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Abstract

In this paper, we present aggressive, proactive mechanisms tha
lor file system resource management to the needs of I/O-inten
applications. In particular, we show how to use application-d
closed access patterns (hints) to expose and exploit I/O para
ism, and to dynamically allocate file buffers among thr
competing demands: prefetching hinted blocks, caching hin
blocks for reuse, and caching recently used data for unhin
accesses. Our approach estimates the impact of alternative b
allocations on application execution time and applies cost-ben
analysis to allocate buffers where they will have the great
impact. We have implemented informed prefetching and cach
in Digital’s OSF/1 operating system and measured its performa
on a 150 MHz Alpha equipped with 15 disks running a range
applications. Informed prefetching reduces the execution time
text search, scientific visualization, relational database quer
speech recognition, and object linking by 20-83%. Informed ca
ing reduces the execution time of computational physics by up
42% and contributes to the performance improvement of the ob
linker and the database. Moreover, applied to multiprogramm
I/O-intensive workloads, informed prefetching and cachin
increase overall throughput.

1 Introduction

Traditional disk and file buffer cache management is reacti
disk accesses are initiated and buffers allocated in respons
application demands for file data. In this paper, we show that p
active disk and buffer management based on application-disclo
hints can dramatically improve performance. We show how to u
these hints to prefetch aggressively, thus eliminating the I/O st
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incurred by accesses that would otherwise have missed in 
cache, and how to keep hinted data in the cache in anticipatio
reuse. At the core of our approach is a cost-benefit analysis wh
we use both to balance buffer usage for prefetching versus c
ing, and to integrate this proactive management with traditio
LRU (least-recently-used) cache management for non-hin
accesses.

Three factors make proactive I/O management desirable 
possible:

1. the underutilization of storage parallelism,
2. the growing importance of file-access performance, and
3. the ability of I/O-intensive applications to offer hints about

their future I/O demands.
Storage parallelism is increasingly available in the form 

disk arrays and striping device drivers. These hardware and s
ware arrays promise the I/O throughput needed to balance e
faster CPUs by distributing the data of a single file system o
many disk arms [Salem86]. Trivially parallel I/O workloads ben
fit immediately; very large accesses benefit from parallel transf
and multiple concurrent accesses benefit from independent d
actuators. Unfortunately, many I/O workloads are not at all par
lel, but instead consist of serial streams of non-sequential acces
In such workloads, the service time of most disk accesses is do
nated by seek and rotational latencies. Moreover, these worklo
access one disk at a time while idling the other disks in an ar
Disk arrays, by themselves, do not improve I/O performance 
these workloads any more than multiprocessors improve the 
formance of single-threaded programs. Prefetching strategies
needed to “parallelize” these workloads.

The second factor encouraging our proactive I/O managem
is that ever-faster CPUs are processing data more quickly 
encouraging the use of ever-larger data objects. Unless file-ca
miss ratios decrease in proportion to processor performan
Amdahl’s law tells us that overall system performance w
increasingly depend on I/O-subsystem performance [Patterson
Unfortunately, simply growing the cache does not decrease cac
miss ratios as much as one might expect. For example, the S
group’s 1985 caching study led them to predict higher hit ratios 
larger caches. But in 1991, after larger caches had been insta
hit ratios were not much changed — files had grown just as fas
the caches [Ousterhout85, Baker91]. This suggests that new t
niques are needed to boost I/O performance.

The problem is especially acute for read-intensive applic
tions. Write performance is less critical because the writing ap
cation generally does not wait for the disk to be written. In th
common case, write behind can exploit storage parallelism e
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when the application’s writes are serial and non-sequential
[Rosenblum91, Solworth90]. Examples of read-intensive applica-
tions include: text search, 3D scientific visualization, relational
database queries, speech recognition, object code linkers, and
computational physics. In general, these programs process large
amounts of data relative to file-cache sizes, exhibit poor access
locality, perform frequent non-sequential accesses, and stall for
I/O for a significant fraction of their total execution time.

Yet, all of these applications’ access patterns are largely pre-
dictable. This predictability could be used directly by the applica-
tion to initiate asynchronous I/O accesses. But this sort of explicit
prefetching can cripple resource management. First, the depth to
which an application needs to prefetch depends on the throughput
of the application, which varies as other applications place
demands on the system. Second, asynchronously fetched data may
eject useful data from the file cache. Third, asynchronously
fetched file blocks end up indistinguishable from any other block
in virtual memory, requiring the programmer to be explicitly
aware of virtual image size to avoid losing far more to paging than
is gained from parallel I/O. Finally, the specializations a program-
mer puts into overcoming these problems may not be appropriate
when the program is ported to a different system.

Instead, we recommend using the predictability of these
applications to inform the file system of future demands on it. Spe-
cifically, we propose that applications disclose their future
accesses in hints to the file system. We show how to use this infor-
mation to exploit storage parallelism, balance caching against
prefetching, and distribute cache buffers among competing appli-
cations.

The rest of this paper explains and justifies proactive I/O
management based on informed prefetching and caching. Sections
2 and 3 review related work and describe disclosure-based hints.
Section 4 develops our cost-benefit model and Section 5 describes
its implementation in Digital’s OSF/1 v2.0A file system. Section 6
describes our experimental testbed. Benchmark applications and
single-application performance experiments are presented in Sec-
tion 7. Section 8 presents multiple application experimental
results. Finally, Sections 9 and 10 provide directions for future
research and conclusions.

2 Related work

Hints are a well established, broadly applicable technique for
improving system performance. Lampson reports their use in oper-
ating systems (Alto, Pilot), networking (Arpanet, Ethernet), and
language implementation (Smalltalk) [Lampson83]. Broadly,
these examples consult a possibly out-of-date cache as a hint to
short-circuit some expensive computation or blocking event.

In the context of file systems, historical information is often
used for both file caching and prefetching. The ubiquitous LRU
cache replacement algorithm relies on the history of recent
accesses to choose a buffer for replacement. For history-based
prefetching, the most successful approach is sequential readahead
[Feiertag71, McKusick84]. Digital’s OSF/1 is an aggressive exam-
ple, prefetching up to 64 blocks ahead when it detects long sequen-
tial runs. Others, notably Kotz, have looked at detecting more
complex access patterns and prefetching non-sequentially within a
file [Kotz91].

At the level of whole files or database objects, a number of
researchers have looked at inferring future accesses based on past
accesses [Korner90, Kotz91, Tait91, Palmer91, Curewitz93,

Griffioen94]. The danger in speculative prefetching based on h
torical access patterns is that it risks hurting, rather than help
performance [Smith85]. As a result of this danger, speculat
prefetching is usually conservative, waiting until its theories a
confirmed by some number of demand accesses.

An alternate class of hints are those that express one sys
component’s advance knowledge of its impact on another. Perh
the most familiar of these occurs in the form of policy advice fro
an application to the virtual-memory or file-cache modules. 
these hints, the application recommends a resource manage
policy that has been statically or dynamically determined 
improve performance for this application [Trivedi79, Sun8
Cao94].

In large integrated applications, more detailed knowled
may be available. The database community has long taken ad
tage of this for buffer management. The buffer manager can 
the access plan for a query to help determine the number of bu
to allocate [Sacco82, Chou85, Cornell89, Ng91, Chen93]. N
Faloutsos and Sellis’s work on marginal gains considered 
question of how much benefit a query would derive from an ad
tional buffer. Their work stimulated the development of ou
approach to cache management. It also stimulated Chen and R
sopoulos in their work to supplement knowledge of the access p
with the history of past access patterns when the plan does not 
tain sufficient detail.

Relatively little work has been done on the combination 
caching and prefetching. In one notable example, however, C
Felton, Karlin and Li derive an aggressive prefetching policy w
excellent competitive performance characteristics in the contex
complete knowledge of future accesses [Cao95a]. These s
authors go on to show how to integrate prefetching according
hints with application-supplied cache management adv
[Cao95b]. In contrast, we use the same hints, described in the 
section, for both caching and prefetching.

Much richer languages for expressing and exploiting disc
sure include collective I/O calls [Kotz94] and operations on stru
tured files [Grimshaw91] or dynamic sets [Steere95].

3 Hints that disclose

The proactive management strategy described in this pa
depends on a reliable picture of future demands. We advoca
form of hints based on advance knowledge which we calldisclo-
sure [Patterson93]. An applicationdiscloses its future resource
requirements when its hints describe its future requests in term
the existing request interface. For example, a disclosing hint mi
indicate that a particular file is going to be read sequentially fo
times in succession. Such hints stand in contrast to hints wh
give advice. For example, an advising hint might specify that 
named file should be prefetched and cached with a caching po
whose name is “MRU.” Advice exploits a programmer’s know
edge of application and system implementations to recomm
how resources should be managed. Disclosure is simply a 
grammer revealing knowledge of the application’s behavior.

Disclosure has three advantages over advice. First, becau
expresses information independent of the system implementat
it remains correct when the application’s execution environme
system implementation or hardware platform changes. As su
disclosure is a mechanism for portable I/O optimizations. Seco
because disclosure provides the evidence for a policy decis
rather than the policy decision itself, it is more robust. Spec
80
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cally, if the system cannot easily honor a particular piece of adv
— there being too little free memory to cache a given file, f
example — there is more information in disclosure that can 
used to choose a partial measure. Third, because disclosu
expressed in terms of the interface that the application later use
issue its accesses; that is, in terms of file names, file descript
and byte ranges, rather than inodes, cache buffers, or file block
conforms to software engineering principles of modularity.

In our implementations, disclosing hints are issued throu
an I/O-control (ioctl) system call. As shown in Figure 1, hin
specify a file and an access pattern for the file. There may be m
tiple outstanding hints, and the order in which hints are given in
cates the order of the subsequent accesses.

Given disclosing hints, proactive management can deliv
three primary benefits:

Figure 1. The disclosure hint interface. Disclosure hints describe
future requests in the same terms as the existing interface. T
our file system hints have two components, a file specifier a
pattern specifier. The file specifier describes the file either by na
or file descriptor. The pattern specifier describes the access pa
within the file. Currently, we support two pattern specifiers: a fi
read sequentially from beginning to end, or read according to
ordered list of <offset, length> intervals. Thus, there are curren
four different forms of hints.

File Specifier Pattern Specifier

file name sequential whole file

file descriptor list of <offset, length>×
81

Figure 2. Informed cache manager schematic. Independent estima mand
misses need a buffer immediately to minimize the stall that has al
avoid disk latency. To respond to these buffer requests, the buffer
least-valuable buffer. To identify this buffer, the allocator consults
that the least recently used block is least valuable. In contrast, 
access is furthest in the future. The buffer allocator takes the l
exceeds the estimated cost.

Buffer Consumers

Bdemand
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demand
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1. informed prefetching can “parallelize” the I/O request strea
and take advantage of disk arrays to eliminate I/O stalls;

2. informed caching can hold on to useful blocks and outper
form LRU caching independent of prefetching; and

3. informed disk management can schedule future disk I/Os t
reduce access latency, and batch multiple requests fo
increased access efficiency.

This paper demonstrates the first two of these benefits.

4 Cost-benefit analysis for I/O management

The I/O manager’s goal is to deploy its limited resources
minimize I/O service time. At its disposal are disk arms and f
cache buffers. But, because we are primarily concerned with 
exploitation of storage parallelism, we assume an adequate su
of disk arms and focus on the allocation of cache buffers.

Bidding to acquire cache buffers are two consumers: dem
accesses that miss in the cache, and prefetches of hinted blo
Holding out are two buffer suppliers: the traditional LRU cach
and the cache of hinted blocks. The I/O manager must resolve
tension between buffer consumers and suppliers.

In this section, we develop a framework for cache mana
ment based on cost-benefit analysis. We show how to estimate
benefit (decrease in I/O service time) of giving a buffer to a co
sumer and the cost (increase in I/O service time) of taking a bu
from a supplier. Finally, we show how to use these estimates
decide whether a buffer should be reallocated from a supplie
consumer, and, if so, how to pick the buffer for reallocation.

As shown in Figure 2, each potential buffer consumer a
supplier has anestimatorthat independently computes the value o
its use of a buffer. The buffer allocator continually compares the

hinted sequence

tors express different strategies for reducing I/O service time. De
ready started. Informed prefetching would like a buffer to initiate a read and
 allocator compares their estimated benefit to the cost of freeing the globally
 the two types of buffer suppliers. The LRU queue uses the traditional rule
informed caching identifies as least valuable the block whose next hinted

east-valuable buffer to fulfill a buffer demand when the estimated benefit

cached blocks

LRU queue

uffer

Buffer Suppliers

Allocator

LRU cost

ejection cost

hinted sequence

cached blocks hinted sequence

LRU cache

hinted cache
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estimates and reallocates buffers when doing so would reduce I/O
service time.

When comparing the different estimates, the buffer allocator
must consider more than the absolute change in I/O service time; it
must consider how much of the limited buffer resource is
involved. Thus, we define the unit of buffer usage as the occupa-
tion of one buffer for one inter-access period and call it onebuffer-
access. Then we define thecommon currency for the expression of
all value estimates as themagnitude of the change in I/O service
time per buffer-access. With this common currency, the buffer
allocator can meaningfully compare the independent value esti-
mates and allocate buffers where they will have the greatest impact
on I/O service time.

In the following sections, we define our system model and
then develop each estimator’s strategy for valuing buffers.

4.1 System model
We assume a modern operating system with a file buffer

cache running on a uniprocessor with sufficient memory to make
available a substantial number of cache buffers. With respect to
our workload, consistent with our emphasis on read-intensive
applications, we assume that all application I/O accesses request a
single file block that can be read in a single disk access. Further,
we assume that system parameters such as disk access latency,
Tdisk, are constants. Lastly, as mentioned above, we assume
enough disk parallelism for there never to be any congestion (that
is, there is no disk queueing). As we shall see, distressing as these
assumptions may seem, the policies derived from this simple sys-
tem model behave well in a real system, even one with a single
congested disk.

The execution time,T, for an application is given by

, (1)

whereNI/O is the number of I/O accesses,TCPU is the inter-access
application CPU time, andTI/O is the time it takes to service an I/O
access. Figure 3 diagrams our system model.

In our model, the I/O service time,TI/O, includes some sys-
tem CPU time. In particular, an access that hits in the cache exp
ences timeThit to read the block from the cache. In the case o
cache miss, the block needs to be fetched from disk before it m
be delivered to the application. In addition to the latency of t
fetch, Tdisk, these requests suffer the computational overhe
Tdriver, of allocating a buffer, queuing the request at the drive, a
servicing the interrupt when the disk operation completes. T
total time to service an I/O access that misses in the cache,Tmiss, is
the sum of these times:

. (2)

In the terms of this model, allocating a buffer for prefetchin
can mask some disk latency. Deallocating an LRU cache bu
makes it more likely that an unhinted access misses in the ca
and must pay a delay ofTmiss instead ofThit. Ejecting a hinted
block from the cache means an extra disk read will be neede
prefetch it back later. In the next sections, we quantify the
effects.

4.2 The benefit of allocating a buffer to a consumer
The two consumers of buffers are demand accesses that 

in the cache and prefetches of hinted blocks. Since any dela
servicing a demand miss adds to I/O service time, we treat requ
from demand misses as undeniable and assign them infinite va
Computing the benefit of prefetching, explained below, is a 
harder.

Prefetching a block according to a hint can mask some of 
latency of a disk read,Tdisk. Thus, in general, an application
accessing such a prefetched block will stall for less than the 
Tdisk. Suppose we are currently usingx buffers to prefetchx
accesses into the future. Then, stall time is a function ofx, Tstall(x),
and the service time for a hinted read, also a function ofx, is

. (3)

The benefit of using an additional buffer to prefetch one acc
deeper is the change in the service time,

(4)

. (5)

Evaluating this expression requires an estimate ofTstall(x).
A key observation is that the application’s data consumpti

rate is finite. Typically, the application reads a block from th
cache in timeThit, does some computation,TCPU, and pays an
overhead,Tdriver, for future accesses currently being prefetche
Thus, even if all intervening accesses hit in the cache, the soo
we might expect a blockx accesses into the future to be request
is x(TCPU + Thit + Tdriver). Under our assumption of no disk con
gestion, a prefetch of thisxth future block would complete inTdisk
time. Thus, the stall time when requesting this block is at most

. (6)

Figure 4 shows this worst case stall time as a function ofx.
This stall-time expression allows us to define the distance

terms of future accesses, at which informed prefetching yield
zero stall time. We call this distance theprefetch horizon,

T NI O⁄ TCPU TI O⁄+( )=

File

disk

VM, net, etc.

User

Kernel

disk

TI/O

TCPU

Figure 3. Components of system execution. In our simplified
system model, application execution time,T, has two
components, computation and I/O. The computational
component,TCPU, consists of user-level application execution
plus time spent in kernel subsystems other than the file system.
The I/O component,TI/O, consists of time spent in the file system,
which includes time for reading blocks, allocating blocks for disk
I/Os, servicing disk interrupts, and waiting for a physical disk I/O
to complete.

Application Application

Buffer
Cachesystem

Tmiss Thit Tdriver Tdisk+ +=

Tpf x( ) Thit T+
driver

Tstall x( )+=

∆Tpf x( ) Tpf x 1+( ) Tpf x( )–=

Tstall x 1+( ) Tstall x( )–=

Tstall x( ) Tdisk x TCPU T+
hit

Tdriver+( )–≤
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prefetches proceed in parallel,TCPU is fixed, andP(TCPU) = 5. At time T=0,
uests the first block. Prefetches for the first three accesses are initiated
s at T=5, at which point the data is consumed and the buffer is reused to
hout stalls because the latency of prefetches for those accesses is overlapped
ls forstall = Tdisk - 3(TCPU+Thit+Tdriver). The next two accesses don’t stall,
talling every third access. In general, whenx buffers are used for prefetching,
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P(TCPU), recognizing that it is a function of a specific applica
tion’s inter-access CPU time.

. (7)

Because there is no benefit from prefetching more deeply than
prefetch horizon, we can easily bound the impact of inform
prefetching on effective cache size; prefetching a stream of h
will not lead informed prefetching to acquire more thanP(TCPU)
buffers.

Equation (6) is an upper bound on the stall time experienc
by thexth future access assuming that the intervening accesses
cache hits and do not stall. Unfortunately, it overestimates s
time in practice. In steady state, multiple prefetches are in progr
and a stall for one access masks latency for another so that
average, only one inx accesses experiences the stall in Equati

x

Tdisk Tdisk/(TCPU+Tdriver+Thit)

prefetch horizon = P(TCPU)

Figure 4. Worst case stall time and the prefetch horizon. Data
consumption is limited by the time an application spends acquir
and consuming each block. This graph shows the worst c
application stall time for a single prefetchx accesses in advance
assuming adequate I/O bandwidth, and therefore no disk que
There is no benefit from prefetching further ahead than 
prefetch horizon.

stall
time

P TCPU( )
Tdisk

TCPU T+
hit

Tdriver+( )
-----------------------------------------------------------=

Figure 5. Average stall time when using a fixed number of buffe
as a pipeline. In this example, three prefetch buffers are used, 
the application gives hints for all its accesses and then req
immediately. The first access stalls until the prefetch complete
initiate the fourth prefetch. Accesses two and three proceed wit
with the latency of the first prefetch. But, the fourth access stalT
but the seventh does. The application settles into a pattern of s
a stall occurs once everyx accesses.

access
number

Time (1 time-s

0 1 2 3 4 5 6 7 8

1 I
2 I - - - - C
3 I - - - - C
4 I - -
5 I - -
6 I -
7

8

9

10

- - - - C

-
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83
he
d
ts

d
are
ll
ss
on

g
se

es.
e

(6). Figure 5 diagrams this effect. Thus, the average stall 
access as a function of the prefetch depth,P(TCPU) > x > 0, is

. (8)

At x = 0, there is no prefetching, andTstall(0) = Tdisk. Similarly, for
x ≥ P(TCPU), Tstall(x) = 0. Figure 6 shows that this estimate
though based on a simple model, is a good predictor of the ac
stall time experienced by a synthetic application running on a r
system.

We can now plug Equation (8) into Equation (5) and obta
an expression for the impact on I/O service time of acquiring o
additional cache buffer to increase the prefetching depth,

. (9)

Every access that this additional buffer is used for prefetching b
efits from this reduction in the average I/O service time. Thu
Equation (9) is the change in I/O service time per buffer-acce
and the magnitude of this change is the value of allocating a bu
for prefetching in terms of the common currency.

Having estimated the benefit of giving a buffer to a dema
miss or prefetch consumer, we now consider the cost of freein
buffer that could be used to obtain these benefits. We estimate
cost first of taking a buffer from the LRU queue and then of eje
ing a hinted block to take the buffer it occupies.

4.3 The cost of shrinking the LRU cache
Over time, the portion of demand accesses that hit in 

cache is given by the cache-hit ratio,H(n), a function of the num-

Tstall x( )
Tdisk x TCPU Thit Tdriver+ +( )–

x
--------------------------------------------------------------------------------=

∆Tpf x( )

x 0= TCPU Thit Tdriver+ +( )–

x P TCPU( )<
T– disk

x x 1+( )
--------------------

x P TCPU( )≥ 0
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gure 6. Predicted and measured per-access stall  time. To verify the
ility of Equation (8), we measured the stall time of a synthetic
icrobenchmark as we varied prefetch depth. The benchmark does 2000
ads of random, unique 8K blocks from a 500 MB file striped over 15
sks. It has 1 millisecond of computation between reads, soTCPU =

s, and for the system described in Section 6,Thit+Tdriver = 823µs and
isk = 15ms. Overall, Equation (8) has a maximum error of about 2
illiseconds, making it is a good predictor of actual stall time. The
uation underestimates stall time because the underlying model
glects two factors, disk contention and variation inTdisk. Deeper
efetching increases the chance that two or more accesses contend for
e same disk and add unmodelled stalls. Variability inTdisk has a more
btle effect. Longer than average disk accesses may be balanced in
mber and duration by shorter than average accesses, but the former

ways add stall time to the measurement, while the latter only reduce
all time if their access time is not fully overlapped. With deeper
efetching most accesses are well overlapped, so shorter accesses do
t reduce measured stall time. Effectively, variability inTdisk makes a
nstantTdisk appear longer.
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ber of buffers in the cache,n. GivenH(n), the average time to ser-
vice a demand I/O request, denotedTLRU(n), is

. (10)

Taking the least-recently-used buffer from a cache employing
LRU replacement policy results in an increase in the average 
service time of

. (11)

SinceH(n) varies as the I/O workload changes, our LRU cac
estimator dynamically estimatesH(n) and the value of this expres-
sion as explained in Section 5.1.

Every access that the LRU cache is deprived of this buf
will, on average, suffer this additional I/O service time. Thu
Equation (11) is in terms of the common currency, magnitude
change in I/O service time per buffer-access.

4.4 The cost of ejecting a hinted block
Though there is no benefit from prefetching beyond th

prefetch horizon, caching any block for reuse can avoid the cos
prefetching it back later. Thus, ejecting a block increases the 
vice time for the eventual access of that block from a cache 
Thit, to the read of a prefetched block,Tpf. If the block is
prefetched backx accesses in advance, then the increase in I/O s
vice time caused by the ejection and subsequent prefetch is

(12)

. (13)

Though the stall time,Tstall(x), is zero whenx is greater than the
prefetch horizon,Tdriver represents the constant CPU overhead 
ejecting a block no matter how far into the future the block will b
accessed.

The cost of ejecting a block,∆Teject(x), does not affect every
access; it only affects the next access to the ejected block. Thu
express this cost in terms of the common currency, we must a
age this change in I/O service over the accesses that a buff
freed. If the hint indicates the block will be read iny accesses, and
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the prefetch happensx accesses in advance, then ejection frees o
buffer for a total ofy−x buffer-accesses. Conceptually, if the bloc
is ejected and its buffer lent where it accrues an savings in ave
I/O service time, then it will havey−x accesses to accrue a tota
savings that exceeds the cost of ejecting the block.

Averaging overy−x accesses, the increase in service time p
buffer-access is

, (14)

whereTstall(x) is given by Equation (8). As we shall see in Sectio
5.3, our implementation simplifies this estimate further to elim
nate the dependence on the variablex.

4.5 Putting it all together: global min-max valuation
Figure 7 summarizes the absolute value of Equations (

(11), and (14) which the various estimators use to determine 
local value of a buffer. Before comparing these values, the bu
allocator must normalize these local estimates by the relative r
of accesses to each estimator. Thus, the LRU cache estima
multiplied by the rate of unhinted demand accesses,rd, while the
estimates for each hint sequence are multiplied by the rate
accesses to that sequence,rh.

The buffer allocator uses these normalized estimates
decide when to take a buffer from a supplier and use it to servic
request for a buffer. For example, deallocating a buffer from 
LRU cache and using it to prefetch a block would cause a 
reduction in aggregate I/O service time i

. For the greatest reduction, though
the globally least-valuable buffer should be allocated. Our alg
rithm for identifying this buffer is as follows.

Each supply estimator determines the costs of losing any
its buffers. If multiple estimators claim the same buffer, whic
happens, for example, when a hint refers to a block already in
LRU queue, then each estimators independently values the bu
The global value of a buffer is the maximum of the normaliz
values provided by each of the independent supply estimators. 
global value is not the sum because it only takes one disk I/O
fetch a block no matter how many times the block is acces
thereafter.

∆Teject x y,( )
Tdriver Tstall x( )+

y x–
---------------------------------------------=

r d ∆TLRU n( ) r h ∆Tpf x( )<
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The globally least-valuable buffer is the one whose maximum
valuation is minimal over all buffers. Hence, our replacement pol-
icy employs a global min-max valuation of buffers. While the
overhead of this estimation scheme might seem high, in practice,
as we shall see in Section 5, the value of only a small number of
buffers needs to be determined to find the globally least-valuable.

4.6 An example: emulating MRU replacement
As an aid to understanding how informed caching ‘discovers’

good caching policy, we show how it exhibits MRU (most-
recently-used) behavior for a repeated access sequence. Figure 8
illustrates an example.

At the start of the first iteration through a sequence that
repeats every N accesses, the cache manager prefetches up to the
prefetch horizon. After the first block is consumed, it becomes a
candidate for replacement either for further prefetching or to ser-
vice demand misses. However, if the hit-ratio function,H(n), indi-
cates that the least-recently-used blocks in the LRU queue don’t
get many hits, then these blocks will be less valuable than the
hinted block just consumed. Prefetching continues, replacing
blocks from the LRU list and leaving the hinted blocks in the
cache after consumption.

As this process continues, more and more blocks are devoted
to caching for the repeated sequence and the number of LRU buff-
ers shrinks. For most common hit-ratio functions, the fewer the
buffers in the LRU cache, the more valuable they are. Eventually,
the cost of taking another LRU buffer exceeds the cost of ejecting
the most-recently-consumed hinted block. At the next prefetch,
this MRU block is ejected because, among the cached blocks with
outstanding hints, its next use is furthest in the future.

At this point, a wave of prefetching, consumption, and eject-
ing moves through the remaining blocks of the first iteration.

Because the prefetch horizon limits prefetching, there are ne
more than the prefetch horizon,P(TCPU), buffers in this wave.
Even if a disk array delivers blocks faster than the application c
sumes them, there is no risk that the cache manager will use
cached blocks to prefetch further into the future. Thus, the MR
behavior of the cache manager is assured. Further, the cache 
ager strikes a balance in the number of buffers used for prefe
ing, caching hinted blocks, and LRU caching.

The informed cache manager discovers MRU caching wi
out being specifically coded to implement this policy. This beha
ior is a result of valuing hinted, cached blocks and ejecting 
block whose next access is furthest in the future when a buffe
needed. These techniques will improve cache performance 
arbitrary access sequences where blocks are reused with no p
ular pattern. All that is needed is a hint that discloses the acc
sequence.

5 Implementation of informed caching and
prefetching

Our implementation of informed prefetching and cachin
which we call TIP, replaces the unified buffer cache (UBC) in ve
sion 2.0A of Digital’s OSF/1 operating system. To servic
unhinted demand accesses, TIP creates an LRU estimator to m
age the LRU queue and estimate the value of its buffers. In a
tion, TIP creates an estimator for every process that issues hin
manage its hint sequence and associated blocks.

To find the globally least-valuable buffer, it is sufficient tha
each estimator be able to identify its least-valuable buffer a
declare its estimated value. From the LRU estimator’s perspect
the least-recently-used buffer is least valuable. For a hint esti
tor, because all disk accesses are assumed to take the same a
of time, the least-valuable buffer contains the block whose n
access is furthest in the future. TIP takes these declared estim
normalizes them by the relative access rates, and ranks the es
tors by these normalized declared values.

When there is a demand for a buffer, TIP compares the n
malized benefit of servicing the demand to the normaliz
declared cost of the lowest-ranked estimator. If there are mult
consumers with outstanding requests, TIP considers the reques
order of their expected normalized benefit. If the benefit excee

Buffer SuppliersBuffer Consumers

demand miss

prefetch

LRU cache

hinted cache

Figure 7. Local value estimates.Shown above are the locally
estimated magnitudes of the change in I/O service time per buffer-
access for the buffer consumers and suppliers of Figure 2. Since
demand misses must be satisfied immediately, they are treated as
having infinite value. The remaining three formulas are the
absolute values of Equations (11), (14), and (9), for the LRU
cache, hinted cache, and prefetch estimates, respectively.

Tdriver Tstall x( )+

y x–
--------------------------------------------

H n( ) H n 1–( )–( ) Tmiss Thit–( )

x 0= TCPU Thit Tdriver+ +

x P TCPU( )<
Tdisk

x x 1+( )
--------------------

x P TCPU( )≥ 0

∞
• • •

pattern repeats
after N accesses

next use

{P
prefetch
horizon{cached

blocks

Figure 8. MRU behavior of the informed cache manager on
repeated access sequences. The number of blocks allocated to
caching for a repeated access pattern grows until the cach
benefit is not sufficient to hold an additional buffer for the 
accesses before it is reused. At that point, the least-valuable bu
is the one just consumed because its next access is furthest i
future. This block is recycled to prefetch the next block within t
prefetch horizon. A wave of prefetching, consumption, a
recycling moves through the accesses until it joins up with 
blocks still cached from the last iteration through the data.

most recently

consumed next consumed

MRU replacement
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the cost, TIP asks the lowest-ranked estimator to give up its least-
valuable buffer. After doing so, the estimator stopstracking this
buffer. As far as it is concerned, the buffer is gone. It identifies a
new least-valuable buffer from among the buffers it is still tracking
and declares its value. TIP then reranks the estimators if necessary.

Before the block is actually ejected, TIP checks to see if any
other estimator would value the buffer more than the cost of the
lowest-ranked estimator. If so, that estimator starts tracking the
buffer, including it when identifying its least-valuable buffer. The
request for a buffer is then reconsidered from the start. At some
later time, when this new estimator picks this almost-ejected
buffer for replacement, the first estimator will get a chance to
revalue the buffer and resume tracking it. A data structure keeps
track of which estimators value a buffer at all to make this search
for another estimator fast.

Once TIP is sure that no estimator values the buffer more than
the current global minimal amount, the block is ejected and the
buffer reallocated.

Since only tracked blocks are ever picked for replacement, all
blocks must be tracked by at least one estimator. If no estimator
considers a block valuable enough to track, then it is replaced. If
the block cannot be replaced immediately, for example because it
contains dirty data, then TIP uses a special orphan estimator to
track the block until it can be replaced.

5.1 Implementing LRU estimation
LRU block replacement is a stack algorithm, which means

that the ordering of blocks in the LRU queue is independent of the
size of the cache. By observing where, in a queue ofN buffers,
cache hits occur, it is possible to make a history-based estimate of
H(n), the cache-hit ratio as a function of the number of buffers,n,
in the cache for any cache size less thanN, 0 <n < N. Specifically,
H(n) is estimated by the sum of the number of hits with stack
depths less then or equal ton divided by the total number of
accesses to the LRU cache,A.

In TIP, the number of buffers in the LRU stack varies dynam-
ically. Thus, to determineH(n) for caches larger than the current
size, TIP uses ghost buffers. Ghost buffers are dataless buffer
headers which serve as placeholders to record when an access
would have been a hit had there been more buffers in the cache
[Ebling94]. The length of the LRU queue, including ghosts, is lim-
ited to the total number of buffers in the cache.

To reduce overhead costs and estimate variation, hit counts
are recorded not by individual stack depths, but by disjoint inter-
vals of stack depths, called segments. Shown in Figure 9, this
allows a piecewise estimation ofH(n).

The cost of losing an LRU buffer given in Equation (11)
requires an estimate of∆H(n)=H(n)-H(n-1). Direct evaluation with
a piecewise estimate ofH(n) yields a function that is zero every-
where, except at segment boundaries. Instead, we estimate∆H(n)
with the marginal hit ratio, , the slope ofH(n). Given our
piecewise estimate ofH(n), we can estimate∆H(n),

, (15)

wheren falls within segmentsi, A is the total number of accesses
to the LRU, and |si| represents the number of buffers in segmentsi.
In our implementation, |si| = 100.

A final complexity arises because, in general,H(n) may not
be similar to the smooth function suggested by Figure 9. There is

often a large jump in the hit ratio when the entire working set of
application fits into the buffer cache. TIP’s LRU estimator uses
simple mechanism to avoid being stuck in a local minima th
ignores the benefit of a much larger cache:∆H(n) is modified to be

; that is, the value of the marginal hit ratio i
rounded up to the value of any larger marginal hit ratio occurri
deeper in the LRU stack. Thus, if the LRU cache is curren
small, but a larger cache would achieve a much higher hit ra
this mechanism encourages the cache to grow.

This gives us the following expression for the cost of losin
an LRU buffer:

. (16)

5.2 Implementing informed prefetching estimations
Section 4 presents two expressions, Equation (7) for de

mining the prefetch horizon, and Equation (9) for estimating t
benefit of prefetching. To reduce estimation overhead and incre
tolerance to both variation in application inter-access computati
TCPU, and the need to prefetch other blocks, TIP assumesTCPU =
0 and discounts the overhead of prefetching other blocks,Tdriver,
to arrive at a static, system-wide upper-bound on the prefetch h
zon, ,

. (17)

To simplify the prefetcher’s estimate of the value of acquiring
buffer, we recognize that it will obtain at least a few buffers a
use the following variant of Equation (9)

. (18)

H' n( )

∆H n( ) 1 H' n( )⋅
hi

A si
-----------≈ ≈

n

hit
ratio

cache
bufferss1

h2/A

h4/A

{ { { {

h1/A

s2 s3 s4

tracked
buffers

ghost
buffers

LRU list

least-valuable
tracked buffer

Figure 9. Piecewise estimation ofH(n). The LRU list is broken
into segments,s1, s2, s3, … Each buffer is tagged to indicate which
segment it is in. The tag is updated when a buffer passes from
segment to the next. When there is a cache hit in segmenti, the
segment hit count,hi, is incremented. That segment’s contributio
to the hit ratio is thenhi/A, whereA is the total number of accesse
to the LRU cache.

h3/A slope is
marginal hit ratio,
H’(n)
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5.3 Implementing informed caching estimations
Equation (14) in Section 4 expresses the cost of ejecting a

hinted block in terms ofy, the number of accesses till the hinted
read, andx, how far in advance the block will be prefetched back.
To eliminate the overhead of determining the value ofx dynami-
cally, we simplify this expression by assuming that the prefetch
will occur at the (upper bound) prefetch horizon, . If the block is
already within the prefetch horizon, , we assume that the
prefetch will occur at the next access. Then, in accordance with the
assumptions of Section 5.2 used to compute , we setTCPU = 0,
neglectTdriver, and take , for 1 <y
< . Plugging into Equation (14), we get, for 1 <y <

. (19)

Unfortunately, using this equation could lead to prefetching a
block back shortly after ejecting it. To avoid this thrashing, there
should be hysteresis in the valuations; that is, we need

. Comparing
this expression to Equation (19), we see that the inequality does
not hold for all possible values ofTdriver, Tdisk, andThit. To guar-
antee robustness for all values of these parameters greater than
zero, we choose to addThit to ∆Teject(y) for 1< y < . Thus, we
have,

. (20)

Figure 7 summarizes the equations used to estimate buffer
values in our implementation.

5.4 Exploiting OSF/1 clustering for prefetches
OSF/1 derives significant performance benefits from clust

ing the transfer of up to eight contiguous blocks into one d
access. One might ask of the informed prefetcher: when sho
buffers be allocated to prefetch secondary blocks as part of a c
ter?

If the decision to prefetch a block has already been ma
then the cost,Tdriver, of performing a disk read will be paid. Any
blocks that could piggyback on this read avoid most of the d
related CPU costs. If there are hinted blocks that can cluster w
the required block, and they are not prefetched now in such a c
ter, their later prefetch will incur the full overhead of performing
disk access and possibly the cost of any unmasked disk late
These are exactly the costs considered when deciding whethe
eject a hinted block. Thus, the decision to include an additio
hinted contiguous block in a cluster is the same as the decision
to eject this additional hinted block once the prefetch is comple
If the informed cache would decide not to eject the block if it we
in cache, then a buffer is allocated and the additional block
included in the pending cluster read.

6 Experimental testbed

Our testbed is a Digital 3000/500 workstatio
(SPECint92=84.4; SPECfp92=127.7), containing a 150 MH
Alpha (21064) processor, 128 MB of memory and five KZTS
fast SCSI-2 adapters each hosting three HP2247 1GB disks. 
machine runs version 2.0A of Digital’s OSF/1 monolithic kerne
OSF/1’s file system contains a unified buffer cache (UBC) modu
that dynamically trades memory between its file cache and virt
memory. To eliminate buffer cache size as a factor in our exp
ments, we fixed the cache size at 12 MB (1536 8 KB buffers).

The system’s 15 drives are bound into a disk array by a st
ing pseudo-device with a stripe unit of 64 KB. This device driv
maps and forwards accesses to the appropriate per-disk de
driver. Demand accesses are forwarded immediately, wh
prefetch reads are forwarded whenever there are fewer than 
outstanding requests at the drive. We forward two prefe
requests to reduce disk idle time between requests, and we d
forward more than two to limit priority inversion of prefetch ove
demand requests. The striper sorts queued prefetch requ
according to C-SCAN.

System parameters for the TIP estimators were:Tdisk = 15
milliseconds,Thit = 243 microseconds, andTdriver = 580 microsec-
onds.Thit was measured by repeatedly reading a cached, hin
file, and dividing the elapsed time by the number of blocks re
Tdriver was derived by measuring the non-idle time of a trivi
application that hinted, then read, 2000 unique, non-sequen
blocks of a 500MB file with the assumption that non-idle tim
equals 2000*(Thit+Tdriver). Tdisk was estimated from direct mea
surements on a variety of applications.

In addition to the clustering fetches described in Section 5
the default OSF/1 file system implements an aggressive readah
mechanism that detects sequential accesses to a file. The lo
the run of sequential accesses, the further ahead it prefetches 
a maximum of eight clusters of eight blocks each. For lar
sequential accesses, such as “cat 1GB_file > /dev/null,” OS
achieves 18.2 MB/s from 15 disks through our striper.

We report results from two modified OSF/1 systems, TIP
and TIP-2, in addition to the default OSF/1 system. TIP-1, our fi

P̂
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Tstall y( ) Tdisk yThit–( ) y⁄≈

P̂ P̂

∆Teject y( ) Tdriver

Tdisk

y 1–
------------ Thit–+=

∆Teject y( ) ∆Tpf y 1–( )> Tdisk y y 1–( )⁄=

P̂

∆Teject y( )

y 1= Tdriver T+
disk

1 y< P̂≤ Tdriver

Tdisk

y 1–
------------+

y P̂>
Tdriver

y P̂–
-----------------











≈

Figure 10. Local value estimates in the implementation. Shown
above are the local estimates of the value per buffer-access for the
buffer consumers and suppliers of Figure 2. These estimates are
easy-to-compute approximations of the exact estimates of
Figure 7.
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prototype, does informed prefetching but does not exploit hints for
caching. It is integrated with the unified buffer cache in OSF/1,
requiring only a few small hooks in the standard code. It uses a
simple mechanism to manage resources: it uses up to =62 cache
buffers to hold hinted but still unread data. Whenever the number
of such buffers is below the limit, TIP-1 prefetches according to
the next available hint. If the hinted block is already in the cache,
the block is promoted to the tail of OSF/1’s LRU list and counted
as an unread buffer. When an application accesses a hinted block
for the first time, TIP-1 reduces the count of unread buffers and
resumes prefetching. Hinted but unread blocks may age out of the
cache, triggering further prefetching, though this does not occur
with any of our test applications.

TIP-1 has been running since mid 1993 in the 4.3 BSD FFS
of Mach 2.5. Soon thereafter, it was ported to the UX server in a
Mach 3.0 system on a DECstation 5000/200. Equipped with four
disks and a user-level striper, this system was able to reduce the
elapsed time of a seek-intensive data visualization tool
(XDataSlice) by up to 70% [Patterson94]. During the summer of
1994 we ported TIP-1 to the current Alpha testbed to exploit its
greater CPU and disk performance.

During 1994, we designed and began implementation of a
second test system, TIP-2, which exploits hints for both informed
prefetching and informed caching. It completely replaces the uni-
fied buffer manager in OSF/1 as described in Sections 3, 4, and 5.

To estimate the overhead of our TIP-2 system, we timed the
complete build of an OSF/1 kernel. Table 1 summarizes the
results. TIP-2 adds about 2.4% CPU overhead and 2.8% elapsed
time for the build. CPU overhead for TIP-2 is dependent on I/O
intensity. Therefore, overheads for our suite of I/O-intensive
benchmarks, tend to be higher than this. They are: Davidson, 7%;
XDataSlice, 13%; Sphinx, 1.9%; Agrep, 13%; Gnuld, 10%; and
Postgres, 1.8% and 3.5% respectively for the low-match and high-
match joins. The current system is tuned only for fidelity in the
estimation ofH(n), and not for low overhead.

Our goal with informed prefetching is to exploit unused disk
parallelism and convert our benchmark applications from being
I/O-bound to being CPU-bound. Informed caching tries to further
reduce the number of I/Os. The key performance metrics are
elapsed time, I/O stall time, and CPU busy time. To obtain accu-
rate measures of elapsed time, we used the Alpha processor cycle
counter. To measure idle time, we kept a running counter of the
number of processor cycles spent in the idle loop, taking care to
exclude time spent servicing interrupts that occurred during the
idle loop.

7 Single-application performance

In this section, we evaluate the performance of our inform
prefetching and caching systems with a suite of six I/O-intens
benchmarks. All are single-threaded, synchronous, and I/O-bo
in common usage. Five derive substantial benefit from prefetch
alone. Three benefit from informed caching, especially when th
is insufficient disk bandwidth available.

We report the results of each application run without comp
tition on arrays of 1 to 10 disks (performance with 15 disks
essentially the same as with 10 disks). We report execution 
I/O stall time for each application when not giving hints and wh
giving hints to the TIP-1 and TIP-2 systems. Each test was run
a system with a cold cache. Before each sequence of five runs
file system was formatted (block size = fragment size = 819
inter-block rotational delay = 0, maximum blocks per file per cy
inder group = 10000, bytes per inodes = 32K, all other parame
default), and the run’s data was copied into the file system. T
standard deviation for both the elapsed time and stall time was 
than 3% of the mean for all of these measurements.

7.1 MCHF Davidson algorithm
The Multi-Configuration Hartree-Fock, MCHF, is a suite o

computational-physics programs which we obtained from Vand
bilt University where they are used for atomic-physics calcu
tions. The Davidson algorithm [Stathopoulos94] is an element
the suite that computes, by successive refinement, the extr
eigenvalue-eigenvector pairs of a large, sparse, real, symme
matrix stored on disk. In our test, the size of this matrix is 16
MB.

The Davidson algorithm iteratively improves its estimate 
the extreme eigenpairs by computing the extreme eigenpairs 
much smaller, derived matrix. Each iteration computes a n
derived matrix by a matrix-vector multiplication involving the
large, on-disk matrix. Thus, the algorithm repeatedly accesses
same large file sequentially. Annotating this code to give hints w
straightforward. At the start of each iteration, the Davidson alg
rithm discloses the whole-file, sequential read anticipated in 
next iteration.

Figure 11(a) reports the elapsed time of the entire compu
tion on OSF/1 (TIP-1 without hints is just OSF/1), when not givin
hints to TIP-2, and when giving hints to TIP-1 and TIP-2. As wi
most of the figures in this section, data is striped over 1 to 
disks, and the cache size is 12 MB. With or without hints, Dav
son benefits significantly from the extra bandwidth of a seco
disk but then becomes CPU-bound. Because the hints disc
only sequential access in one large file, OSF/1’s aggressive re
head matches the performance of TIP-1’s informed prefetch
and, in fact, performs slightly better because it incurs less ov
head.

Neither OSF/1 nor informed prefetching in TIP-1 uses the 
MB of cache buffers well. Because the 16.3 MB matrix does not
in the cache, the LRU replacement algorithm ejects all of t
blocks before any of them are reused. The informed cache m
ager in TIP-2, however, effectively reuses cache buffers, reduc
the number of blocks fetched from 125,340 to 53,200. On o
disk, this reduces elapsed time by over 30%. When disk bandw
is inadequate, improved caching avoids disk latency. On m
disks, prefetching masks disk latency, but informed caching s
reduces execution time more than 15% by avoiding the CPU ov
head of extra disk accesses, as can be seen by comparing TIP

P̂

Table 1. Kernel build times. This table shows the total (non-
hinting) build time for an OSF/1 2.0 kernel on an OSF/1 or TIP-1
kernel and on a TIP-2 kernel. All times are in seconds, and all
kernels had the buffer cache size fixed at 12MB. TIP-2 is about
2.5% slower than OSF/1.

Kernel CPU Time Elapsed Time

OSF/1, TIP-1 3,463 4,236

TIP-2 3,546 4,357
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ure (a) shows the performance of the Davidson algorithm applied to a
s a large file sequentially. OSF/1’s aggressive readahead algorithm performs
med caching in TIP-2 reduces elapsed time by more than 30% on one disk by
tency, but informed caching still reduces execution time more than 15% by

ormed caching in TIP-2 discovers an MRU-like policy which uses additional
-2 takes advantage of a 16 MB cache to reduce execution time by 42%. In
 until there are enough of them to cache the entire dataset, which is 16.3 MB
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hint and hint CPU times. Figure 11(b) shows Davidson’s elaps
time with one disk on TIP-2 with and without hints as a function 
cache size. Without hints, extra buffers are of no use until 
entire dataset fits in the cache. In contrast, TIP-2’s min-max glo
valuation of blocks yields the smooth exploitation of addition
cache buffers that is expected from an MRU replacement poli
The prefetch horizon limits the use of buffers for prefetching, ev
when there is more than enough disk bandwidth to flush the ca
with prefetched blocks. TIP-2 effectively balances the allocati
of cache buffers between prefetching and caching.

7.2 XDataSlice
XDataSlice (XDS) is an interactive scientific visualizatio

tool developed at the National Center for Supercomputer Appli
tions at the University of Illinois [NCSA89]. Among other fea
tures, XDS lets scientists view arbitrary planar slices through th
3-dimensional data with a false color mapping. The datasets m
originate from a broad range of applications such as airflow sim
lations, pollution modelling, or magnetic resonance imaging, a
tend to be very large.

It is often assumed that because disks are so slow, good 
formance is only possible when data is in main memory. Th
many applications, including XDS, require that the entire data
reside in memory. Because memory is still expensive, the amo
available often constrains scientists who would like to work wi
higher resolution images and therefore larger datasets. Inform
prefetching invalidates the slow-disk assumption and makes o
of-core computing practical, even for interactive applications. 
demonstrate this, we added an out-of-core capability to XDS.

To render a slice through an in-core dataset, XDS iterativ
determines which data point maps to the next pixel, reads 
datum from memory, applies false coloring, and writes the pixel
the output pixel array. To render a slice from an out-of-co
dataset, XDS splits this loop in two. Both to manage its intern
cache and to generate hints, XDS first maps all of the pixels

(a)

Figure 11. Benefit of informed caching for repeated accesses. Fig
computational-physics problem. The algorithm repeatedly read
about the same as TIP-1 with hints for this access pattern. Infor
avoiding disk latency. On more disks, prefetching masks disk la
avoiding the overhead of going to disk. Figure (b) shows that inf
buffers to increase cache hits and reduce execution time. TIP
contrast, LRU caching derives no benefit from additional buffers
(2089 8K blocks).
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data-point coordinates and stores the mappings in an array. Ha
determined which data blocks will be needed to render the cur
slice, XDS ejects unneeded blocks from its cache, gives hints
TIP, and reads the needed blocks from disk. In the second ha
the split loop, XDS reads the cached pixel mappings, reads the 
responding data from the cached blocks, and applies the false
oring [Patterson94].

Our test dataset consists of 5123 32-bit floating point values
requiring 512 MB of disk storage. The dataset is organized i
8 KB blocks of 16x16x8 data points and is stored on the disk in
major order. Our test renders 25 random slices through the dat
Figure 12(a) reports the average elapsed time per slice on OS
TIP-1 and TIP-2.

While OSF/1 readahead is effective for the sequential acc
pattern of Davidson, it is detrimental for XDS. XDS frequent
reads a short sequential run, which triggers an equal amoun
readahead by OSF/1. Only slices closely aligned with the Z-a
read long runs of sequential blocks for which the readahead
effective. Consequently, for this set of 25 slices, the nonhint
version of XDS reads 1.86 times as much data from disk as 
application actually consumes. This combination of false rea
head and lack of I/O parallelism causes XDS to take about 12 
onds to render an arbitrary slice without hints, leading 
unacceptable interactive performance.

In contrast, informed prefetching both avoids false readahe
and exploits the concurrency of a disk array. TIP-1 eliminates 7
of the I/O stall time on four disks, and 92% on 10 disks. On 
disks, TIP-1 reduces the time to render a random slice by a fa
of 6 to about 2 seconds, resulting in a much more tolerable inte
tive latency.

TIP-1 and TIP-2 perform similarly. However, because TIP
can use hints to coalesce into one disk read blocks that are con
ous on disk but widely separated in the access sequence, T
reduces the number of distinct disk reads from 18,700 to 15,0
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nd search. Figure (a) shows the elapsed time for rendering 25 random
oor use of the disk array. But, informed by hints, TIP is able to prefetch in
ry little data reuse, so the informed caching does not decrease elapsed time
benefits of informed prefetching for the Sphinx speech-recognition program.
dramatic. As for XDataSlice, there is little data reuse so informed caching
nal overhead. Figure (c) reports the elapsed time for searches through files in
cross files. Again, informed caching provides no improvement over informed
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This improved I/O efficiency contributes to the slight performan
advantage of TIP-2 over TIP-1.

7.3 Sphinx
Sphinx [Lee90] is a high-quality, speaker-independent, co

tinuous-voice, speech-recognition system. In our experimen
Sphinx is recognizing an 18-second recording commonly used
Sphinx regression testing.

Sphinx represents acoustics with Hidden Markov Models a
uses a Viterbi beam search to prune unpromising word comb
tions from these models. To achieve higher accuracy, Sphinx u
a language model to effect a second level of pruning. The langu
model is a table of the conditional probability of word-pairs an
word-triples. At the end of each 10 ms acoustical frame, the s
ond-level pruner is presented with the words likely to have end
in that frame. For each of these potential words, the probability
it being recognized is conditioned by the probability of it occurrin
in a triple with the two most recently recognized words, or occu
ring in a pair with the most recently recognized word when there
no entry in the language model for the current triple. To furth
improve accuracy, Sphinx makes three similar passes through
search data structure, each time restricting the language m
based on the results of the previous pass.

Sphinx, like XDS, came to us as an in-core only syste
Since it was commonly used with a dictionary containing 60,0
words, the language model was several hundred megabytes in 
With the addition of its internal caches and search data structu
virtual-memory paging occurs even on a machine with 512 MB
memory. We modified Sphinx to fetch from disk the languag
model’s word-pairs and word-triples as needed. This enab
Sphinx to run on our 128 MB test machine 90% as fast as on a 
MB machine.

We additionally modified Sphinx to disclose the word-pai
and word-triples that will be needed to evaluate each of the po
tial words offered at the end of each frame. Because the langu

Figure 12. Elapsed time of visualization, speech recognition a
slices through a 512 MB dataset. Without TIP, OSF/1 makes p
parallel and mask the latency of the many seeks. There is ve
relative to the simple prefetching in TIP-1. Figure (b) shows the 
Sphinx is almost CPU-bound, so the improvements are less 
provides no benefit over TIP-1, and, in fact, incurs some additio
three different directories and shows the benefit of prefetching a
prefetching.
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model is sparsely populated, at the end of each frame there
about 100 byte ranges that must be consulted, of which all b
few are in Sphinx’s internal cache. However, there is a high va
ance on the number of pairs and triples consulted and fetched
storage parallelism is often employed.

Figure 12(b) shows the elapsed time of Sphinx recogniz
the 18-second recording. Sphinx starts with one sequential rea
the 200MB language model which benefits from the array witho
hints. But, with informed prefetching, it takes advantage of t
array even for the many small accesses and thereby reduces e
tion time by as much as 17%.

Sphinx’s internal cache and large datasets lead to little loc
ity in its file system accesses. Thus, the informed caching in TIP
does not improve upon the performance of simple inform
prefetching in TIP-1.

7.4 Agrep
Agrep, a variant of grep, was written by Wu and Manber 

the University of Arizona [Wu92]. It is a full-text pattern matchin
program that allows errors. Invoked in its simplest form, it ope
the files specified on its command line one at a time, in argum
order, and reads each sequentially.

Since the arguments to Agrep completely determine the fi
it will access, Agrep can issue hints for all accesses upon invo
tion. Agrep simply loops through the argument list and informs t
file system of the files it will read. When searching data colle
tions such as software header files or mail messages, hints f
Agrep frequently specify hundreds of files too small to bene
from history-based readahead. In such cases, informed prefetc
has the advantage of being able to prefetch across files and no
within a single file.

In our benchmark, Agrep searches 1349 kernel source f
occupying 2922 disk blocks for a simple string that does not oc
in any of the files.
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s the elapsed time for Gnuld to link an OSF/1 TIP-1 kernel. Figures (b)
ndard Postgres relational database, a restructured Postgres that precomputes
when it gives hints. The restructuring improves access locality and therefore
tgres. Delivering hints then dramatically reduces I/O stall time.
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Figure 12(c) reports the elapsed time for this search. As w
the case for XDataSlice and Sphinx, there is little parallelism
Agrep’s I/O workload. The files are searched serially and most 
small, so even OSF/1’s readahead does not achieve parallel tr
fer. However, Agrep’s disclosure of future accesses expo
potential I/O concurrency. On our testbed, arrays of as few as f
disks reduce execution time by 73% and 10 disks reduce execu
time by 83%.

7.5 Gnuld
Gnuld version 2.5.2 is the Free Software Foundation’s obj

code linker which supports ECOFF, the default object file form
under OSF/1. Gnuld performs many passes over input object f
to produce the output linked executable. In the first pass, Gn
reads each file’s primary header, a secondary header, and its s
bol and string tables. Hints for the primary header reads are ea
given by replicating the loop that opens input files. The read of 
secondary header, whose location is data dependent, is not hi
Its contents provide the location and size of the symbol and str
tables for that file. A loop splitting technique similar to that i
XDataSlice is used to hint the symbol and string table reads.

After verifying that it has all the data needed to produce
fully linked executable, Gnuld makes a pass over the object file
read and process debugging symbol information. This involves
to nine small, non-sequential reads from each file. Fortunately, 
previously read symbol tables determine the addresses of th
accesses, so Gnuld loops through these tables to generate hin
its second pass.

During its second pass, Gnuld constructs up to five shuf
lists which specify where in the executable file object-file debu
ging information should be copied. When the second pass co
pletes, Gnuld finalizes the link order of the input files, and thus t
organization of non-debugging ECOFF segments in the executa
file. Gnuld uses this order information and the shuffle lists to gi
hints for the final passes.

Our test links the 562 object files of our TIP-1 kernel. The
objects file comprise approximately 64 MB, and produce 

Figure 13. Elapsed time of Gnuld and Postgres. Figure (a) show
and (c) show the elapsed time for two different joins in the sta
offsets for the inner relation, and in the restructured Postgres 
cache performance, allowing it to run faster than standard Pos
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8.8MB kernel. Figure 13(a) presents the elapsed and I/O stall t
for this test.

Like XDataSlice, Gnuld without hints incurs a substanti
amount of false readahead, causing it to read 125 MB from disk
contrast, Gnuld reads only 95 MB with hints on TIP-1. Th
informed caching of TIP-2 further reduces the read volume to
MB. With hints, Gnuld eliminates 77% of its stall time with 4
disks and 87% with 10 disks. The remaining stall time is mos
due to the remaining unhinted accesses that Gnuld performs.

7.6 Postgres
Postgres version 4.2 [Stonebraker86, Stonebraker90] is

extensible, object-oriented relational database system from 
University of California at Berkeley. In our test, Postgres execu
a join of two relations. The outer relation contains 20,000 un
dexed tuples (3.2 MB) while the inner relation has 200,000 tup
(32 MB) and is indexed (5 MB). We run two cases. In the fir
20% of the outer relation tuples find a match in the inner relatio
In the second, 80% find a match. One output tuple is writt
sequentially for every tuple match.

To perform the join, Postgres reads the outer relation sequ
tially. For each outer tuple, Postgres checks the inner relatio
index for a matching inner tuple and, if there is one, reads t
tuple from the inner relation. From the perspective of stora
accesses to the inner relation and its index are random, defea
sequential readahead, and have poor locality, defeating cach
Thus, most of these inner-relation accesses incur the full latenc
a disk read.

To disclose these inner-relation accesses, we employ a lo
splitting technique similar to that used in XDS. In the precompu
tion phase, Postgres reads the outer relation (disclosing its seq
tial access), looks up each outer-relation tuple address in the in
(unhinted), and stores the addresses in an array. Postgres the
closes these precomputed block addresses to TIP. In the se
pass, Postgres rereads the outer relation but skips the index lo
and instead directly reads the inner-relation tuple whose addre
stored in the array.
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Figures 13(b) and 13(c) show the elapsed time required for
the two joins under three conditions: standard Postgres, Postgres
with the precomputation loop but without giving hints, and Post-
gres giving hints with the precomputation loop. Simply splitting
the loop reduces elapsed time by about 20%. When the loop is
split, the buffer cache does a much better job of caching the index
since it is not polluted by the inner-relation data blocks. Even
though Postgres reads the outer relation twice, there are about 900
and 6,100 fewer total disk I/Os in the precomputation-based runs
of the first and second cases, respectively.

Invoking informed prefetching by issuing hints from the pre-
computation runs in TIP-1 allows concurrency for reads of inner-
relation blocks and reduces elapsed time by up to 45% and 64%
for the two cases, respectively. Compared to standard Postgres,
precomputation and informed prefetching in TIP-1 reduce execu-
tion time by up to 55% and 75%.

Enabling informed caching with hints in TIP-2 in general has
little effect on elapsed time because most I/O accesses are random
reads from the inner relation. However, on one disk, in the 80%
match case, TIP-2 gets an 11% reduction in elapsed time. While
part of this benefit arises from informed caching, a large fraction
arises from TIP-2’s exploitation of clustering described in Section
5.4. The availability of hints allows contiguous blocks to be read in
one disk I/O even though accesses to the two blocks may be
widely separated in time. Informed clustering allows Postgres on
TIP-2 to perform only 4,700 disk reads in the 20% match case and
8,600 disk reads in the 80% match case as compared to 6,700 and
12,300 on TIP-1, respectively. Clustering disk I/Os makes better
use of disk bandwidth, so the benefit of informed clustering, like
informed caching, is greatest when disk bandwidth is scarce (one
disk).

8 Multiple-application performance

Multiprogramming I/O-intensive applications does not gener-
ally lead to equitable or efficient use of resources because these
programs flush each other’s working set and disturb each other’s
disk head locality. However, it is inevitable that I/O-intensive pro-
grams will be multiprogrammed. In the rest of this section, we
present the implications of informed prefetching and caching on
multiprogrammed I/O-intensive applications.

When multiple applications are running concurrently, the
informed prefetching and caching system should exhibit three
basic properties. First and foremost, hints should increase overall
throughput. Second, an application that gives hints should improve
its own performance. Third, in the interest of fairness, non-hinting
applications should not suffer unduly when a competing applica-
tion gives hints. Our cost-benefit model attempts to reduce the sum
of the I/O overhead and stall time for all executing applications,
and thus, we expect our resource management algorithms to also
benefit multiprogrammed workloads.

To explore how well our system meets these performance
expectations, we report three pairs of application executions:
Gnuld/Agrep, Sphinx/Davidson, and XDS/Postgres. Here, Post-
gres performs the join with 80% matches and, precomputes its data
accesses even when it does not give hints. For each pair of applica-
tions, we ran all four hinting and non-hinting combinations on
TIP-2 starting the two applications simultaneously with a cold
cache. Figures 14 through 16 show selected results.

Figure 14 shows the impact of hints on throughput for the
three pairs of applications. We report the time until both applica-

tions complete, broken down by total CPU time and simultaneo
stall time. In all cases, the maximum elapsed time decreases w
one application gives hints, and decreases further still when b
applications give hints. Simultaneous I/O stall time is virtual
eliminated for two out of the three pairs when both applicatio
give hints and the parallelism of 10 disks is available.

Figure 15 and Figure 16 show each named application’s in
vidual elapsed time after being initiated in parallel with anoth
application (whose name is in parentheses). While vertical c
umns of graphs in Figures 14, 15, and 16 correspond to the s
test runs, the middle two bars in any quartet of Figure 16 
swapped relative to the middle two bars in the corresponding qu
tets of Figures 14 and 15. So, for example, in Figure 15(a), ‘h
nohint’ means Gnuld hints while Agrep does not, whereas in F
ure 16(a) ‘hint-nohint’ means Agrep hints while Gnuld does not

To see the impact of giving hints on an individual applic
tion’s execution time when a second non-hinting application is r
concurrently, compare bars one and two in Figures 15 and
Comparing bars three and four reveals the impact when the sec
application is giving hints. In most cases, giving hints substantia
improves an application’s execution time. A notable exception
Davidson when run with Sphinx as shown in Figure 16(b). Wh
Davidson gives hints, informed caching reduces its I/O requi
ments so Sphinx’s I/Os are serviced more quickly. Consequen
Sphinx demands more CPU time at the expense of Davidson 
Davidson slows down. Recall, from Figure 14(b) that over
throughput increases when Davidson gives hints.

To see the impact on a non-hinting application of anoth
application giving hints, compare the first and third bars in Figur
15 and 16. Comparing the second to fourth bars shows the im
on a hinting application. In two of six applications, a non-hintin
application’s execution time is increased by another applicatio
hints. For example, in Figure 16(b), when Sphinx gives hints
increases the execution time of a non-hinting Davidson. This
because, by giving hints, Sphinx stalls less often for I/O, so it co
petes more aggressively for the CPU at the expense of Davidso

A more dramatic example is a non-hinting Agrep runnin
with Gnuld shown in Figure 16(a). Here, CPU utilization is lo
even when the two applications run together; disk bandwid
determines performance. When neither application gives hin
they both usually have only one outstanding disk access at a t
From a single disk, about 40% of the accesses and 35% of the
transferred are attributable to Agrep over the course of its r
When Gnuld gives hints, prefetches queue up at the drive. E
though there is a limit of two prefetches queued in front of
demand request, Agrep’s I/Os are more likely to be third in li
instead of second. Agrep’s share of disk accesses drops to a
24% and of data transferred to about 22%. Since Agrep is d
bound and getting a smaller fraction of disk utilization, it tak
longer to run.

In other cases, however, an application’s hints benefit 
other running application. For example, if either Postgres or XD
gives hints, the non-hinting other’s elapsed time is substantia
reduced. Multiprogramming this pair of applications causes b
to run longer than the sum of their stand-alone elapsed tim
because interleaving their accesses dramatically reduces 
locality. So, when either gives hints, its I/Os are processed m
efficiently. This allows it to finish more quickly, getting out of the
way of the other, whose disk accesses are then more efficient. 
does not happen for Agrep when Gnuld runs because even w
92
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Gnuld gives hints, it runs longer than Agrep and so never gets out
of the way.

9 Future work

Together, informed caching and informed prefetching pro-
vide a powerful resource management scheme that takes advan-
tage of available storage concurrency and adapts to an
application’s use of buffers.

Although the results reported in this paper are taken from a
running system, there remain many interesting related questions.

In the area of hint generation, richer hint languages might sig-
nificantly improve the ability of programmers to disclose future
accesses. Even easier on the programmer would be the automatic
generation of high quality hints.

When all accessed devices have the same average access
time, as in our experiments, blocks should be prefetched in the
order they will be accessed [Cao95]. However, in the general case,
some data is on a local disk while other data may be on the far side
of a network. For the remote blocks,Tnetwork + Tserver + Tdisk could
be substituted forTdisk when determining the benefit of prefetch-
ing and the prefetch horizon. This will cause the benefit of
prefetching later, remote blocks to exceed that of prefetching ear-
lier, local blocks. This has far-reaching implications for informed
device scheduling, the third and unaddressed point of leverage for
hints based on disclosure.

Perhaps the most exciting future work lies in exploiting the
extensibility of our resource management framework. Because
value estimates are made independently with local information,
and then compared using a common currency, it should be possi-
ble to add new types of estimators. For example, a virtual-memory
estimator could track VM pages, thereby integrating VM and
buffer-cache management.

10 Conclusions

Traditional, shallow readahead and LRU file caching no
longer provide satisfactory resource management for the growing
number of I/O-bound applications. Disk parallelism and cache
buffers are squandered in the face of serial I/O workloads and
large working sets. We advocate the disclosure of application
knowledge of future accesses to enable informed prefetching and
informed caching. Together, these proactive resource managers
can expose workload parallelism to exploit storage parallelism,
and adapt caching policies to the dynamic needs of running appli-
cations. The key to achieving these goals is to strike a balance
between the desire to prefetch and the desire to cache.

We present a framework for informed caching based on a
cost-benefit model of the value of a buffer. We show how to make
independent local estimates of the value of caching a block in the
LRU queue, prefetching a block, and caching a block for hinted
reuse. We define a basis for comparing these estimates: the time
gained or lost per buffer per I/O-access interval, and we develop a
global min-max algorithm to arbitrate among these estimates and
maximize the global usefulness of every buffer.

Our results are taken from experiments with a suite of six I/O-
intensive applications executing on a Digital 3000/500 with an
array of 10 disks. Our applications include text search, data visual-
ization, database join, speech recognition, object linking, and com-
putational physics. With the exception of computational physics,
none of these applications, without hints, exploits the parallelism

of a disk array well. Informed prefetching with at least four dis
reduces the elapsed time of the other five applications by 20%
85%. For the computational physics application, which repeate
reads a large file sequentially, OSF/1’s aggressive readahead 
as well as informed prefetching. However, informed caching
adaptive policy values this application’s recently used bloc
lower than older blocks and so “discovers” an MRU-like polic
that improves performance by up to 42%. Finally, our experime
tal multiprogramming results show that introducing hints alwa
increases throughput.

Instructions for obtaining access to the code in our TIP pro
type can be found in our Internet World Wide Web page
http://www.cs.cmu.edu/afs/cs/Web/Groups/PDL.
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