
U.S. Department of Energy Best Practices Workshop

on File Systems & Archives:∗

Usability at Los Alamos National Lab†

John Bent

Los Alamos National Lab

johnbent@lanl.gov

Gary Grider

Los Alamos National Lab

ggrider@lanl.gov

Abstract

There yet exist no truly parallel file systems. Those that

make the claim fall short when it comes to providing ad-

equate concurrent write performance at large scale. This

limitation causes large usability headaches in HPC com-

puting.

Users need two major capabilities missing from current

parallel file systems. One, they need low latency interac-

tivity. Two, they need high bandwidth for large parallel

IO; this capability must be resistant to IO patterns and

should not require tuning. There are no existing paral-

lel file systems which provide these features. Frighten-

ingly, exascale renders these features even less attainable

from currently available parallel file systems. Fortunately,

there is a path forward.

1 Introduction

High-performance computing (HPC) requires a tremen-
dous amount of storage bandwidth. As computational
scientists push for ever more computational capability,
system designers accommadate them with increasingly
powerful supercomputers. The challenge of the last few
decades has been that the performance of individual com-
ponents such as processors and hard drives as remained
relatively flat. Thus, building more power supercomput-
ers requires that they be built with increasing numbers
of components. Problematically, the mean time to fail-
ure (MTTF of individual components has over remained
relatively flat over time. Thus, the larger the system, the
more frequent the failures.

Traditionally, failures have been dealt with by period-
ically saving computational state onto persistent storage
and then recovering from this state following any failure
(checkpoint-restart). The utilization of systems is then
measured using goodput which is the percentage of com-
puter time that is spent actually making progress towards

∗San Francisco, CA; September 26-27, 2011
†LANL Release LA-UR 11-11416

the completion of the job. The goal of system designers
is therefore to maximize goodput in the face of random
failures using an optimal frequency of checkpointing.

Determining checkpointing frequency should be
straight-forward: measure MTTF, measure amount
of data to be checkpointed, measure available storage
bandwidth, compute checkpoint time, and plug it into a
simple formula [3]. However, measuring available storage
bandwidth is not as straightforward as one would hope.
Ideally, parallel file systems could achieve some consistent
percentage of the hardware capabilities; for example, a
reasonable goal for a parallel file system using disk drives
for storage would be to achieve 70% of the aggregate
disk bandwidth. If this were the case, then a system
designer could simply purchase the necessary amount
of storage hardware to gain sufficient performance to
minimize checkpoint time and maximize system goodput.
However, there exist no currently available parallel file
systems that can provide any such performance level
consistently.

2 Challenges

Unfortunately, although there are some that can, there
are many IO patterns that cannot achieve any consis-
tent percentage of the storage capability. Instead, these
IO patterns achieve a consistently low performance such
that their percentage of hardware capability diminishes
as more hardware is added! For example, refer to Fig-
ures 1a, 1b, and 1c, which show that writing to a shared
file, N-1, achieves consistently poor performance across
the three major parallel file systems whereas the band-
width of writing to unique files, N-N, scales as desired
with the size of the job. The flat lines for the N-1 work-
loads actually show that there is no amount of storage
hardware that can be purchased: regardless of size, the
bandwidths remain flat. This is because the hardware
is not at fault; the performance flaw is within the paral-
lel file systems which cannot incur massively concurrent
writes and maintain performance. The challenge is due

 0

 15000

 30000

 0 2000 4000 6000 8000W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

Number of Processes

N-N
N-1

(a) PanFS

 0

 2500

 5000

 0 5 10 15 20 25 30 35 40W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

Number of Processors

N-N
N-1

(b) GPFS

 0

 1000

 2000

 0 5 10 15 20 25 30 35 40W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

Number of Processes

N-N
N-1

(c) Lustre

 0

 100

 200

1K 2K 4K 8K 16K 32K

C
re

at
e

T
im

e
(s

)

N-N Job Size (np)

(d) Metadata

 0

 300

 600

Tar
256 Procs

Cp Rm Tar
8192 Procs

Cp Rm

T
im

e
(s

)

Quiescent
Read
Write

(e) QoS

 0

 500

 1000

 0 1 2 3 4 5W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

Write Size (MB)

(f) Tuning

Figure 1: Usability Challenges. These graphs address the key usability challenges facing today’s users of HPC storage

systems. The top three graphs demonstrate the large discrepancy between achievable bandwidth and scalability using N-N and

N-1 checkpoint patterns on three of the major HPC parallel file systems. The bottom left graph shows the challenge of metadata

creation at large job size, the bottom middle shows how the notion of interactivity is a cruel joke when small file operations

are contending with large jobs performing parallel IO, and finally, the bottom right graph shows the reliance on magic numbers

that plagues current parallel file systems.

to maintaining data consistency which typically requires
a serialization of writes.

An obvious solution to this problem is for all users to
always perform N-N file IO in which every process writes
to a unique file. This approach does not come without
trade-offs however. One is a performance limitation at
scale and the other is a reduction in usability as will be
discussed later in Section 3.

The system problem is the massive workload caused
by by large numbers of concurrent file creates when each
process opens a new file. Essentially this causes the same
exact problem on parallel file systems as does writing in
an N-1 pattern: concurrent writes perform poorly. In this
case, the concurrent writing is done to a shared directory
object. These directory writes are handled by a metadata
server; no current production HPC parallel file system
supports distributed metadata servers. As such, large
numbers of directory writes are essentially serialized at a
single metadata server thus causing very large slow-downs
during the create phase of an N-N workload as is shown
in Figure 1d.

3 Implications for Usability

This causes large usability headaches for LANL users. All
of the large computing projects at LANL are well-aware
of, and dismayed by, these limitations. All have incurred
large opportunity costs to perform their primary jobs by
designing around these limitations or paying large per-
formance penalties. Many create archiving and analysis

challenges for themselves by avoiding writes to shared ob-
jects by having each process in large jobs create unique
files. Some have become parallel file system experts and
preface parallel IO by doing complicated queries of the
parallel file system in order to rearrange their own IO
patterns to better match the internal data organization
of the parallel file system.

3.1 Tuning

Many users have learned that parallel file systems have
various magic numbers which correspond to IO sizes that
achieve higher performance than other IO sizes. Typically
these magic numbers correspond with various object sizes
in the parallel file system ranging from a disk block to a
full RAID stripe. The difference between poorly perform-
ing IO sizes and highly performing IO sizes is shown in
Figure 1f which was produced using LBNL’s PatternIO
benchmark [8]. Also, this graphs seems to merely show
that performance increases with IO size, a closer examina-
tion shows that there are many small writes that perform
better than large writes. In fact, a close examination re-
veals three distinct curves in this graph: the bottom is
IO sizes matching no magic numbers, the middle is for
IO sizes in multiples of the object size per storage device,
and the upper is for IO sizes in multiples of the full RAID
stripe size across multiple storage devices.

The implication of this graphs is that those users
who can discover magic numbers and then use those
magic numbers can achieve much higher bandwidth than
those users who cannot. Unfortunately, both discover-

openhosts/ subdir3/accesssubdir2/subdir1/

P3 P4

N2

P5 P6

N3

P1 P2

N1

A parallel application consisting of six processes on three compute nodes creates an N−1 strided file, checkpoint1.
PLFS preserves the application’s logical view of the file.

checkpoint1

PLFS then creates a container structure on the underlying parallel file system to hold the data for file checkpoint1.

index.N1 index.N3

metadata/

index.N2

PLFS Virtual Interposition Layer

Actual Underlying Parallel File System

checkpoint1/

Figure 2: PLFS Architecture. This figure shows how

PLFS maintains the user’s logical view of a file which physi-

cally distributing it into many smaller files on an underlying

parallel file system.

ing and exploiting magic numbers is difficult and often
intractable. Magic numbers differ not only on different
parallel file systems (e.g. from PanFS to Lustre) but also
on different installations of the same file system. Trag-
ically, there is no simple, single mechanism by which to
extract magic numbers from a file system.

We have a user at LANL who executes initialization
code which first queries statfs to determine the file sys-
tem f type and then, based on which file system is iden-
tified, then executes different code for each of the three
main parallel file systems to attempt to discover the magic
number for that particular installation. Once discovering
this value, the user then reconfigures their own, very com-
plicated, IO library to issue IO requests using the newly
discovered magic number. Of course, most users would
not prefer to jump through such hoops, and frankly, many
users should not be trusted with low-level file system in-
formation. Not because they lack intelligence but be-
cause they lack education; they are computational scien-
tists who should not be expected to become file system
experts in order to extract reasonable performance from
a parallel file system.

Of course, even if all users could easily discover magic
numbers, they could not all easily apply them. For ex-
ample, many applications do adaptive mesh refinement in
which the pieces of the distributed data structures are not
uniformly sized: neither in space nor in time. This means
that users looking for magic numbers will need some sort
of complicated buffering or aggregation. An additional
challenge is that magic numbers are not as easy as merely
making the individual IO operations be of a particular
size; they must also be correctly aligned with the under-
lying object sizes. So not only must users attempt to
size operations correctly, they must also attempt to align
them correctly as well. There are other approaches to

 0

 100

 200

1K 2K 4K 8K 16K 32K

C
re

at
e

T
im

e
(s

)

N-N Job Size (np)

Without PLFS
With PLFS

Figure 3: Addressing Metadata Challenge. This graph

shows how distributed metadata keeps create rates manageable

at large scale.

address this problem such as collective buffering [10] in
MPI-IO. As we will show later in Section 4.1, collective
buffering is beneficial but is not a complete solution.

3.2 Quality of Service

Finally, although checkpoint-restart is a dominant activ-
ity on the storage systems, obviously it is not the only
activity. Computational science produces data which
must then be explored and analyzed. As the output
data is stored on the same storage system which services
checkpoint-restart, data exploration and analysis work-
loads can content with checkpoint-restart workloads. As
is seen in Figure 1e, the checkpoint-restart workloads can
wreak havoc on interactive operations. In this experi-
ment, the latency of small file operations, such as untar-
ring a set of files, copying that same set of files, and then
removing the files, was measured during periods of qui-
escence and then compared to the latency of those same
operations when they were contending with large parallel
jobs doing a checkpoint write and a restart read. The
most painful latency penalties are seen when the opera-
tions contend with a 8192 process job doing a checkpoint
write.

4 Path Forward

There are many emerging technologies, ideas, and poten-
tial designs that offer hope that these challenges will be
addressed in time for the looming exascale era.

4.1 PLFS

Our earlier work in SC09 [2] plays a prominent role in
our envisioned exascale IO stack. That work showed how
PLFS makes all N-1 workloads achieve the performance
of N-N workloads and also how PLFS removes the need
for tuning applications to the underlying system (i.e. in
PLFS, every number is a magic number!). Those results
will not be repeated here but suffice it to say that they

 0

 250

 500

 750

 1000

 1250

 0 250 500

W
rit

e
B

an
dw

id
th

 (
M

B
/s

)

Number of Processes

PLFS
Collective Buffering

Unmodified

Figure 4: Collective Buffering. This graph shows that

collective buffering may not be sufficient for many workloads.

eliminate the challenges show in Figures 1a, 1b, 1c, and 1f.
From a usability perspective, PLFS is an important con-
tribution: in addition to removing the need for IO tuning,
PLFS is transparently accessible by unmodified applica-
tions using either POSIX IO or the MPI IO libraries.

Note that collective buffering [10] is another approach
to dealing with the thorny problem of magic numbers.
Figure 4 shows that, for one particular workload, collec-
tive buffering is an improvement over an unmodified ap-
proach to IO but underperforms the bandwidth obtain-
able using PLFS. In fairness, however, we are not col-
lective buffering experts and perhaps collective buffering
could be tuned to achieve much higher bandwidth. Ulti-
mately though, our usability goal is to remove file system
and parallel IO tuning from the user’s purview.

Figure 2 shows the architecture of PLFS and how it
preserves the user’s logical view of a file while physically
striping the data into many smaller files on an underlying
parallel file system. This effectively turns all large parallel
workloads into N-N workloads. Of course, as we saw in
Figure 1d, even N-N workloads suffer at very large scale.
Additionally, we know that this performance degradation
is due to an overloaded metadata server which will destroy
interactive latency as we saw in Figure 1e.

Borrowing ideas from GIGA+ [7], PLFS now addresses
these challenges as well. Recent versions of PLFS (since
2.0) can stripe the multiple physical files comprising a
logical file over multiple file systems. In the case where
each file system is served by a different metadata server,
this distributes metadata load very effectively as can be
seen in Figure 3 which is the same as Figure 1d but with
an added line showing how metadata distribution within
PLFS can remove metadata bottlenecks. Note that the
workload shown was run using an N-N workload. Al-
though PLFS was originally designed for N-1 workloads,
this new functionality will allow PLFS to address meta-
data concerns for all exascale checkpoint workloads.

5 Redesigning the IO Stack

PLFS has proven to be a very effective solution for current
IO challenges: it allows all workloads to easily achieve a
consistently high percentage of the aggregate hardware
capability.

PLFS is not sufficient however to solve the looming
exascale IO challenges before us. Recent work [9] shows
that the checkpointing challenge is becoming increasingly
difficult over time. The checkpoint size in the exascale
era is expected to be around 32 PB. To checkpoint this in
thirty minutes (a decent rule of thumb) requires 16 TBs
of storage bandwidth. Economic modeling shows that
current storage designs would require an infeasible 50%
of the exascale budget to achieve this performance.

5.1 Burst buffer

We must redesign our hardware stack and then develop
new software to use it. Spinning media (i.e. disk) by it-
self is not economically viable in the exascale era as it is
priced for capacity but we will need to purchase band-
width. Additionally, the storage interconnect network
would be a large expense. Thus far, we have required
an external storage system for two main reasons: one,
sharing storage across multiple supercomputers improves
usability and helps with economies of scale; two, embed-
ding spinning media on compute nodes decreases their
MTTF.

Our proposal is to make use of emerging technologies
such as solid state devices, SSD. This media is priced for
bandwidth and for low latency so the economic modeling
shows it is viable for our bandwidth requirements. Ad-
ditionally, the lack of moving parts is amenable to our
failure models and allows us to place these devices within
the compute system (i.e. not on the other side of the stor-
age network). Unfortunately, being priced for bandwidth
means these devices cannot provide the storage capacity

that we require. We still require our existing disk-based
parallel file systems for short-term capacity needs (long-
term capacity is served by archival tape systems not oth-
erwise discussed here).

We propose adding these devices as a new layer in our
existing storage hierarchy between the main memory of
our compute nodes and the spinning disks of our paral-
lel file systems; we call this interposition of SSD a burst

buffer as they will absorb very fast bursts of data and
serve as an intermediate buffer to existing HPC parallel
file systems. This is not a new idea and is commonly
suggested as a solution to the well-known latency gap be-
tween memory and disk. Our proposal however is how to
specifically incorporate these burst buffers into the exist-
ing HPC storage software stack.

5.2 E Pluribus Unum

Our envisioned software stack incorporates many existing
technologies. The SCR [6] software is a perfect candidate
for helping schedule the burst buffer traffic and to enable
restart from neighboring burst bufers within the compute
nodes. However, we envision merging SCR and PLFS to
allow users to benefit from PLFS’s capability to handle
both N-1 and N-N workloads and to allow use by unmod-
ified application.

We have already add PLFS as a storage layer within
the MPI IO library. This library has many important
IO optimizations in addition to collective buffering de-
scribed earlier. One such optimization is available us-
ing MPI File set view. This is an extremely nice fea-
ture from a usability perspective. This is clear when we
consider what computational scientists are doing: they
stripe a multi-dimensional data structure representing
some physical space across a set of distributed proces-
sors. Dealing with these distributed multi-dimensional
data structures is complicated enough without even con-
sidering how to serialize them into and out of persistent
storage. MPI File set view lesses this serialization bur-
den; by merely describing their distribution, the user then
transfers the specific serialization work to the MPI IO li-
brary.

Note that other data formatting libraries such as
HDF [1], Parallel netCDF [4], SCR , and ADIOS [5] pro-
vide similar functionality and have proven very popular
as they remove computer science burdens from compu-
tational scientists. These data formatting libraries are
the clear path forward to improve usability of HPC stor-
age. However, they will not work in their current form
on burst buffer architectures. We envision adding our
integrated PLFS-SCR storage management system as a
storage layer within these data formatting libraries just
as we have done within the MPI IO library. A key ad-
vantage of a tight integration between PLFS-SCR and
these data formatting libraries is that semantic informa-
tion about the data can be passed to the storage system
thus enabling semantic retrieval.

5.3 In situ data analysis

There are two key features of our proposal that enable
in situ data analysis. The first is that the burst buffer
architecture embeds storage much more closely to the
compute nodes which drastically reduces access latencies
for both sequential and random accesses. The second is
that because the data has been stored using data format-
ting libraries, semantic retrieval of data is possible. This
means that we can more easily attempt to co-locate pro-
cesses within the analysis jobs close to the burst buffers
containing the desired data. Finally, even when the data
is not available on a local burst buffer, we can take ad-

vantage of the low-latency interconnect network between
the compute nodes to transfer data between burst buffers
as needed.

6 Conclusion

In this proposal, we have described how current usabil-
ity of HPC storage systems is hampered by two main
challenges: poor performance for many large jobs, and
occasional intolerably slow interactive latency. We have
offered PLFS as a solution for these challenges on today’s
systems.

Finally, we point out the inability of PLFS to address
exascale challenges by itself. We then offer a proposal for
integrating PLFS with a burst buffer hardware architec-
ture PLFS and a set of other existing software packages
as one path towards a usable and feasible exascale storage
solution.

References
[1] The HDF Group. http://www.hdfgroup.org/.

[2] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate. Plfs: a checkpoint filesystem
for parallel applications. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC
’09, pages 21:1–21:12, New York, NY, USA, 2009. ACM.

[3] J. T. Daly. A higher order estimate of the optimum checkpoint in-
terval for restart dumps. Future Gener. Comput. Syst., 22(3):303–
312, 2006.

[4] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel
netcdf: A high-performance scientific i/o interface. SC Confer-
ence, 0:39, 2003.

[5] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin.
Flexible io and integration for scientific codes through the adapt-
able io system (adios). In CLADE ’08: Proceedings of the 6th in-
ternational workshop on Challenges of large applications in dis-
tributed environments, pages 15–24, New York, NY, USA, 2008.
ACM.

[6] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. De-
sign, modeling, and evaluation of a scalable multi-level checkpoint-
ing system. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’10, pages 1–11, Washington, DC, USA,
2010. IEEE Computer Society.

[7] S. V. Patil, G. A. Gibson, S. Lang, and M. Polte. GIGA+: Scalable
Directories for Shared File Systems. In Petascale Data Storage
Workshop at SC07, Reno, Nevada, Nov. 2007.

[8] Rajeev Thakur. Parallel I/O Benchmarks.
http://www.mcs.anl.gov/ thakur/pio-benchmarks.html.

[9] B. Schroeder and G. Gibson. A large scale study of failures in
high-performance-computing systems. IEEE Transactions on De-
pendable and Secure Computing, 99(1), 5555.

[10] R. Thakur and E. Lusk. Data sieving and collective i/o in romio.
In In Proceedings of the Seventh Symposium on the Frontiers of
Massively Parallel Computation, pages 182–189. IEEE Computer
Society Press, 1999.

