000 Solaris door
e000 S_IFWHT w% 160000 BSD whiteout (not used for inode)

0200 S_ISVTX 001000 ̀ sticky bit': save swapped text even after use (V7)
 reserved (SVID-v2)
 On non-directories: don't cache this file (SunOS)
 On directories: restricted deletion flag (SVID-v4.2)
0400 S_ISGID 002000 set group ID on execution (V7)
 for directories: use BSD semantics for propagation of gid
0400 S_ENFMT 002000 SysV file locking enforcement (shared w/ S_ISGID)
0800 S_ISUID 004000 set user ID on execution (V7)
0800 S_CDF 004000 directory is a context dependent file (HP-UX)

A sticky command appeared in Version 32V AT&T UNIX.

SEE ALSO

chmod(2), chown(2), readlink(2), utime(2)

