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Abstract

SALSA examines system logs to derive state-machine
views of the sytem’s execution, along with control-
flow, data-flow models and related statistics. Exploiting
SALSA’s derived views and statistics, we can effectively
construct higher-level useful analyses. We demonstrate
SALSA’s approach by analyzing system logs generated
in a Hadoop cluster, and then illustrate SALSA’s value
by developing visualization and failure-diagnosis tech-
niques, for three different Hadoop workloads, based on
our derived state-machine views and statistics.

1 Introduction

Most software systems collect logs of programmer-
generated messages for various uses, such as trou-
bleshooting, tracking user requests (e.g. HTTP access
logs), etc. These logs typically contain unstructured free-
form text, making them relatively harder to analyze than
numerical system-data (e.g., CPU usage). However, logs
often contain semantically richer information than nu-
merical system/resource utilization statistics, since the
log messages often capture the intent of the programmer
of the system to record events of interest.

SALSA, our approach to automated system-log anal-
ysis, involves examining logs totrace control-flow and
data-flow execution in a distributed system, and tode-
rive state-machine-like views of the system’s execution
on each node. Figure 1 depicts the core of SALSA’s
approach. As log data is only as accurate as the pro-
grammer who implemented the logging points in the
system, we can only infer the state-machines that ex-
ecute within the target system. We cannot (from the
logs), and do not, attempt to verify whether our derived
state-machines faithfully capture the actual ones execut-
ing within the system. Instead, we leverage these derived
state-machines to support different kinds of useful anal-
yses: to understand/visualize the system’s execution, to
discover data-flows in the system, to discover bugs, and
to localize performance problems and failures.

To the best of our knowledge, SALSA is the first
log-analysis technique that aims to derive state-machine
views from unstructured text-based logs, to support visu-
alization, failure-diagnosis and other uses. In this paper,
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Figure 1: SALSA’s approach.

we apply SALSA’s approach to the logs generated by
Hadoop [7], the open-source implementation of Map/Re-
duce [5]. Concretely, our contributions are: (i) a log-
analysis approach that extracts state-machine views of
a distributed system’s execution, with both control-flow
and data-flow, (ii) a usage scenario where SALSA is ben-
eficial in preliminary failure diagnosis for Hadoop, and
(iii) a second usage scenario where SALSA enables the
visualization of Hadoop’s distributed behavior.

2 SALSA’s Approach
SALSA aims to analyze the target system’s logs to de-
rive the control-flow on each node, the data-flow across
nodes, and the state-machine execution of the system
on each node. When parsing the logs, SALSA also ex-
tracts key statistics (state durations, inter-arrival times of
events, etc.) of interest. To demonstrate SALSA’s value,
we exploit the SALSA-derived state-machine views and
their related statistics for visualization and failure diag-
nosis. SALSA does not require any modification of the
hosted applications, middleware or operating system.

To describe SALSA’s high-level operation, consider a
distributed system with many producers,P1,P2, ..., and
many consumers,C1,C2, ..... Many producers and con-
sumers can be running on any host at any point in time.
Consider one execution trace of two tasks,P1 andC1 on
a hostX (and taskP2 on hostY) as captured by a se-
quence of time-stamped log entries at hostX:

[ t 1 ] Begin Task P1
[ t 2 ] Begin Task C1
[ t 3 ] Task P1 does some work
[ t 4 ] Task C1 w a i t s f o r d a t a from P1 and P2
[ t 5 ] Task P1 produces d a t a
[ t 6 ] Task C1 consumes d a t a from P1 on h o s t X
[ t 7 ] Task P1 ends
[ t 8 ] Task C1 consumes d a t a from P2 on h o s t Y
[ t 9 ] Task C1 ends
:

From the log, it is clear that the executions (control-



flows) of P1 andC1 interleave on hostX. It is also clear
that the log captures a data-flow forC1 with P1 andP2.

SALSA interprets this log of events/activities as a se-
quence ofstates. For example, SALSA considers the pe-
riod [t1, t6] to represent the duration of stateP1 (where a
state has well-defined entry and exit points correspond-
ing to the start and the end, respectively, of taskP1).
Other states that can be derived from this log include the
stateC1, the data-consume state forC1 (the period during
whichC1 is consuming data from its producers,P1 and
P2), etc. Based on these derived state-machines (in this
case, one forP1 and another forC1), SALSA can derive
interesting statistics, such as the durations of states.

SALSA can then compare these statistics and the se-
quences of states across hosts in the system. In addition,
SALSA can extract data-flow models, e.g., the fact that
P1 depends on data from its local host,X, as well as a
remote host,Y. The data-flow model can be useful to vi-
sualize and examine any data-flow bottlenecks or depen-
dencies that can cause failures to escalate across hosts.

Non-Goals. We do not seek to validate or improve the
accuracy or the completeness of the logs, nor to validate
our derived state-machines against the actual ones of the
target system. Rather, our focus has been on the analyses
that we can perform on the logs in their existing form.

It is not our goal, either, to demonstrate complete use
cases for SALSA. For example, while we demonstrate
one application of SALSA for failure diagnosis, we do
not claim that this failure-diagnosis technique is com-
plete nor perfect. It is merely illustrative of the types
of useful analyses that SALSA can support.

Finally, while we can support an online version of
SALSA that would analyze log entries generated as the
system executes, the goal of this paper is not to describe
such an online log-analysis technique or its runtime over-
heads. In this paper, we use SALSA in an offline manner,
to analyze logs incrementally.

Assumptions.We assume that the logs faithfully capture
events and their causality in the system’s execution. For
instance, if the log declares that eventX happened before
eventY, we assume that is indeed the case, as the system
executes. We assume that the logs record each event’s
timestamp with integrity, and as close in time (as possi-
ble) to when the event actually occurred in the sequence
of the system’s execution. Again, we recognize that, in
practice, the preemption of the system’s execution might
cause a delay in the occurrence of an eventX and the cor-
responding log message (and timestamp generation) for
entry into the log. We do not expect the occurrence of an
event and the recording of its timestamp/log-entry to be
atomic. However, we do assume that clocks are loosely
synchronized across hosts for correlating events across
logs from different hosts.

3 Related Work

Event-based analysis.Many studies of system logs treat
them as sources of failure events. Log analysis of system
errors typically involves classifying log messages based
on the preset severity level of the reported error, and on
tokens and their positions in the text of the message [14]
[11]. More sophisticated analysis has included the study
of the statistical properties of reported failure events to
localize and predict faults [15] [11] [9] and mining pat-
terns from multiple log events [8].

Our treatment of system logs differs from such tech-
niques that treat logs as purely a source of events: we
impose additional semantics on the log events of interest,
to identify durations in which the system is performing
a specific activity. This provides context of the temporal
state of the system that a purely event-based treatment of
logs would miss, and this context alludes to the opera-
tional context suggested in [14], albeit at the level of the
control-flow context of the application rather than a man-
agerial one. Also, since our approach takes log semantics
into consideration, we can produce views of the data that
can be intuitively understood. However, we note that our
analysis is amenable only to logs that capture both nor-
mal system activity events and errors.

Request tracing.Our view of system logs as providing a
control-flow perspective of system execution, when cou-
pled with log messages which have unique identifiers for
the relevant request or processing task, allows us to ex-
tract request-flow views of the system. Much work has
been done to extract request-flow views of systems, and
these request flow views have then been used to diagnose
and debug performance problems in distributed systems
[2] [1]. However, [2] used instrumentation in the applica-
tion and middleware to track requests and explicitly mon-
itor the states that the system goes through, while [1] ex-
tracted causal flows from messages in a distributed sys-
tem using J2EE instrumentation developed by [4]. Our
work differs from these request-flow tracing techniques
in that we can causally extract request flows of the sys-
tem without added instrumentation given system logs, as
described in § 7.

Log-analysis tools. Splunk [10] treats logs as search-
able text indexes, and generates visualizations of the log;
Splunk treats logs similarly to other log-analysis tech-
niques, considering each log entry as an event. There ex-
ist commercial open-source [3] tools for visualizing the
data in logs based on standardized logging mechanisms,
such aslog4j [12]. To the best of our knowledge, none
of these tools derive the control-flow, data-flow and state-
machine views that SALSA does.
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Figure 2: Architecture of Hadoop, showing the locations
of the system logs of interest to us.

4 Hadoop’s Architecture

Hadoop [7] is an open-source implementation of
Google’s Map/Reduce [5] framework that enables dis-
tributed, data-intensive, parallel applications by decom-
posing a massive job into smaller tasks and a massive
data-set into smaller partitions, such that each task pro-
cesses a different partition in parallel. The main abstrac-
tions are (i)Map tasks that process the partitions of the
data-set using key/value pairs to generate a set of inter-
mediate results, and (ii)Reduce tasks that merge all in-
termediate values associated with the same intermediate
key. Hadoop uses the Hadoop Distributed File System
(HDFS), an implementation of the Google Filesystem
[16], to share data amongst the distributed tasks in the
system. HDFS splits and stores files as fixed-size blocks
(except for the last block).

Hadoop has a master-slave architecture (Figure 2),
with a unique master host and multiple slave hosts, typ-
ically configured as follows. The master host runs two
daemons: (1) the JobTracker, which schedules and man-
ages all of the tasks belonging to a running job; and (2)
the NameNode, which manages the HDFS namespace,
and regulates access to files by clients (which are typi-
cally the executing tasks).

Each slave host runs two daemons: (1) the Task-
Tracker, which launches tasks on its host, based on in-
structions from the JobTracker; the TaskTracker also
keeps track of the progress of each task on its host; and
(2) the DataNode, which serves data blocks (that are
stored on its local disk) to HDFS clients.

4.1 Logging Framework

Hadoop uses the Java-basedlog4j logging utility
to capture logs of Hadoop’s execution on every host.
log4j is a commonly used mechanism that allows de-
velopers to generate log entries by inserting statements
into the code at various points of execution. By default,
Hadoop’slog4j configuration generates a separate log
for each of the daemons– the JobTracker, NameNode,
TaskTracker and DataNode–each log being stored on the

Hadoop source-code

LOG. i n f o ( " LaunchTaskAct ion : " + t . g e t T a s k I d ( ) ) ;
LOG. i n f o ( r e d u c e I d + " Copying " + l o c . getMapTaskId ( )

+ " o u t p u t from " + l o c . ge tHos t ( ) + " . " ) ;

⇓ TaskTracker log

2008−08−23 17 :12 :32 ,466 INFO
org . apache . hadoop . mapred . TaskTracker :
LaunchTaskAct ion : task_0001_m_000003_0

2008−08−23 17 :13 :22 ,450 INFO
org . apache . hadoop . mapred . TaskRunner :
task_0001_r_000002_0 Copying
task_0001_m_000001_0 o u t p u t from fp30 . pd l . cmu . l o c a l

Figure 3:log4j-generated TaskTracker log entries. De-
pendencies on task execution on local and remote hosts
are captured by the TaskTracker log.

Hadoop source-code

LOG. debug ( " Number o f a c t i v e c o n n e c t i o n s i s : "+
xc e i ve r C oun t ) ;

LOG. i n f o ( " Rece ived b lock " + b + " from " +
s . g e t I n e t A d d r e s s ( ) + " and m i r r o r e d t o "
+ m i r r o r T a r g e t ) ;

LOG. i n f o ( " Served b lock " + b + " t o " + s .
g e t I n e t A d d r e s s ( ) ) ;

⇓ DataNode log

2008−08−25 16 :24 :12 ,603 INFO
org . apache . hadoop . d f s . DataNode :
Number o f a c t i v e c o n n e c t i o n s i s : 1

2008−08−25 16 :24 :12 ,611 INFO
org . apache . hadoop . d f s . DataNode :
Rece ived b lock blk_8410448073201003521 from
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 1 and m i r r o r e d t o
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 9 : 5 0 0 1 0

2008−08−25 16 :24 :13 ,855 INFO
org . apache . hadoop . d f s . DataNode :
Served b lock blk_2709732651136341108 t o
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 1

Figure 4: log4j-generated DataNode log. Local and
remote data dependencies are captured.

local file-system of the executing daemon (typically, 2
logs on each slave host and 2 logs on the master host).

Typically, logs (such as syslogs) record events in
the system, as well as error messages and exceptions.
Hadoop’s logging framework is somewhat different since
it also checkpoints execution because it captures the
execution status (e.g., what percentage of aMap or a
Reduce has been completed so far) of all Hadoop jobs
and tasks on every host. Hadoop’s defaultlog4j con-
figuration generates time-stamped log entries with a spe-
cific format. Figure 3 shows a snippet of a TaskTracker
log, and Figure 4 a snippet of a DataNode log.

5 Log Analysis

To demonstrate Salsa’s approach, we focus on the logs
generated by Hadoop’s TaskTracker and DataNode dae-
mons. The number of these daemons (and, thus, the
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Figure 5: Derived Control-Flow for Hadoop’s execution.

number of corresponding logs) increases with the size
of a Hadoop cluster, inevitably making it more difficult
to analyze the associated set of logs manually. Thus, the
TaskTracker and DataNode logs are attractive first targets
for Salsa’s automated log-analysis.

At a high level, each TaskTracker log records
events/activities related to the TaskTracker’s execution
of Map andReduce tasks on its local host, as well as
any dependencies between locally executingReduces
andMap ouputs from other hosts. On the other hand,
each DataNode log records events/activities related to the
reading or writing (by both local and remoteMap and
Reduce tasks) of HDFS data-blocks that are located on
the local disk. This is evident in Figure 3 and Figure 4.

5.1 Derived Control-Flow

TaskTracker log. The TaskTracker spawns a new JVM
for eachMap or Reduce task on its host. EachMap
thread is associated with aReduce thread, with the
Map’s output being consumed by its associatedReduce.
The Map and Reduce tasks are synchronized to the
MapReduceCopy andReduceCopy activities in each
of the two types of tasks, when theMap task’s output is
copied from its host to the host executing the associated
Reduce.

The Maps on one node can be synchronized to a
Reduce on a different node–SALSA derives this dis-
tributed control-flow across all Hadoop hosts in the clus-
ter by collectively parsing all of the hosts’ TaskTracker
logs. Based on the TaskTracker log, SALSA derives a
state-machine for each uniqueMap or Reduce in the
system. Each log-delineated activity within a task corre-

sponds to a state.

DataNode log. The DataNode daemon runs three
main types of data-related threads: (i)ReadBlock,
which serves blocks to HDFS clients, (ii)WriteBlock,
which receives blocks written by HDFS clients, and (iii)
WriteBlock_Replicated, which receives blocks
written by HDFS clients that are subsequently trans-
ferred to another DataNode for replication. The DataN-
ode daemon runs in its own independent JVM, and the
daemon spawns a new JVM thread for each thread of ex-
ecution. Based on the DataNode log, SALSA derives a
state-machine for each of the unique data-related threads
on each host. Each log-delineated activity within a data-
related thread corresponds to a state.

5.2 Tokens of Interest

SALSA can uniquely delineate the starts and ends of key
activities (or states) in the TaskTracker logs. Table 1
lists the tokens that we use to identify states in the Task-
Tracker log. [MapID] and[ReduceID] denote the
identifiers used by Hadoop in the TaskTracker logs to
uniquely identifyMaps andReduces.

The starts and ends of theReduceSort and
ReduceUser states in theReduce task were not iden-
tifiable from the TaskTracker logs; the log entries only
identified that these states were in progress, but not when
they had started or ended. Additionally, theMapCopy
processing activity is part of theMap task as reported by
Hadoop’s logs, and is currently indisguishable.

SALSA was able to identify the starts and ends of the
data-related threads in the DataNode logs with a few pro-
visions: (i) Hadoop had to be reconfigured to useDEBUG
instead of its defaultINFO logging level, in order for the
starts of states to be generated, and (ii) all states com-
pleted in a First-In First-Out (FIFO) ordering. Each data-
related thread in the DataNode log is identified by the
unique identifier of the HDFS data block. The log mes-
sages identifying the ends of states in the DataNode- logs
are listed in Table 2.

5.3 Data-Flow in Hadoop

A data-flow dependency exist between two hosts when
an activity on one host requires transferring data to/from
another node. The DataNode daemon acts as a server,
receiving blocks from clients that write to its disk, and
sending blocks to clients that read from its disk. Thus,
data-flow dependencies exist between each DataNode
and each of its clients, for each of theReadBlock and
WriteBlock states. SALSA is able to identify the
data-flow dependencies on a per-DataNode basis by pars-
ing the hostnames jointly with the log-messages in the
DataNode log.

Data exchanges occur to transfer outputs of completed
Maps to their associatedReduces in theMapCopy and
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Processing Activity Start Token End Token

Map LaunchTaskAction: [MapID] Task [MapID] is done.
MapCopy N/A N/A

ReduceIdle LaunchTaskAction: [ReduceID] Task [ReduceTaskID] is done.
ReduceCopy [ReduceID] Copying [MapID] output from [Hostname] [ReduceID] done copying [MapTaskID]

output from [Hostname].
ReduceMergeCopy [ReduceID] Thread started: Thread for merging in memory files[ReduceID] Merge of the 3 files in InMemoryFileSystem

complete. Local file is [Filename]
ReduceSort N/A N/A
ReduceUser N/A N/A

Table 1: Tokens in TaskTracker-log messages for identifying starts and ends of states.

Processing Activity End Token

ReadBlock Served block [BlockID] to [Hostname]
WriteBlock Received block [BlockID] from [Hostname]

WriteBlock_Replicated Received [BlockID] from [Hostname] and mirrored to [Hostname]

Table 2: Tokens in DataNode-log messages for identifying ends of data-related threads

ReduceCopy phases. This dependency is captured,
along with the hostnames of the source and destination
hosts involved in theMap-output transfer. Tasks also act
as clients of the DataNode in readingMap inputs and
writing Reduce outputs to HDFS. However, these ac-
tivities are not recorded in the TaskTracker logs, so these
data-flow dependencies are not captured.

5.4 Extracted Metrics & Data

We extract multiple statistics from the log data, based
on SALSA’s derived state-machine approach. We ex-
tract statistics for the following states:Map, Reduce,
ReduceCopy andReduceMergeCopy.
• Histograms and average of duration of unidentified,
concurrent states, with events coalesced by time, allow-
ing for events to superimpose each other in a time-series.
• Histograms and exact task-specific duration of states,
with events identified by task identifer in a time-series;
• Duration of completed-so-far execution of ongoing
task-specific states.

We cannot get average times forReduceReduce and
ReduceSort because these have no well-defined start
and termination events in the log.
For each DataNode and TaskTracker log, we can de-
termine the number of each of the states being ex-
ecuted on the particular node at each point in time.
We can also compute the durations of each of the oc-
currences of each of the following states: (i)Map,
ReduceCopy, ReduceMergeCopy for the Task-
Tracker log, and (ii)ReadBlock, WriteBlock and
WriteBlock_Replicated for the DataNode log.

On the data-flow side, for each of theReadBlock
and WriteBlock states, we can identify the end-
point host involved in the state, and, for each of the
ReduceCopy states, the host whoseMap state was in-
volved. However, we are unable to compute durations for
UserReduce and ReduceSort because these have

no well-defined start and termination events in the logs.

6 Data Collection & Experimentation
We analyzed traces of system logs from a 6-node (5-
slave, 1-master) Hadoop 0.12.3 cluster. Each node
consisted of an AMD Opeteron 1220 dual-core CPU
with 4GB of memory, Gigabit Ethernet, and a dedi-
cated 320GB disk for Hadoop, and ran the amd64 ver-
sion Debian/GNU Linux 4.0. We used three candidate
workloads, of which the first two are commonly used to
benchmark Hadoop:
• RandWriter: write 32 GB of random data to disk;
• Sort : sort 3 GB of records;
• Nutch : open-source distributed web crawler for
Hadoop [13] representative of a real-world workload

Each experiment iteration consisted of a Hadoop job
lasting approximately 20 minutes. We set the logging
level of Hadoop toDEBUG, cleared Hadoop’s system
logs before each experiment iteration, and collected the
logs after the completion of each experiment iteration.
In addition, we collected system metrics from/proc to
provide ground truth for our experiments.

Target failures. To illustrate the value of SALSA for
failure diagnosis in Hadoop, we injected three failures
into Hadoop, as described in Table 3. A persistent failure
was injected into 1 of the 5 slave nodes midway through
each experiment iteration.

We surveyed real-world Hadoop problems reported by
users and developers in 40 postings from the Hadoop
users’ mailing list from Sep–Nov 2007. We selected two
candidate failures from that list to demonstrate the use of
SALSA for failure-diagnosis.

7 Use Case 1: Visualization
We present automatically generated visualizations of
Hadoop’s aggregate control-flow and data-flow depen-
dencies, as well as a conceptualized temporal control-
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Symptom [Source] Reported Failure [Failure Name] Failure Injected
Processing [Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resulted from

running master and slave daemons on same machine
[CPUHog] Emulate a CPU-intensive task that
consumes 70% CPU utilization

Disk [Hadoop users’ mailing list, Sep 26 2007] Excessive messages logged to
file during startup

[DiskHog] Sequential disk workload wrote
20GB of data to filesystem

Table 3: Failures injected, the resource symptom category they correspond to, and the reported problem they simulate

Figure 6: Visualization of aggregate control-flow for
Hadoop’s execution. Each vertex represents a Task-
Tracker. Edges are labeled with the number of
ReduceCopys from the source to the destination ver-
tex.
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Figure 7: Visualizing Hadoop’s control- and data-flow.

flow chart. These views were generated offline from logs
collected for theSort workload in our experiments. Such
visualization of logs can help operators quickly explain
and analyze distributed-system behavior.

Aggregate control-flow dependencies (Figure 6).The
key point where there are inter-host dependencies in
Hadoop’s derived control-flow model for the Task-
Tracker log is theReduceCopy state, when the
ReduceCopy on the destination host for aMap’s output
is started only when the sourceMap has completed, and
theReduceCopy depends on the sourceMap copying
its map output. This visualization captures dependencies
among TaskTrackers in a Hadoop cluster, with the num-
ber of suchReduceCopy dependencies between each
pair of nodes aggregated across the entire Hadoop run.
As an example, this aggregate view can reveal hotspots
of communication, highlighting particular key nodes (if
any) on which the overall control-flow of Hadoop’s exe-
cution hinges. This also visually captures the equity (or
lack thereof) of distribution of tasks in Hadoop.

Aggregate data-flow dependencies (Figure 8 ).The
data-flows in Hadoop can be characterized by the number
of blocks read from and written to each DataNode. This

Figure 8: Visualization of aggregate data-flow for
Hadoop’s execution. Each vertex represents a DataN-
ode and edges are labeled with the number of each type
of block operation (i.e. read, write, or write_replicated),
which traversed that path.

visualization is based on an entire run of theSort work-
load on our cluster, and summarizes the bulk transfers of
data between each pair of nodes. This view would reveal
any imbalances of data accesses to any DataNode in the
cluster, and also provides hints as to the equity (or lack
thereof) of distribution of workload amongst theMaps
andReduces.

Temporal control-flow dependencies (Figure 7).The
control-flow view of Hadoop extracted from its logs
can be visualized in a manner that correlates state oc-
currences causally. This visualization provides a time-
based view of Hadoop’s execution on each node, and also
shows the control-flow dependencies amongst nodes.
Such views allow for detailed, fine-grained tracing of
Hadoop execution through time, and allow for inter-
temporal causality tracing.

8 Use Case 2: Failure Diagnosis

8.1 Algorithm

Intuition. For each task and data-related thread, we can
compute the histogram of the durations of its different
states in the derived state-machine view. We have ob-
served that the histograms of a specific state’s durations
tend to be similar across failure-free hosts, while those on
failure-injected hosts tend to differ from those of failure-
free nodes. Thus, we hypothesize that failures can be
diagnosed by comparing the probability distributions of
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TP FP TP FP TP FP
Workload RandWriter Sort Nutch

Fault Map
CPUHog 1.0 0.08 0.8 0.25 0.9 0
DiskHog 1.0 0 0.9 0.13 1.0 0.1

ReduceMergeCopy
CPUHog 0.3 0.15 0.8 0.1 0.7 0
DiskHog 1.0 0.05 1.0 0.03 1.0 0.05

ReadBlock
CPUHog 0 0 0.4 0.05 0.8 0.2
DiskHog 0 0 0.5 0.25 0.9 0.3

WriteBlock
CPUHog 0.9 0.03 1.0 0.25 0.8 0.2
DiskHog 1.0 0 0.7 0.2 1.0 0.6

Figure 9: Failure diagnosis results of the Distribution-
Comparison algorithm for workload-injected failure
combinations; TP = true-positive rate,FP = false-
positive rate

the durations (as estimated from their histograms) for a
given state across hosts, assuming that a failure affects
fewer thann

2 hosts in a cluster ofn slave hosts.

Algorithm. First, for a given state on each node, proba-
bility density functions (PDFs) of the distributions of du-
rations are estimated from their histograms using a kernel
density estimation with a Gaussian kernel [17] to smooth
the discrete boundaries in histograms. Then, the differ-
ence between these distributions from each pair of nodes
is computed as the pair-wise distance between their es-
timated PDFs. The distance used was the square root of
the Jensen-Shannon divergence, a symmetric version of
the Kullback-Leibler divergence [6], a commonly-used
distance metric in information theory to compare PDFs.

Then, we constructed the matrixdistMatrix, where
distMatrix(i, j) is the distance between the estimated
distributions on nodesi and j. The entries indistMatrix
are compared to athresholdp. EachdistMatrix(i, j) >

thresholdp indicates a potential problem at nodesi, j,
and a node is indicted if at least half of its entries
distMatrix(i, j) exceedthresholdp.

Algorithm tuning. thresholdp is used for the peer-
comparison of PDFs across hosts; for higher values of
thresholdp, greater differences must be observed be-
tween PDFs before they are flagged as anomalous. By
increasingthresholdp, we can reduce false-positive rates,
but may suffer a reduction in true positive rates as well.
thresholdp is kept constant for each (workload, metric)
combination, and is tuned independently of the failure
injected.

8.2 Results & Evaluation

We evaluated our initial failure-diagnosis techniques
based on our derived models of Hadoop’s behavior, by
examining the rates of true- and false-positives of the di-
agnosis on hosts in our fault-injected experiments, as de-

scribed in § 6. True-positive rates are computed as:

counti(fault injected on nodei, nodei indicted)
counti(fault injected on nodei)

, i.e., the proportion of failure-injected hosts that were
correctly indicted. False-positive rates are computed as:

counti(fault not injected on nodei, nodei indicted)
counti(fault not injected on nodei)

, i.e., the proportion of failure-free hosts that were in-
correctly indicted as faulty. A perfect failure-diagnosis
algorithm would achieve a true-positive rate of 1.0 at a
false-positive rate of 0.0. Figure 9 summarizes the per-
formance of our algorithm. By using different metrics,
we achieved varied results in diagnosing different fail-
ures for different workloads. Much of the difference is
due to the fact that the manifestation of the failures on
particular metrics is workload-dependent. In general, for
each (workload, failure) combination, there are metrics
that diagnose the failure with a high true-positive and
low false-positive rate. We describe some of the (met-
ric, workload) combinations that fared poorly.

We did not indict any nodes usingReadBlock’s du-
rations onRandWriter . By design, theRandWriter
workload has noReadBlock states since its only func-
tion is to write data blocks. Hence, it is not possible to
perform any diagnosis usingReadBlock states on the
RandWriter workload. Also,ReduceMergeCopy on
RandWriter is a disk-intensive operation that has mini-
mal processing requirements. Thus,CPUHog does not
significantly affect theReduceMergeCopy operation,
as there is little contention for the CPU between the fail-
ure and theReduceMergeCopy operations. However,
the ReduceMergeCopy operation is disk-intensive,
and is affected by theDiskHog.

We found thatDiskHog andCPUHog could manifest
in a correlated manner on some metrics. For theSort
workload, if a failure-free host attempted to read a data
block from the failure-injected node, the failure would
manifest on theReadBlock metric at the failure-free
node. By augmenting this analysis with the data-flow
model, we improved results forDiskHog andCPUHog
onSort , as discussed in § 8.3.

8.3 Correlated Failures: Data-flow Augmentation

Peer-comparison techniques are poor at diagnosing cor-
related failures across hosts, e.g.,ReadBlock durations
failed to diagnoseDiskHog on theSort workload. In
such cases, our original algorithm often indicted failure-
free nodes, but not the failure-injected nodes.

We augmented our algorithm using previously-
observed states with anomalously long durations, and su-
perimposing the data-flow model. For a Hadoop job, we
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identify a state as an outlier by comparing the state’s du-
ration with the PDF of previous durations of the state,
as estimated from past histograms. Specifically, we
check whether the state’s duration is greater than the
thresholdh-percentile of this estimated PDF. Since each
DataNode state is associated with a host performing a
read and another (not necessarily different) host perform-
ing the corresponding write, we can count the number of
anomalous states that each host was associated with. A
host is then indicted by this technique if it was associated
with at least half of all the anomalous states seen across
all slave hosts.

Hence, by augmenting the diagnosis with data-flow
information, we were able to improve our diagnosis
results for correlated failures. We achieved true- and
false-positive rates, respectively, of(0.7,0.1) for the
CPUHog and (0.8,0.05) for the DiskHog failures on
theReadBlock metric.

9 Conclusion and Future Work

SALSA analyzes system logs to derive state-machine
views, distributed control-flow and data-flow models and
statistics of a system’s execution. These different views
of log data can be useful for a variety of purposes, such as
visualization and failure diagnosis. We present SALSA
and apply it concretely to Hadoop to visualize its behav-
ior and to diagnose documented failures of interest.We
also initiated some early work to diagnose correlated fail-
ures by superimposing the derived data-flow models on
the control-flow models.

For our future directions, we intend to correlate nu-
merical OS/network-level metrics with log data, in order
to analyze them jointly for failure diagnosis and work-
load characterization. We also intend to automate the
visualization of the causality graphs for the distributed
control-flow and data-flow models. Finally, we aim to
generalize the format/structure/content of logs that are
amenable to SALSA’s approach, so that we can develop
a log-parser/processing framework that accepts a high-
level definition of a system’s logs, using which it then
generates the desired set of views.
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