iSCSI – a SCSI over TCP mapping

IETF - 48

Julian Satran

IBM Research Lab in Haifa
Objective

- Performance
 - Interconnect will meet or exceed current storage needs and enable growth
 - High bandwidth, minimum latency
- Availability
 - Enable various levels of recovery
- Cost
 - Reuse whatever available
- A good network citizen
 - Congestion control
 - Security
Design goals

- Minimalist design
- Enable efficient implementations
- No or minimal options
- Features can be ignored without affecting interoperability – no negotiation or setting beyond that mandated by SCSI for basic functions
- Clear layering of functions
 - SCSI
 - iSCSI
 - transport/delivery network
Basic mechanisms

- Sessions and connections
- Login, authentication and security
- Commands, messages, tasks and tags
- Ordered delivery – the numbering scheme
- The response numbering scheme
- Recovery
- Each of the basic mechanisms has a minimal functionality that must be implemented
Sessions and connections

- A session is a set of TCP connections linking an initiator and a target.
- It is long lived.
- It is meant to provide bandwidth and availability:
 - several connections = more bandwidth
 - Several connections = better availability provided fail over is enabled
- The initiator is supposed to be able to use any connection to execute a command and keep all the command related packets on the connection it started the command (connection allegiance).
- **Minimum requirement – 1 TCP connection/session**
Login, authentication and security

- Login has multiple functions:
 - session building
 - authentication and security
 - some parameter negotiations
- Authentication and security
 - none
 - authentication only
 - authentication & encryption – IPsec & TLS
- **Minimal implementation – session building**
Commands, messages, tasks and tags

- Commands & Responses are mappings of SCSI and carry an initiator-wide unique tag.
- The initiator tag helps relate all the elements of a command (command, optional data and response).
- Messages are used to:
 - manipulate tasks or check/set the whole SCSI/iSCSI path (in which case they carry also a tag).
 - Check only the iSCSI transport in which case they don’t carry a tag.
- *A compliant implementation must support all command and message types but can choose to ignore parameters as outlined in the draft or reject them.*
3 stages in the life of a SCSI command

- **Initiation** – delivery from initiator SCSI layer to target SCSI layer
- **Execution** – optional data transfer and RTT
 - To keep latency at a minimum iSCSI permits unsolicited data transmission as immediate data (attached to the command) or in separate packets
 - *To enable recovery iSCSI mandates honoring target issued RTT*
- **Status transmission** from target SCSI to initiator SCSI *(status recovery is enabled but not mandated)*
Ordered delivery – the numbering scheme

- iSCSI enables ordered delivery of commands and tagged messages from initiator to target over several distinct TCP connections.
- The model used by a target that chooses to implement ordered execution is that of an iSCSI staging-area from which commands are delivered to a SCSI device-server only after all preceding commands have been delivered.
- A sliding window mechanism is used to keep the staging-area within bounds.
Ordered delivery – the numbering scheme (cont.)

- The command numbers are significant only while commands are within the staged area.
- The only unique identifier for the life of a command is the initiator tag.
- **Ordered delivery is not mandatory – although initiators supporting several connections per session should implement it.**
- **Targets supporting several connections per session should indicate the support/lack-of-support for ordered delivery (how?)**
The response numbering scheme

- Responses are also subject to numbering
- The main purpose of response numbering is bulk response acknowledgement
- Response acknowledgement enables a target to discard whatever residual information it has about a task after the response is acked

- *Response numbering and acknowledgement is mandatory*
Several levels of recovery are enabled by iSCSI:

- error notification – broken connections lead to SCSI command failure
- command restart – commands pending or in progress on a broken connection can be restarted on a new or one of the remaining connections in a session
- data transmission restart – commands can be restarted from a known point in the data transfer (mainly important for long operations)
Recovery (cont.)

- Failure to handle data and deadlock avoidance – data can be dropped by targets and reacquired by RTT
- The design aim is to enable a session to stay operational as long as a single TCP link can be maintained/established
- *The mandatory recovery support is error notification and data replay on request (RTT)*
Additional mechanisms

- **Text commands**
 - enable parameter negotiations and vendor unique extensions

- **Mapping**
 - an aliasing mechanism for string mapping into 8 byte “normal” SCSI addresses
 - to be used for third party naming and access control

- *Text commands and mapping may be rejected (not implemented)*
Login / authentication / security
 - Completely specify including all or elements of new submitted documents (SANRAD)
 - Register a profile with SLAS?

Text parameters

Rationale/explanations/implementer notes/state diagrams

RDMA/Synch Recovery