

Survivable Storage Systems

Gregory R. Ganger, Pradeep K. Khosla, Mehmet Bakkaloglu, Michael W. Bigrigg, Garth R.
Goodson, Semih Oguz, Vijay Pandurangan, Craig A. N. Soules, John D. Strunk, Jay J. Wylie

Carnegie Mellon University

Abstract

Survivable storage systems must maintain data and
access to it in the face of malicious and accidental
problems with storage servers, interconnection networks,
client systems, and user accounts. These four component
types can be grouped into two classes: server-side
problems and client-side problems. The PASIS
architecture addresses server-side problems, including
the connections to those servers, by encoding data with
threshold schemes and distributing trust amongst sets of
storage servers. Self-securing storage addresses client
and user account problems by transparently auditing
accesses and versioning data within each storage server.
Thus, PASIS clients use threshold schemes to protect
themselves from compromised servers, and self-securing
servers use full access auditing to protect their data from
compromised clients. Together, these techniques can
provide truly survivable storage systems.

1. Introduction

As society increasingly relies on digitally stored and
accessed information, supporting the availability,
persistence, integrity, and confidentiality of this
information becomes more and more crucial. We need
storage systems to which users can entrust critical
information, ensuring that it persists, is continuously
accessible, cannot be destroyed, and is kept confidential.
Further, with the continuing shift towards pervasive
computing and less-expert users/administrators,
information storage infrastructures must be more self-
sufficient. A survivable storage system provides these
guarantees over time and despite failures and malicious
compromises of storage nodes, client systems, and user
accounts. Current storage system architectures fall far
short of this ideal. We are exploring the potential and
trade-offs of two complementary approaches to creating
storage systems that survive problems with their
components:

Surviving storage node problems: a storage system
can survive failures and compromises of storage nodes by
entrusting data to sets of nodes via well-chosen encoding
and replication schemes. Many such schemes have been
proposed and employed over the years, but little
understanding exists of the large trade-off space that they
comprise. The selection and parameterization of the data
distribution scheme has a profound impact on the storage
system’s availability, security, and performance. Our
focus is on developing solid understanding of these trade-
offs and on developing automated approaches to
configuring and reconfiguring these systems. We
investigate the tradeoffs inherent to survivable storage in
the context of the PASIS system. PASIS is a storage
system that encodes information via threshold schemes so
as to distribute trust amongst storage nodes in the system.

Surviving malicious user activities: until their
presence is detected, there is no way to differentiate
successful intruders from legitimate users. Therefore, any
approach to surviving malicious user activities must
consider all requests to be suspect. To address this need,
we propose self-securing storage wherein storage nodes
internally version all data and audit all requests for a
guaranteed amount of time, such as a week or a month.
This device-maintained history information prevents
intruders from destroying or undetectably tampering with
stored information. It also provides information for
diagnosis and recovery from intrusions. We explore the
feasibility and design space of self-securing storage with
a prototype self-securing NFS server.

This paper describes our progress on these two halves
of building survivable storage systems. Section 2
describes PASIS and how it uses threshold schemes on
client systems to survive storage server and network
problems. Section 3 describes self-securing storage and
how it uses server-side resources to protect stored data
from compromised client systems.

2. PASIS

Survivable systems operate from the fundamental
design thesis that no individual service, node, or user can

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

be fully trusted: having some compromised entities must
be viewed as the common case rather than the exception.
Survivable storage systems, then, must replicate and
distribute data across many nodes, entrusting its
persistence to sets of nodes rather than to individual
nodes. Individual storage nodes must not even be able to
expose information to anyone; otherwise, compromising
a single storage node would let an attacker bypass access-
control policies.

To achieve survivability, storage systems must be
decentralized and must spread information among
independent storage nodes. Prior work in cluster storage
systems (e.g., Berkeley’s xFS [2], CMU’s NASD [11],
Compaq’s Petal [17], and MIT’s BFS [7]) provides much
insight into how to efficiently decentralize storage
services while providing a single, unified view to
applications. A key open issue is how information should
be spread across nodes.

Availability and confidentiality of information are
primary goals of many storage systems. Most systems
enhance availability by providing full replication, but a
few systems employ erasure-resilient correction codes,
which use less space. Client-side encryption can protect
information confidentiality even when storage nodes are
compromised. Threshold schemes—also known as secret-
sharing or information dispersal algorithms—offer an
alternative that provides both information confidentiality
and availability in a single, flexible mechanism. These
schemes encode, replicate, and divide information into
multiple pieces, or shares, that can be stored at different
storage nodes. The system can only reconstruct the
original information when enough shares are available.

This section presents an overview of general threshold
schemes and how they can be used to build a survivable
storage system. The PASIS architecture, its
characteristics, and the trade-offs it makes available are
also explained. More details of the PASIS system can be
found in [30].

2.1. General threshold schemes

PASIS uses general threshold schemes to encode data
before it is stored. Specifically, a p-m-n general threshold
scheme breaks data into n shares such that any m of the
shares can reconstruct the original data and fewer than p
shares reveal absolutely no information about the original
data. Although encryption makes it difficult to ascertain
the original data, it does not change the value of p since
information is still available for theft (in an information-
theoretic sense). Different parameter selections of p-m-n
expose a large space of encoding mechanisms for storage.

An example of a specific threshold scheme is N-way
replication. It is a 1-1-N threshold scheme. That is, each

replica reveals information about the encoded data (p=1).
A single replica is required to reconstruct the original data
(m=1), and there are N replicas to select from when
attempting to reconstruct the original data (n=N). Table 1
lists specific examples of general threshold schemes.

Table 1. Specific threshold schemes

Parameters Description
1-1-n Replication
1-n-n Decimation (Striping)
n-n-n Splitting (XORing)
1-m-n Information Dispersal
m-m-n Secret Sharing
p-m-n Ramp Scheme

Threshold schemes can be implemented in different

manners. Blakley’s secret sharing scheme works in an m-
dimensional space [3]. Secrets (data) are points in the
space, and shares are multidimensional planes. Fewer
than m shares represent a multidimensional plane that
contains the secret. However, since all points in the field
being considered are part of the plane, no information is
revealed. With m shares, a single point of intersection—
the secret—is determined. Figure 1 illustrates Blakley’s
secret sharing scheme. Shamir’s secret-sharing scheme,
developed at the same time as Blakley’s, is based on
interpolating the coefficients of a polynomial by
evaluating the polynomial at certain points [25].

Figure 1. Blakley’s secret sharing scheme with
m=2, n=3, and original data S.

All implementations of secret sharing use random
numbers to provide the guarantee that collecting fewer
than p shares reveals no information about the original
data. Rabin’s information dispersal algorithm, a 1-m-n
threshold scheme, does not use random numbers [21].
Indeed, the parameter p indicates the number of random
numbers required per encoding (i.e. p-1 random numbers

s

a1x + b1

a2x + b2

a3x + b3

x

y

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

are required to encode a secret for any threshold scheme).
Ramp schemes implement the full range of general p-m-n
threshold schemes [8]. Ramp schemes operate like secret-
sharing schemes up to p shares and like information
dispersal schemes with p or more shares.

Threshold schemes can be used instead of
cryptographic techniques to guarantee the confidentiality
of information, and the two techniques can also be
combined. For example, short secret sharing encrypts the
original information with a random key, stores the
encryption key using secret sharing, and stores the
encrypted information using information dispersal [16].
Short secret sharing offers a different set of trade-offs
between confidentiality and storage requirements than
general threshold schemes. The confidentiality of the data
stored by short secret sharing hinges on the difficulty of
analyzing the information gained by collecting shares,
because the information gained pertains to the encrypted
data.

An extension to threshold schemes is cheater
detection. In a threshold scheme that provides cheater
detection, shares are constructed in such a fashion that a
client reconstructing the original information object can
tell, with high probability, whether any shares have been
modified [28]. This technique allows strong information-
integrity guarantees. Cheater detection can also be
implemented using cryptographic techniques, such as
adding digests to data before encoding or to the shares
themselves after the data has been encoded.

2.2. PASIS architecture

The PASIS architecture, shown in Figure 2, combines
decentralized storage systems, data redundancy and
encoding, and dynamic self-maintenance to achieve
survivable information storage. A PASIS system uses
threshold schemes to spread information across a
decentralized collection of storage nodes. Client-side
agents communicate with the collection of storage nodes
to read and write information, hiding decentralization
from the client system.

Client
s ys tem

Apps

PASIS
agent

C lient
s ys tem

Apps

PASIS
agent

Storage
node

Storage

Storage
node

Storage

Storage
node

Storage

Network

Figure 2. PASIS architecture

Several current and prior efforts employ the PASIS
architecture to achieve survivability. For example, the
Intermemory Project [12] and the Eternity Service [1]
proposal use decentralization and threshold schemes for
long-term availability and integrity of archived write-
once digital information. The e-Vault [14] and Delta-4
[10] projects do the same for online read-and-write
information storage. Delta-4 additionally addresses
information confidentiality and other system services,
such as authentication. All of these projects have
advanced the understanding of these technologies and
their roles in survivable storage systems, but such systems
have not yet achieved widespread use.

2.3. PASIS system components and operation

A PASIS system includes clients and servers. The
servers, or storage nodes, provide persistent storage of
shares; the clients provide all other aspects of PASIS
functionality. Specifically, PASIS client agents
communicate with collections of PASIS servers to collect
necessary shares and combine them using threshold
schemes. This approach helps the system scale and
simplifies its decentralized trust model. In fact, some
system configurations can employ PASIS servers that are
ignorant of decentralization and threshold schemes; for
example, in our simplest demonstration, the PASIS client
uses shared folders on Microsoft’s Network
Neighborhood as storage nodes. More advanced storage
servers are clearly possible. Figure 3 presents the design
of the PASIS client agent.

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

Applications

Storage
Nodes

Threshold
Encode/Decode

Multi-Server
Communication

Automated Trade-
off Management

PASIS
Client
Agent

...

Figure 3. PASIS client agent

As with any distributed storage system, PASIS
requires a mechanism that translates object names—for
example, file names—to storage locations. A directory
service maps the names of information objects stored in a
PASIS system to the names of the shares that comprise
the information object. A share’s name has two parts: the
name of the storage node on which the share is located
and the local name of the share on that storage node. A
PASIS file system can embed the information needed for
this translation in directory entries. For example, our
PASIS implementation of NFS (Network File System)
functions in this way.

A p-m-n threshold scheme breaks information into n
shares so that any m of the shares can reconstruct the
information and fewer than p shares reveal no
information. To service a read request, the PASIS client:

• Looks up, in the directory service, the names
of the n shares that comprise the object.

• Sends read requests to at least m of the n
storage nodes.

• Collects the responses. If it receives fewer
than m responses, the client retries the failed
requests. Alternatively, the client can send
read requests to other previously unselected
storage nodes. This step continues until the
client has collected m distinct shares.

• Performs the appropriate decode
computations on the received shares to
reconstruct the original information.

Performing a write in PASIS is slightly different than
performing a read. The write process does not complete

until at least n–m+1 (or m, whichever is greater) storage
nodes have stored their shares. That is, a write must
ensure that fewer than m shares have not been overwritten
to preclude reading m shares that were not updated. To
maintain full availability, all n shares must be updated.

In addition, consider two clients, A and B, writing to
the same object, D, concurrently. Because PASIS storage
nodes are independent components of a distributed
system, no assumptions should be made about the order
in which the storage nodes see the writes. Thus, some
storage nodes could have shares for DA, while others
could have shares for DB. A similar problem arises if a
client accidentally or maliciously updates only a subset of
the shares.

One approach to handling concurrency problems
assumes that a higher-level system addresses them. There
are domains in which this approach is feasible. For
example, information belonging to a single user and
distributed applications that manage their own
concurrency can use a storage system that does not
guarantee correctness of concurrent writes.

For general-purpose use, a PASIS system must
provide a mechanism that guarantees atomicity of
operations. One such mechanism, atomic group multicast,
guarantees that all correct group members process
messages from other correct members in the same order.
Atomic group multicast technology has been developed
for several secure distributed systems, such as Rampart
[22] and BFS [7]. Unfortunately, atomic group multicast
can be expensive in large and faulty environments
because the group members often must exchange many
rounds of messages to reach agreement.

Because these technologies are believed to enhance
storage system survivability, we have focused our efforts
on designing survivable systems with performance and
manageability on a par with simpler, conventional
approaches. Only when such systems exist will survivable
information systems be widely adopted.

2.4. PASIS architecture characteristics

The PASIS architecture can provide better

confidentiality, availability, durability, and integrity of
information than conventional replication—but at a cost
in performance.

To compare the PASIS architecture to a conventional
information storage system, consider a PASIS installation
with 15 storage nodes that uses a 3-3-6 threshold scheme
and uniformly distributes shares among storage nodes.
The conventional installation, on the other hand,
organizes 15 servers into five server groups, each storing
20 percent of the information on a primary server and two
backup replica servers. A summary of the comparison

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

between a PASIS system and a conventional primary-
backup system is given in Table 2.

Table 2. Summary of security comparison

Characteristic PASIS Primary-
Backup

Confidentiality
Percentage of information
revealed if one storage node
is compromised

0 20 percent

Percentage of information
revealed if three storage
nodes are compromised

4.4 percent Up to 60
percent

Availability
Probability that the system
cannot serve a read request if
each node fails with 0.001
probability

1.5 x 10-11 10-9

Durability
Number of nodes that must
be destroyed to erase a piece
of information

4 3 (a server
group)

Percentage of information
erased when the above occurs

1.1 percent 20 percent

Integrity
Nodes that must be
compromised to falsely serve
a read request

3 (m nodes) 1 (primary
server)

Nodes that must be
compromised to modify
stored information without
authorization

4
(greater[n-
m+1,m])

1 (primary
server)

Required Storage Blowup
Secret sharing 6x (nx) 3x (nx)
Information Dispersal 2x (nx/m) 3x (nx)
Latency
Reading small objects Significantly higher

latency for PASIS
Reading large objects Similar latencies

Confidentiality determines a system’s ability to ensure

that only authorized clients can access stored information.
To breach the conventional system’s confidentiality, an
intruder only needs to compromise a single storage node
that has a replica of the desired object. In a PASIS
system, an intruder must compromise several storage
nodes to breach confidentiality.

Availability describes a system’s ability to serve a
specific request. For comparison purposes, assume that
each storage node fails independently with a probability
of 0.001. With this assumption, the PASIS system has
two orders of magnitude higher availability than the
conventional system.

Durability is a system’s ability to recover information
when storage nodes are destroyed. In the conventional
system, an intruder must destroy three storage nodes (an
entire server group) to maliciously erase information. In
the PASIS system, an intruder must destroy four storage
nodes to erase information.

Integrity is a system’s ability to ensure that it correctly
serves requests. To maliciously affect a read request in a
PASIS system, an intruder must compromise the m
storage nodes serving the read request (assuming a share-
verification scheme is in place). In a conventional system,
an intruder compromising a primary server can cause it to
return arbitrary values to read requests.

Required storage is the extra storage space a system
needs beyond a single-copy baseline. In a PASIS system,
the storage required depends on the threshold scheme
being used. For example, secret sharing requires the same
storage as replication, whereas information dispersal
requires less storage than replication.

Latency is the delay a system experiences when it
serves a request. In a conventional system, a client
processes a read or write request by exchanging messages
with a single server. In a PASIS system, messages must
be exchanged with multiple storage nodes, which can
significantly impact performance. However, some
threshold schemes require that m servers each provide
S/m of a dispersed object’s S bytes. For large objects,
network and client bandwidth limitations can potentially
hide the overhead of contacting m servers.

2.5. PASIS architecture performance trade-offs

Threshold schemes can increase an information

storage system’s confidentiality, availability, and
integrity. However, such schemes present trade-offs
among information confidentiality, information
availability, and storage requirements:

• As n increases, information availability increases
(it’s more probable that m shares are available),
but the storage required for the information
increases (more shares are stored) and
confidentiality decreases (there are more shares
to steal).

• As m increases, the storage required for the
information decreases (a share’s size is
proportional to 1/(1+m–p)), but so does its
availability (more shares are required to
reconstruct the original object). Also, as m
increases, each share contains less information;
this may increase the number of shares that must
be captured before an intruder can reconstruct a
useful portion of the original object.

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

• As p increases, the information system’s
confidentiality increases, but the storage space
required for the dispersed information also
increases.

With this flexibility, selecting the most appropriate
threshold scheme for a given environment is not trivial.

Clients can also make trade-offs in terms of how they
interact with storage nodes that hold shares. Even though
only m shares are required to reconstruct an object, a
client can over-request shares. That is, a client can send
read requests to between m and n storage nodes. By over-
requesting, the client reduces the risk of a data storage
node being unavailable or slow.

2.6. Automatic trade-off selection

For the PASIS architecture to be as effective as

possible, it must make the full flexibility of threshold
schemes available to clients. We believe this option
requires automated selection of appropriate threshold
schemes on a per-object basis. This selection should
combine object characteristics and observations about the
current system environment. For example, a PASIS client
could use short secret sharing to store an object larger
than a particular size, and conventional secret sharing to
store smaller objects. The size that determines which
threshold scheme to use could be a function of the object
type, current system performance, or both.

As another example, an object marked as archival—
for which availability and integrity are the most important
storage characteristics—should use an extra-large n. For
read/write objects, increased write overhead makes large
n values less desirable. Moreover, if the archival object is
also marked as public—such as a Web page—the client
should ignore confidentiality guarantees when selecting
the threshold scheme.

System performance observations can also be used to
dynamically improve per-request performance. For
example, clients can request shares from the m storage
nodes that have responded most quickly to their recent
requests. Storage nodes can also help clients make these
decisions by providing load information or by asking
them to look elsewhere when long response times are
expected.

As mentioned earlier, clients can use over-requesting
to improve performance. For example, in an ad-hoc
network with poor message-delivery guarantees, a PASIS
client could notice the request loss rate and increase the
number of shares requested on a read. On the other hand,
in a very busy environment, the excess load on storage
nodes inherent to over-requesting can reduce
performance.

2.7. PASIS summary

The PASIS architecture combines proven technologies

(threshold schemes and decentralized storage) to
construct storage systems whose availability,
confidentiality, and integrity policies can survive
component failures and malicious attacks. The main
challenges in deploying these systems relate to their
engineering. Specifically, we need implementation
techniques to help these systems achieve performance and
manageability competitive with today's non-survivable
storage systems. Our continuing research addresses this
requirement by aggressively exploiting the flexibility
offered by general threshold schemes within the PASIS
architecture.

3. Self-securing storage

Secure storage servers have great difficulty coping

with undesirable requests from legitimate user accounts.
These requests can originate from malicious users, rogue
programs run by unsuspecting users (e.g., e-mail viruses),
or intruders exploiting compromised user accounts.
Unfortunately, since there is no way for the storage
system to distinguish an intruder from the real user, the
system must treat them identically. Thus, the intruder can
read or write anything to which the real user has access.
In particular, they can modify or delete any or all of the
accessible data.

Even after an intrusion has been detected and
terminated, system administrators still face two difficult
tasks: determining the damage caused by the intrusion
and restoring the system to a safe state. Damage includes
compromised secrets, creation of back doors and Trojan
horses, and tainting of stored data. Detecting each of
these is made difficult by crafty intruders who understand
how to scrub audit logs, manipulate file modification
times, and disrupt automated tamper detection systems.
System restoration involves identifying a clean backup
(i.e., one created prior to the intrusion), reinitializing the
system, and restoring information from the backup.
Restoration is difficult because diagnosis is difficult and
because user-convenience is an important issue. In
addition, such restoration often requires a significant
amount of time, reduces the availability of the original
system, and frequently causes loss of data created
between the safe backup and the intrusion.

Self-securing storage offers a partial solution to these
problems by preventing intruders from undetectably
tampering with or permanently deleting stored data. Since
intruders can take the identity of real users and even the
host OS, any resource controlled by the client system is

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

vulnerable, including the raw storage. Rather than acting
as slaves to client OSes, self-securing storage nodes view
them, and their users, as questionable entities for which
they work. These self-contained, self-controlled devices
internally version all data and audit all requests for a
guaranteed amount of time (e.g., a week or a month), thus
providing system administrators time to detect intrusions.
For intrusions detected within this window, all of the
version and audit information is available for analysis and
recovery. The critical difference between self-securing
storage and user-controlled versioning (e.g., Elephant
[23][24], Cedar [13], or VMS [20]) is that client-side
intruders can no longer bypass the versioning software by
compromising complex OSes or their poorly-protected
user accounts. Instead, intruders must compromise
enough storage nodes to defeat the thresholding
mechanisms described in the previous section.

This section describes the problems of client-side
intrusion diagnosis and recovery, how self-securing
storage addresses them, design challenges, and feasibility.
Details of our prototype implementation, performance
evaluation, and related work can be found in [26].

3.1. Intrusion diagnosis and recovery

Upon gaining access to a system, an intruder has

several avenues of mischief. Most intruders attempt to
destroy evidence of their presence by erasing or
modifying system log files. Many intruders also install
back doors in the system, allowing them to gain access at
will in the future. They may also install other software,
read and modify sensitive files, or use the system as a
platform for launching additional attacks. Depending on
the skill with which the intruders hide their presence,
there will be some detection latency before the intrusion
is discovered by an automated intrusion detection system
(IDS) or by a suspicious user or administrator. During
this time, the intruders can continue their malicious
activities while users continue to use the system, thus
entangling legitimate changes with those of the intruders.
Once an intrusion has been detected and discontinued, the
system administrator is left with two difficult tasks:
diagnosis and recovery.

Diagnosis is challenging because intruders can usually
compromise the “administrator” account on most
operating systems, giving them full control over all
resources. In particular, this gives them the ability to
manipulate everything stored on the system's disks,
including audit logs, file modification times, and tamper
detection utilities. Recovery is difficult because diagnosis
is difficult and because user-convenience is an important
issue. This section discusses intrusion diagnosis and

recovery in greater detail, and the next section describes
how self-securing storage addresses them.

3.1.1. Diagnosis. Intrusion diagnosis consists of three
phases: detecting the intrusion, discovering what
weaknesses were exploited (for future prevention), and
determining what the intruder did. All are difficult when
the intruder has free reign over storage and the OS.

Without the ability to protect storage from
compromised operating systems, intrusion detection may
be limited to alert users and system administrators
noticing odd behavior. Examining the system logs is the
most common approach to intrusion detection [9], but
when intruders can manipulate the log files, such an
approach is not useful. Some intrusion detection systems
also look for changes to important system files [15]. Such
systems are vulnerable to intruders that can change what
the IDS thinks is a “safe” copy.

Determining how an intruder compromised the system
is often impossible in conventional systems, because he
will scrub the system logs. In addition, any exploit tools
(utilities for compromising computer systems) that may
have been stored on the target machine for use in multi-
stage intrusions are usually deleted. The common
“solutions” are to try to catch the intruder in the act or to
hope that he forgot to delete his exploit tools.

The last step in diagnosing an intrusion is to discover
what was accessed and modified by the intruder. This is
difficult, because file access and modification times can
be changed and system log files can be doctored. In
addition, checksum databases are of limited use, since
they are effective only for static files.

3.1.2. Recovery. Because it is usually not possible to
diagnose an intruder's activities, full system recovery
generally requires that the compromised machine be
wiped clean and reinstalled from scratch. Prior to erasing
the entire state of the system, users may insist that data,
modified since the intrusion, be saved. The more effort
that went into creating the changes, the more motivation
there is to keep this data. Unfortunately, as the size and
complexity of the data grows, the likelihood that
tampering will go unnoticed increases. Foolproof
assessment of the modified data is very difficult, and
overlooked tampering may hide tainted information or a
back door inserted by the intruder.

Upon restoring the OS and any applications on the
system, the administrator must identify a backup that was
made prior to the intrusion; the most recent backup may
not be usable. After restoring data from a pre-intrusion
backup, the legitimately modified data can be restored to
the system, and users may resume using the system. This

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

process often takes a considerable amount of time–time
during which users are denied service.

3.2. Self-securing storage design

Self-securing storage ensures information survival and

auditing of all accesses by establishing a security
perimeter around the storage device. Conventional
storage devices are slaves to host operating systems,
relying on them to protect users' data. A self-securing
storage device operates as an independent entity, tasked
with the responsibility of not only storing data, but
protecting it. This shift of storage security functionality
into the storage device's firmware allows data and audit
information to be safeguarded in the presence of file
server and client system intrusions. Even if the OSes of
these systems are compromised and an intruder is able to
issue commands directly to the self-securing storage
device, the new security perimeter remains intact.

Behind the security perimeter, the storage device
ensures data survival by keeping previous versions of the
data. This history pool of old data versions, combined
with the audit log of accesses, can be used to diagnose
and recover from intrusions. This section discusses the
benefits of self-securing storage and several core design
issues that arise in realizing this type of device.

3.2.1. Enabling intrusion survival. Overall, self-
securing storage assists in intrusion recovery by allowing
the administrator to view audit information and quickly
restore modified or deleted files. The audit and version
information also helps to diagnose intrusions and detect
the propagation of maliciously modified data.

Self-securing storage simplifies detection of an
intrusion since versioned system logs cannot be
imperceptibly altered. In addition, modified system
executables are easily noticed. Because of this, self-
securing storage makes conventional tamper detection
systems obsolete.

Since the administrator has the complete picture of the
system's state, from intrusion until discovery, it is
considerably easier to establish the method used to gain
entry. For instance, the system logs would have normally
been doctored, but by examining the versioned copies of
the logs, the administrator can see any messages that were
generated during the intrusion and later removed. In
addition, any exploit tools temporarily stored on the
system can be recovered.

Previous versions of system files, from before the
intrusion, can be quickly and easily restored by
resurrecting them from the history pool. This prevents the
need for a complete re-installation of the operating
system, and it does not rely on having a recent backup or

up-to-date checksums (for tamper detection) of system
files. After such restoration, critical data can be
incrementally recovered from the history pool.
Additionally, by utilizing the storage device's audit log, it
is possible to assess which data might have been directly
affected by the intruder.

The data protection that self-securing storage provides
allows easy detection of modifications, selective recovery
of tampered files, prevention of data loss due to out-of-
date backups, and speedy recovery since data need not be
loaded from an off-line archive.

Application

System Calls

Self-
Securing
Storage

File System

RPC or
Device Driver

Client OS

Storage
Requests

Application

New security
perimeter

Figure 4. New security perimeter. Because the
storage node executes distinct software on distinct
hardware, compromising the client operating
system does not circumvent the new security
perimeter. Also note that the new perimeter
complements (rather than replaces) any existing
operating system and firewall perimeters.

3.2.2. Device security perimeter. The device's security
model is what makes the ability to keep old versions more
than just a user convenience. The security perimeter
consists of self-contained software that exports only a
simple storage interface to the outside world and verifies
each command's integrity before processing it. In
contrast, most file servers and client machines run a
multitude of services that are susceptible to attack. Since
the self-securing storage device is a single-function
device, the task of making it secure is much easier;
compromising its firmware is analogous to breaking into
an IDE or SCSI disk. Figure 4 illustrates this new security
perimeter.

The actual protocol used to communicate with the
storage device does not affect the data integrity that the
new security perimeter provides. The choice of protocol
does, however, affect the usefulness of the audit log in

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

terms of the actions it can record and its correctness. For
instance, the NFS protocol provides no authentication or
integrity guarantees, therefore the audit log may not be
able to accurately link a request with its originating client.
Nonetheless, the principles of self-securing storage apply
equally to “enhanced” disk drives, network-attached
storage servers, and file servers.

For network-attached storage devices (as opposed to
devices attached directly to a single host system), the new
security perimeter becomes more useful if the device can
verify each access as coming from both a valid user and a
valid client. Such verification allows the device to enforce
access control decisions and partially track propagation of
tainted data. If clients and users are authenticated,
accesses can be tracked to a single client machine, and the
device's audit log can yield the scope of direct damage
from the intrusion of a given machine or user account.

File 1 File 2 File n •••

9/7/99
9:37:05

9/4/99
7:28:11

• • •

• • •
• • •

• • •

• • •

D
e

te
ct

io
n

 w
in

d
ow

Ti
m

e

Current
versions

Expired
versions

History
pool

Figure 5. File versions in self-securing storage
node. The most current versions are shown at the
top. The history pool consists of the space holding
all retained historical versions. The detection
window, shown as the time between the two dashed
lines, represents the guaranteed window of time
during which the full history of changes is available
to the administrator. Beyond that point, some or all
of the versions may have expired and been removed
from the history pool.

3.2.3. History pool management. Figure 5 illustrates the
in-device versioning done behind the new security
perimeter. The old versions of objects kept by the device
comprise the history pool. Every time an object is
modified or deleted, the version that existed just prior to
the modification becomes part of the history pool.
Eventually an old version will age and have its space
reclaimed. Because clients cannot be trusted to demarcate
versions consisting of multiple modifications, a separate

version should be kept for every modification. This is in
contrast to versioning file systems that generally create
new versions only when a file is closed.

A self-securing storage device guarantees a lower
bound on the amount of time that a deprecated object
remains in the history pool before it is reclaimed. During
this window of time, the old version of the object can be
completely restored by requesting that the drive copy
forward the old version, thus making a new version. The
guaranteed window of time during which an object can be
restored is called the detection window. When
determining the size of this window, the administrator
must examine the tradeoff between the detection latency
provided by a large window and the extra disk space that
is consumed by the proportionally larger history pool.

Although the capacity of disk drives is growing at a
remarkable rate, it is still finite, which poses two
problems:

• Providing a reasonable detection window in
exceptionally busy systems.

• Dealing with malicious users that attempt to fill
the history pool. (Note that space exhaustion
attacks are not unique to self-securing storage.
However, device-managed versioning makes
conventional user quotas ineffective for limiting
them.)

In a busy system, the amount of data written could
make providing a reasonable detection window difficult.
Fortunately, the analysis in Section 3.3 suggests that
multi-week detection windows can be provided in many
environments at a reasonable cost. Further, aggressive
compression and differencing of old versions can
significantly extend the detection window.

Deliberate attempts to overflow the history pool
cannot be prevented by simply increasing the space
available. As with most denial of service attacks, there is
no perfect solution. There are three flawed approaches to
addressing this type of abuse. The first is to have the
device reclaim the space held by the oldest objects when
the history pool is full. Unfortunately, this would allow
an intruder to destroy information by causing its previous
instances to be reclaimed from the overflowing history
pool. The second flawed approach is to stop versioning
objects when the history pool fills; although this will
allow recovery of old data, system administrators would
no longer be able to diagnose the actions of an intruder or
differentiate them from subsequent legitimate changes.
The third flawed approach is for the drive to deny any
action that would require additional versions once the
history pool fills; this would result in denial of service to
all users (legitimate or not).

Our hybrid approach to this problem is to try to
prevent the history pool from being filled by detecting

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

probable abuses and throttling the source machine’s
accesses. This allows human intervention before the
system is forced to choose from the above poor
alternatives. Selectively increasing latency and/or
decreasing bandwidth allows well-behaved users to
continue to use the system even while it is under attack.
Experience will show how well this works in practice.

Since the history pool will be used for intrusion
diagnosis and recovery, not just recovering from
accidental destruction of data, it is difficult to construct a
safe algorithm that would save space in the history pool
by pruning versions within the detection window. Almost
any algorithm that selectively removes versions has the
potential to be abused by an intruder to cover his tracks
and to successfully destroy/modify information during a
break-in.

3.2.4. History pool access control. The history pool
contains a wealth of information about the system’s recent
activity. This makes accessing the history pool a sensitive
operation, since it allows the resurrection of deleted and
overwritten objects. This is a standard problem posed by
versioning file systems, but is exacerbated by the inability
to electively delete versions.

There are two basic approaches that can be taken
toward access control for the history pool. The first is to
allow only a single administrative entity to have the
power to view and restore items from the history pool.
This could be useful in situations where the old data is
considered to be highly sensitive. Having a single tightly-
controlled key for accessing historical data decreases the
likelihood of an intruder gaining access to it. Although
this improves security, it prevents users from being able
to recover from their own mistakes, thus consuming the
administrator’s time to restore users’ files. The second
approach is to allow users to recover their own old
objects (in addition to the administrator). This provides
the convenience of a user being able to recover their
deleted data easily, but also allows an intruder, who
obtains valid credentials for a given user, to recover that
user’s old file versions.

Our compromise is to allow users to selectively make
this decision. By choice, a user could thus delete an
object, version, or all versions from visibility by anyone
other than the administrator, since permanent deletion of
data via any other method than aging would be unsafe.
This choice allows users to enjoy the benefits of
versioning for presentations and source code, while
preventing access to visible versions of embarrassing
images or unsent e-mail drafts.

3.2.5. Administrative access. A method for secure
administrative access is needed for the necessary but

dangerous commands that a self-securing storage device
must support. Such commands include setting the
guaranteed detection window, erasing parts of the history
pool, and accessing data that users have marked as
“unrecoverable.” Such administrative access can be
securely granted in a number of ways, including physical
access (e.g., flipping a switch on the device) or well-
protected cryptographic keys.

Administrative access is not necessary for users
attempting to recover their own files from accidents.
Users' accesses to the history pool should be handled with
the same form of protection used for their normal
accesses. This is acceptable for user activity, since all
actions permitted for ordinary users can be audited and
repaired.

3.2.6. Version and administration tools. Since self-
securing storage devices store versions of raw data, users
and administrators will need assistance in parsing the
history pool. Tools for traversing the history must assist
by bridging the gap between standard file interfaces and
the raw versions that are stored by the device. By being
aware of both the versioning system and formats of the
data objects, utilities can present interfaces similar to that
of Elephant [23], with “time-enhanced” versions of
standard utilities such as ls and cp. This is
accomplished by extending the read interfaces of the
device to include an optional time parameter. When this
parameter is specified, the drive returns data from the
version of the object that was valid at the requested time.

In addition to providing a simple view of data objects
in isolation, intrusion diagnosis tools can utilize the audit
log to provide an estimate of damage. For instance, it is
possible to see all files and directories that a client
modified during the period of time that it was
compromised. Further estimates of the propagation of
data written by compromised clients are also possible,
though imperfect. For example, diagnosis tools may be
able to establish a link between objects based on the fact
that one was read just before another was written. Such a
link between a source file and its corresponding object
file would be useful if a user determines that a source file
had been tampered with; in this situation, the object file
should also be restored or removed. Exploration of such
tools will be an important area of future work.

3.3. Feasibility of self-securing storage

There are two basic feasibility concerns with the self-

securing storage concept: performance and capacity. To
address the former, we have constructed a prototype self-
securing NFS server [26]. Experiments with this
prototype show that the security and data survivability

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

benefits of self-securing storage can be realized with
reasonable performance. Specifically, its performance is
comparable to FreeBSD’s NFS for both micro-
benchmarks and application benchmarks. Further,
detailed analysis shows that the fundamental costs
associated with self-securing storage degrade
performance by less than 13% relative to similar systems
that provide no data protection guarantees.

To evaluate the capacity requirements of self-securing
storage, three recent workload studies were examined.
Figure 6 shows the results of approximations based on
worst-case write behavior. Spasojevic and
Satyanarayanan’s AFS trace study [27] reports
approximately 143MB per day of write traffic per file
server. The AFS study was conducted using 70 servers
(consisting of 32,000 cells) distributed across the wide
area, containing a total of 200GB of data. Based on this
study, using just 20% of a modern 50GB disk would yield
over 70 days of history data. Even if the writes consume
1GB per day per server, as was seen by Vogels’ Windows
NT file usage study [29], 10 days worth of history data
can be provided. The NT study consisted of 45 machines
split into personal, shared, and administrative domains
running workloads of scientific processing, development,
and other administrative tasks. Santry, et al. [24] report a
write data rate of 110MB per day. In this case, over 90
days of data could be kept. Their environment consisted
of a single file system holding 15GB of data that was
being used by a dozen researchers for development.

0 100 200 300 400 500

AFS 96

HPUX 99

NT 99

Time in Days

Base
Differencing
Compression

Figure 6. Projected detection window for three
environments. This chart shows the expected
detection window (in days) that could be provided by
utilizing 10GB for data versioning. This conservative
history pool would consume only 20% of a 50GB
disk’s total capacity. The base-line number
represents the projected number of days worth of

history information that can be maintained within this
10GB of space. The gray regions show the
projected increase that cross-version differencing
would provide. The black regions show the further
increase expected from using compression in
addition to differencing.

Much work has been done in evaluating the efficiency

of differencing and compression [4][5][6]. To briefly
explore the potential benefits for self-securing storage, its
code base was retrieved from the CVS repository at a
single point each day for a week. After compiling the
code, both differencing and differencing with
compression were applied between each tree and its direct
neighbor in time using Xdelta [18][19]. After applying
differencing, the space efficiency increased by 200%.
Applying compression added an additional 200% for a
total space efficiency of 500%. These results are in line
with previous work. Applying these estimates to the
above workloads indicates that a 10GB history pool can
provide a detection window of between 50 and 470 days.

3.4. Self-securing storage summary

Self-securing storage nodes can ensure data and audit

log survival in the presence of successful client-side
intrusions, user and client impersonation, and even
compromised client operating systems. Experiments (in
[26]) with a prototype show that self-securing storage
nodes can achieve performance that is comparable to
existing storage servers. In addition, analysis of recent
workload studies suggest that complete version histories
can be kept for several weeks on state-of-the-art disk
drives. Future work will focus on developing diagnosis
and recovery tools that utilize the extensive information
provided by self-securing storage.

4. Acknowledgements

This work is partially funded by DARPA/ATO’s

Organically Assured and Survivable Information Systems
(OASIS) program (Air Force contract number F30602-
99-2-0539-AFRL) and by the National Science
Foundation via CMU’s Data Storage Systems Center. We
thank the members and companies of the Parallel Data
Consortium (including EMC, HP, Hitachi, IBM, Infineon,
Intel, LSI Logic, Lucent, MTI, Network Appliance,
Novell, PANASAS, Platys, Quantum, Seagate, Sun,
Veritas, and 3Com) for their interest, insights, and
support. We also thank IBM Corporation for supporting
our research efforts. Craig Soules is supported by a
USENIX Fellowship.

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

References

[1] R. Anderson, "The Eternity Service," Proceedings

PRAGOCRYPT 96, CTU Publishing House, Prague, 1996.
[2] T. Anderson, et al., “Serverless Network File Systems,”

ACM Transactions on Computer Systems, February 1996,
pp. 41-79.

[3] G. Blakley, “Safeguarding Cryptographic Keys,”
Proceedings of the National Computer Conference of
American Federation of Information Processing Societies,
Montvale, N.J., 1979, pp. 313-317.

[4] R. Burns, Differential compression: a generalized solution
for binary files, Masters thesis, University of California at
Santa Cruz, December 1996.

[5] M. Burrows and D. Wheeler, “A block-sorting lossless
compression algorithm,” Digital Equipment Corporation
Systems Research Center, Palo Alto, CA, 10 May 1994.

[6] M. Burrows, C. Jerian, B. Lampson, and T. Mann, “On-line
data compression in a log structured file system,”
Architectural Support for Programming Languages and
Operating Systems, October 1992.

[7] M. Castro, and B. Liskov, “Practical Byzantine Fault
Tolerance,” Operating Systems Review, ACM Press, New
York, 1999, pp. 173-186.

[8] A. De Santis, and B. Masucci, ”Multiple ramp schemes,”
IEEE Transactions on Information Theory, July 1999, pp.
1720-1728.

[9] D. Denning, “An intrusion-detection model,” IEEE
Transactions on Software Engineering, February 1987, pp.
222-232.

[10] Y. Deswarte, L. Blain, and J. Fabre, “Intrusion Tolerance in
Distributed Computing Systems,” IEEE Symposium on
Security and Privacy, 1991, pp. 110-121.

[11] G. A. Gibson, D. F. Nagle, W. Courtright II, N. Lanza, P.
Mazaitis, M. Unangst, and J. Zelenka, “NASD scalable
storage systems,” USENIX 99, Monterey, Ca., June 1999.

[12] A. Goldberg, and P. Yianilos, “Prototype implementation
of archival Intermemory,” in Proceedings of IEEE ADL,
April 1998, pp. 147-156.

[13] R. Hagman, “Reimplementing the Cedar file system using
logging and group commit,” ACM Symposium on
Operating System Principles, November 1987.

[14] A. Iyengar, R. Cahn, J. Garay, and C. Jutla, “Design and
Implementation of a Secure Distributed Data Repository,”
in Proceedings of the 14th IFIP International Information
Security Conference (SEC '98), September 1998.

[15] G. Kim and E. Spafford, “The design and implementation
of Tripwire: a file system integrity checker,” Conference on
Computer and Communications Security, November, 1994,
pp. 18-29.

[16] H. Krawczyk, “Secret sharing made short”, Advances in
Cryptology - CRYPTO '93,. 13th Annual International
Cryptology Conference Proceedings, 1993, pp. 136-146.

[17] E. Lee, C. Thekkath, “Petal: Distributed Virtual Disks,”
Proceedings of ACM ASPLOS, October 1996, pp. 84-92.

[18] J. MacDonald, File System support for delta compression,
Department of Electrical Engineering and Computer
Science, University of California at Berkeley, 2000.

[19] J. MacDonald, P Hilfinger, A. Costello, R Wang, and T.
Anderson, “Improving the performance of log-structured
file systems with adaptive methods,” ACM Symposium on
Operating Systems Principles, 1997.

[20] K. McKoy, VMS file system internals, Digital Press, 1990.
[21] M. Rabin, “Efficient dispersal of information for security,

load balancing, and fault tolerance,” Journal of the
Association for Computing Machinery, 1989, pp. 335-348.

[22] M. Reiter, “Secure Agreement Protocols: Reliable and
Atomic Group Multicast in Rampart,” in Proceedings of the
2nd ACM Conference on Computer and Communication
Security, November 1994, pp. 68-80.

[23] D. Santry, M. Feeley, and N. Hutchinson, “Elephant the file
system that never forgets,” Hot Topics in Operating
Systems, IEEE CS, 1999.

[24] D. Santry, M. Feeley, N. Hutchinson, R. Carton, J. Ofir,
and A. Veitch, “Deciding when to forget in the Elephant
file system, “ACM Symposium on Operating System
Principles, 1999.

[25] A. Shamir, “How to Share a secret,” Communications of
the ACM, 1979, pp. 612-613.

[26] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, G.
Ganger, “Design and Implementation of a Self-Securing
Storage Device”, Symposium on Operating Systems
Design and Implementation, October 2000, pp. 165-179.

[27] M. Spasojevic and M. Satyanarayanan, “An empirical
study of wide-area distributed file system,” ACM
Transactions on Computer Systems, May 1996, pp. 200-
222.

[28] M. Tompa, and H. Woll, “How to share a secret with
cheaters,” Journal of Cryptology, 1988, pp. 133-138.

[29] W. Vogels, “File system usage in Windows NT 4.0,” ACM
Symposium on Operating System Principles, 1999.

[30] Jay J. Wylie, Michael W. Bigrigg, John D. Strunk, Gregory
R. Ganger, Han Kiliccote, Pradeep K. Khosla, "Survivable
Information Storage Systems," IEEE Computer, August
2000, 61-68.

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE

	DISCEX 2001
	Return to Main Menu

