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Abstract 
 

Survivable storage systems must maintain data and 
access to it in the face of malicious and accidental 
problems with storage servers, interconnection networks, 
client systems, and user accounts.  These four component 
types can be grouped into two classes: server-side 
problems and client-side problems. The PASIS 
architecture addresses server-side problems, including 
the connections to those servers, by encoding data with 
threshold schemes and distributing trust amongst sets of 
storage servers.  Self-securing storage addresses client 
and user account problems by transparently auditing 
accesses and versioning data within each storage server.  
Thus, PASIS clients use threshold schemes to protect 
themselves from compromised servers, and self-securing 
servers use full access auditing to protect their data from 
compromised clients. Together, these techniques can 
provide truly survivable  storage systems. 
 
 
1. Introduction 
 

As society increasingly relies on digitally stored and 
accessed information, supporting the availability, 
persistence, integrity, and confidentiality of this 
information becomes more and more crucial. We need 
storage systems to which users can entrust critical 
information, ensuring that it persists, is continuously 
accessible, cannot be destroyed, and is kept confidential. 
Further, with the continuing shift towards pervasive 
computing and less-expert users/administrators, 
information storage infrastructures must be more self-
sufficient. A survivable storage system provides these 
guarantees over time and despite failures and malicious 
compromises of storage nodes, client systems, and user 
accounts. Current storage system architectures fall far 
short of this ideal. We are exploring the potential and 
trade-offs of two complementary approaches to creating 
storage systems that survive problems with their 
components: 

Surviving storage node problems: a storage system 
can survive failures and compromises of storage nodes by 
entrusting data to sets of nodes via well-chosen encoding 
and replication schemes. Many such schemes have been 
proposed and employed over the years, but little 
understanding exists of the large trade-off space that they 
comprise. The selection and parameterization of the data 
distribution scheme has a profound impact on the storage 
system’s availability, security, and performance. Our 
focus is on developing solid understanding of these trade-
offs and on developing automated approaches to 
configuring and reconfiguring these systems. We 
investigate the tradeoffs inherent to survivable storage in 
the context of the PASIS system. PASIS is a storage 
system that encodes information via threshold schemes so 
as to distribute trust amongst storage nodes in the system. 

Surviving malicious user activities: until their 
presence is detected, there is no way to differentiate 
successful intruders from legitimate users.  Therefore, any 
approach to surviving malicious user activities must 
consider all requests to be suspect. To address this need, 
we propose self-securing storage wherein storage nodes 
internally version all data and audit all requests for a 
guaranteed amount of time, such as a week or a month. 
This device-maintained history information prevents 
intruders from destroying or undetectably tampering with 
stored information. It also provides information for 
diagnosis and recovery from intrusions. We explore the 
feasibility and design space of self-securing storage with 
a prototype self-securing NFS server. 

This paper describes our progress on these two halves 
of building survivable storage systems. Section 2 
describes PASIS and how it uses threshold schemes on 
client systems to survive storage server and network 
problems.  Section 3 describes self-securing storage and 
how it uses server-side resources to protect stored data 
from compromised client systems. 
 
2. PASIS 
 

Survivable systems operate from the fundamental 
design thesis that no individual service, node, or user can 
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be fully trusted: having some compromised entities must 
be viewed as the common case rather than the exception. 
Survivable storage systems, then, must replicate and 
distribute data across many nodes, entrusting its 
persistence to sets of nodes rather than to individual 
nodes. Individual storage nodes must not even be able to 
expose information to anyone; otherwise, compromising 
a single storage node would let an attacker bypass access-
control policies. 

To achieve survivability, storage systems must be 
decentralized and must spread information among 
independent storage nodes. Prior work in cluster storage 
systems (e.g., Berkeley’s xFS [2], CMU’s NASD [11], 
Compaq’s Petal [17], and MIT’s BFS [7]) provides much 
insight into how to efficiently decentralize storage 
services while providing a single, unified view to 
applications. A key open issue is how information should 
be spread across nodes. 

Availability and confidentiality of information are 
primary goals of many storage systems. Most systems 
enhance availability by providing full replication, but a 
few systems employ erasure-resilient correction codes, 
which use less space. Client-side encryption can protect 
information confidentiality even when storage nodes are 
compromised. Threshold schemes—also known as secret-
sharing or information dispersal algorithms—offer an 
alternative that provides both information confidentiality 
and availability in a single, flexible mechanism. These 
schemes encode, replicate, and divide information into 
multiple pieces, or shares, that can be stored at different 
storage nodes. The system can only reconstruct the 
original information when enough shares are available. 

This section presents an overview of general threshold 
schemes and how they can be used to build a survivable 
storage system. The PASIS architecture, its 
characteristics, and the trade-offs it makes available are 
also explained. More details of the PASIS system can be 
found in [30]. 

 
2.1. General threshold schemes 
 

PASIS uses general threshold schemes to encode data 
before it is stored. Specifically, a p-m-n general threshold 
scheme breaks data into n shares such that any m of the 
shares can reconstruct the original data and fewer than p 
shares reveal absolutely no information about the original 
data. Although encryption makes it difficult to ascertain 
the original data, it does not change the value of p since 
information is still available for theft (in an information-
theoretic sense). Different parameter selections of p-m-n 
expose a large space of encoding mechanisms for storage. 

An example of a specific threshold scheme is N-way 
replication. It is a 1-1-N threshold scheme. That is, each 

replica reveals information about the encoded data (p=1). 
A single replica is required to reconstruct the original data 
(m=1), and there are N replicas to select from when 
attempting to reconstruct the original data (n=N). Table 1 
lists specific examples of general threshold schemes. 

Table 1. Specific threshold schemes 

Parameters Description 
1-1-n Replication 
1-n-n Decimation (Striping) 
n-n-n Splitting (XORing) 
1-m-n Information Dispersal 
m-m-n Secret Sharing 
p-m-n Ramp Scheme 

 
Threshold schemes can be implemented in different 

manners. Blakley’s secret sharing scheme works in an m-
dimensional space [3]. Secrets (data) are points in the 
space, and shares are multidimensional planes. Fewer 
than m shares represent a multidimensional plane that 
contains the secret. However, since all points in the field 
being considered are part of the plane, no information is 
revealed. With m shares, a single point of intersection—
the secret—is determined. Figure 1 illustrates Blakley’s 
secret sharing scheme. Shamir’s secret-sharing scheme, 
developed at the same time as Blakley’s, is based on 
interpolating the coefficients of a polynomial by 
evaluating the polynomial at certain points [25]. 

Figure 1. Blakley’s secret sharing scheme with 
m=2, n=3, and original data S. 

All implementations of secret sharing use random 
numbers to provide the guarantee that collecting fewer 
than p shares reveals no information about the original 
data. Rabin’s information dispersal algorithm, a 1-m-n 
threshold scheme, does not use random numbers [21]. 
Indeed, the parameter p indicates the number of random 
numbers required per encoding (i.e. p-1 random numbers 
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are required to encode a secret for any threshold scheme). 
Ramp schemes implement the full range of general p-m-n 
threshold schemes [8]. Ramp schemes operate like secret-
sharing schemes up to p shares and like information 
dispersal schemes with p or more shares. 

Threshold schemes can be used instead of 
cryptographic techniques to guarantee the confidentiality 
of information, and the two techniques can also be 
combined. For example, short secret sharing encrypts the 
original information with a random key, stores the 
encryption key using secret sharing, and stores the 
encrypted information using information dispersal [16]. 
Short secret sharing offers a different set of trade-offs 
between confidentiality and storage requirements than 
general threshold schemes. The confidentiality of the data 
stored by short secret sharing hinges on the difficulty of 
analyzing the information gained by collecting shares, 
because the information gained pertains to the encrypted 
data. 

An extension to threshold schemes is cheater 
detection. In a threshold scheme that provides cheater 
detection, shares are constructed in such a fashion that a 
client reconstructing the original information object can 
tell, with high probability, whether any shares have been 
modified [28]. This technique allows strong information-
integrity guarantees. Cheater detection can also be 
implemented using cryptographic techniques, such as 
adding digests to data before encoding or to the shares 
themselves after the data has been encoded.  

 
2.2. PASIS architecture 
 

The PASIS architecture, shown in Figure 2, combines 
decentralized storage systems, data redundancy and 
encoding, and dynamic self-maintenance to achieve 
survivable information storage. A PASIS system uses 
threshold schemes to spread information across a 
decentralized collection of storage nodes. Client-side 
agents communicate with the collection of storage nodes 
to read and write information, hiding decentralization 
from the client system.  
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Figure 2. PASIS architecture 

Several current and prior efforts employ the PASIS 
architecture to achieve survivability. For example, the 
Intermemory Project [12] and the Eternity Service [1] 
proposal use decentralization and threshold schemes for 
long-term availability and integrity of archived write-
once digital information. The e-Vault [14] and Delta-4 
[10] projects do the same for online read-and-write 
information storage. Delta-4 additionally addresses 
information confidentiality and other system services, 
such as authentication. All of these projects have 
advanced the understanding of these technologies and 
their roles in survivable storage systems, but such systems 
have not yet achieved widespread use.  

 
2.3. PASIS system components and operation 
 

A PASIS system includes clients and servers. The 
servers, or storage nodes, provide persistent storage of 
shares; the clients provide all other aspects of PASIS 
functionality. Specifically, PASIS client agents 
communicate with collections of PASIS servers to collect 
necessary shares and combine them using threshold 
schemes. This approach helps the system scale and 
simplifies its decentralized trust model. In fact, some 
system configurations can employ PASIS servers that are 
ignorant of decentralization and threshold schemes; for 
example, in our simplest demonstration, the PASIS client 
uses shared folders on Microsoft’s Network 
Neighborhood as storage nodes. More advanced storage 
servers are clearly possible. Figure 3 presents the design 
of the PASIS client agent. 
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Figure 3. PASIS client agent 

As with any distributed storage system, PASIS 
requires a mechanism that translates object names—for 
example, file names—to storage locations. A directory 
service maps the names of information objects stored in a 
PASIS system to the names of the shares that comprise 
the information object. A share’s name has two parts: the 
name of the storage node on which the share is located 
and the local name of the share on that storage node. A 
PASIS file system can embed the information needed for 
this translation in directory entries. For example, our 
PASIS implementation of NFS (Network File System) 
functions in this way.  

A p-m-n threshold scheme breaks information into n 
shares so that any m of the shares can reconstruct the 
information and fewer than p shares reveal no 
information. To service a read request, the PASIS client: 

• Looks up, in the directory service, the names 
of the n shares that comprise the object. 

• Sends read requests to at least m of the n 
storage nodes. 

• Collects the responses. If it receives fewer 
than m responses, the client retries the failed 
requests. Alternatively, the client can send 
read requests to other previously unselected 
storage nodes. This step continues until the 
client has collected m distinct shares. 

• Performs the appropriate decode 
computations on the received shares to 
reconstruct the original information. 

Performing a write in PASIS is slightly different than 
performing a read. The write process does not complete 

until at least n–m+1 (or m, whichever is greater) storage 
nodes have stored their shares. That is, a write must 
ensure that fewer than m shares have not been overwritten 
to preclude reading m shares that were not updated. To 
maintain full availability, all n shares must be updated. 

In addition, consider two clients, A and B, writing to 
the same object, D, concurrently. Because PASIS storage 
nodes are independent components of a distributed 
system, no assumptions should be made about the order 
in which the storage nodes see the writes. Thus, some 
storage nodes could have shares for DA, while others 
could have shares for DB. A similar problem arises if a 
client accidentally or maliciously updates only a subset of 
the shares. 

One approach to handling concurrency problems 
assumes that a higher-level system addresses them. There 
are domains in which this approach is feasible. For 
example, information belonging to a single user and 
distributed applications that manage their own 
concurrency can use a storage system that does not 
guarantee correctness of concurrent writes.  

For general-purpose use, a PASIS system must 
provide a mechanism that guarantees atomicity of 
operations. One such mechanism, atomic group multicast, 
guarantees that all correct group members process 
messages from other correct members in the same order. 
Atomic group multicast technology has been developed 
for several secure distributed systems, such as Rampart 
[22] and BFS [7]. Unfortunately, atomic group multicast 
can be expensive in large and faulty environments 
because the group members often must exchange many 
rounds of messages to reach agreement. 

Because these technologies are believed to enhance 
storage system survivability, we have focused our efforts 
on designing survivable systems with performance and 
manageability on a par with simpler, conventional 
approaches. Only when such systems exist will survivable 
information systems be widely adopted. 

 
2.4. PASIS architecture characteristics 

 
The PASIS architecture can provide better 

confidentiality, availability, durability, and integrity of 
information than conventional replication—but at a cost 
in performance.  

To compare the PASIS architecture to a conventional 
information storage system, consider a PASIS installation 
with 15 storage nodes that uses a 3-3-6 threshold scheme 
and uniformly distributes shares among storage nodes. 
The conventional installation, on the other hand, 
organizes 15 servers into five server groups, each storing 
20 percent of the information on a primary server and two 
backup replica servers. A summary of the comparison 
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between a PASIS system and a conventional primary-
backup system is given in Table 2. 

Table 2. Summary of security comparison 

Characteristic PASIS Primary-
Backup 

Confidentiality   
Percentage of information 
revealed if one storage node 
is compromised 

0 20 percent 

Percentage of information 
revealed if three storage 
nodes are compromised 

4.4 percent Up to 60 
percent 

Availability   
Probability that the system 
cannot serve a read request if 
each node fails with 0.001 
probability 

1.5 x 10-11 10-9 

Durability   
Number of nodes that must 
be destroyed to erase a piece 
of information 

4 3 (a server 
group) 

Percentage of information 
erased when the above occurs 

1.1 percent 20 percent 

Integrity   
Nodes that must be 
compromised to falsely serve  
a read request 

3 (m nodes) 1 (primary 
server) 

Nodes that must be 
compromised to modify 
stored information without 
authorization 

4 
(greater[n-
m+1,m]) 

1 (primary 
server) 

Required Storage Blowup   
Secret sharing 6x (nx) 3x (nx) 
Information Dispersal 2x (nx/m) 3x (nx) 
Latency   
Reading small objects Significantly higher 

latency for PASIS 
Reading large objects Similar latencies 

 
Confidentiality determines a system’s ability to ensure 

that only authorized clients can access stored information. 
To breach the conventional system’s confidentiality, an 
intruder only needs to compromise a single storage node 
that has a replica of the desired object. In a PASIS 
system, an intruder must compromise several storage 
nodes to breach confidentiality. 

Availability describes a system’s ability to serve a 
specific request. For comparison purposes, assume that 
each storage node fails independently with a probability 
of 0.001. With this assumption, the PASIS system has 
two orders of magnitude higher availability than the 
conventional system. 

Durability is a system’s ability to recover information 
when storage nodes are destroyed. In the conventional 
system, an intruder must destroy three storage nodes (an 
entire server group) to maliciously erase information. In 
the PASIS system, an intruder must destroy four storage 
nodes to erase information. 

Integrity is a system’s ability to ensure that it correctly 
serves requests. To maliciously affect a read request in a 
PASIS system, an intruder must compromise the m 
storage nodes serving the read request (assuming a share-
verification scheme is in place). In a conventional system, 
an intruder compromising a primary server can cause it to 
return arbitrary values to read requests. 

Required storage is the extra storage space a system 
needs beyond a single-copy baseline. In a PASIS system, 
the storage required depends on the threshold scheme 
being used. For example, secret sharing requires the same 
storage as replication, whereas information dispersal 
requires less storage than replication. 

Latency is the delay a system experiences when it 
serves a request. In a conventional system, a client 
processes a read or write request by exchanging messages 
with a single server. In a PASIS system, messages must 
be exchanged with multiple storage nodes, which can 
significantly impact performance. However, some 
threshold schemes require that m servers each provide 
S/m of a dispersed object’s S bytes. For large objects, 
network and client bandwidth limitations can potentially 
hide the overhead of contacting m servers. 

 
2.5. PASIS architecture performance trade-offs 

 
Threshold schemes can increase an information 

storage system’s confidentiality, availability, and 
integrity. However, such schemes present trade-offs 
among information confidentiality, information 
availability, and storage requirements: 

• As n increases, information availability increases 
(it’s more probable that m shares are available), 
but the storage required for the information 
increases (more shares are stored) and 
confidentiality decreases (there are more shares 
to steal). 

• As m increases, the storage required for the 
information decreases (a share’s size is 
proportional to 1/(1+m–p)), but so does its 
availability (more shares are required to 
reconstruct the original object). Also, as m 
increases, each share contains less information; 
this may increase the number of shares that must 
be captured before an intruder can reconstruct a 
useful portion of the original object. 
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• As p increases, the information system’s 
confidentiality increases, but the storage space 
required for the dispersed information also 
increases. 

With this flexibility, selecting the most appropriate 
threshold scheme for a given environment is not trivial. 

Clients can also make trade-offs in terms of how they 
interact with storage nodes that hold shares. Even though 
only m shares are required to reconstruct an object, a 
client can over-request shares. That is, a client can send 
read requests to between m and n storage nodes. By over-
requesting, the client reduces the risk of a data storage 
node being unavailable or slow. 

 
2.6. Automatic trade-off selection 

 
For the PASIS architecture to be as effective as 

possible, it must make the full flexibility of threshold 
schemes available to clients. We believe this option 
requires automated selection of appropriate threshold 
schemes on a per-object basis. This selection should 
combine object characteristics and observations about the 
current system environment. For example, a PASIS client 
could use short secret sharing to store an object larger 
than a particular size, and conventional secret sharing to 
store smaller objects. The size that determines which 
threshold scheme to use could be a function of the object 
type, current system performance, or both.  

As another example, an object marked as archival— 
for which availability and integrity are the most important 
storage characteristics—should use an extra-large n. For 
read/write objects, increased write overhead makes large 
n values less desirable. Moreover, if the archival object is 
also marked as public—such as a Web page—the client 
should ignore confidentiality guarantees when selecting 
the threshold scheme. 

System performance observations can also be used to 
dynamically improve per-request performance. For 
example, clients can request shares from the m storage 
nodes that have responded most quickly to their recent 
requests. Storage nodes can also help clients make these 
decisions by providing load information or by asking 
them to look elsewhere when long response times are 
expected. 

As mentioned earlier, clients can use over-requesting 
to improve performance. For example, in an ad-hoc 
network with poor message-delivery guarantees, a PASIS 
client could notice the request loss rate and increase the 
number of shares requested on a read. On the other hand, 
in a very busy environment, the excess load on storage 
nodes inherent to over-requesting can reduce 
performance. 

 

 
2.7. PASIS summary 

 
The PASIS architecture combines proven technologies 

(threshold schemes and decentralized storage) to 
construct storage systems whose availability, 
confidentiality, and integrity policies can survive 
component failures and malicious attacks.  The main 
challenges in deploying these systems relate to their 
engineering.  Specifically, we need implementation 
techniques to help these systems achieve performance and 
manageability competitive with today's non-survivable 
storage systems.  Our continuing research addresses this 
requirement by aggressively exploiting the flexibility 
offered by general threshold schemes within the PASIS 
architecture. 

 
3. Self-securing storage 

 
Secure storage servers have great difficulty coping 

with undesirable requests from legitimate user accounts. 
These requests can originate from malicious users, rogue 
programs run by unsuspecting users (e.g., e-mail viruses), 
or intruders exploiting compromised user accounts. 
Unfortunately, since there is no way for the storage 
system to distinguish an intruder from the real user, the 
system must treat them identically. Thus, the intruder can 
read or write anything to which the real user has access. 
In particular, they can modify or delete any or all of the 
accessible data. 

Even after an intrusion has been detected and 
terminated, system administrators still face two difficult 
tasks: determining the damage caused by the intrusion 
and restoring the system to a safe state. Damage includes 
compromised secrets, creation of back doors and Trojan 
horses, and tainting of stored data. Detecting each of 
these is made difficult by crafty intruders who understand 
how to scrub audit logs, manipulate file modification 
times, and disrupt automated tamper detection systems. 
System restoration involves identifying a clean backup 
(i.e., one created prior to the intrusion), reinitializing the 
system, and restoring information from the backup. 
Restoration is difficult because diagnosis is difficult and 
because user-convenience is an important issue. In 
addition, such restoration often requires a significant 
amount of time, reduces the availability of the original 
system, and frequently causes loss of data created 
between the safe backup and the intrusion. 

Self-securing storage offers a partial solution to these 
problems by preventing intruders from undetectably 
tampering with or permanently deleting stored data. Since 
intruders can take the identity of real users and even the 
host OS, any resource controlled by the client system is 
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vulnerable, including the raw storage. Rather than acting 
as slaves to client OSes, self-securing storage nodes view 
them, and their users, as questionable entities for which 
they work. These self-contained, self-controlled devices 
internally version all data and audit all requests for a 
guaranteed amount of time (e.g., a week or a month), thus 
providing system administrators time to detect intrusions. 
For intrusions detected within this window, all of the 
version and audit information is available for analysis and 
recovery. The critical difference between self-securing 
storage and user-controlled versioning (e.g., Elephant 
[23][24], Cedar [13], or VMS [20]) is that client-side 
intruders can no longer bypass the versioning software by 
compromising complex OSes or their poorly-protected 
user accounts. Instead, intruders must compromise 
enough storage nodes to defeat the thresholding 
mechanisms described in the previous section. 

This section describes the problems of client-side 
intrusion diagnosis and recovery, how self-securing 
storage addresses them, design challenges, and feasibility. 
Details of our prototype implementation, performance 
evaluation, and related work can be found in  [26]. 

 
3.1. Intrusion diagnosis and recovery 

 
Upon gaining access to a system, an intruder has 

several avenues of mischief. Most intruders attempt to 
destroy evidence of their presence by erasing or 
modifying system log files. Many intruders also install 
back doors in the system, allowing them to gain access at 
will in the future. They may also install other software, 
read and modify sensitive files, or use the system as a 
platform for launching additional attacks. Depending on 
the skill with which the intruders hide their presence, 
there will be some detection latency before the intrusion 
is discovered by an automated intrusion detection system 
(IDS) or by a suspicious user or administrator. During 
this time, the intruders can continue their malicious 
activities while users continue to use the system, thus 
entangling legitimate changes with those of the intruders. 
Once an intrusion has been detected and discontinued, the 
system administrator is left with two difficult tasks: 
diagnosis and recovery. 

Diagnosis is challenging because intruders can usually 
compromise the “administrator” account on most 
operating systems, giving them full control over all 
resources. In particular, this gives them the ability to 
manipulate everything stored on the system's disks, 
including audit logs, file modification times, and tamper 
detection utilities. Recovery is difficult because diagnosis 
is difficult and because user-convenience is an important 
issue. This section discusses intrusion diagnosis and 

recovery in greater detail, and the next section describes 
how self-securing storage addresses them. 

 
3.1.1. Diagnosis. Intrusion diagnosis consists of three 
phases: detecting the intrusion, discovering what 
weaknesses were exploited (for future prevention), and 
determining what the intruder did. All are difficult when 
the intruder has free reign over storage and the OS. 

Without the ability to protect storage from 
compromised operating systems, intrusion detection may 
be limited to alert users and system administrators 
noticing odd behavior. Examining the system logs is the 
most common approach to intrusion detection [9], but 
when intruders can manipulate the log files, such an 
approach is not useful. Some intrusion detection systems 
also look for changes to important system files [15]. Such 
systems are vulnerable to intruders that can change what 
the IDS thinks is a “safe” copy. 

Determining how an intruder compromised the system 
is often impossible in conventional systems, because he 
will scrub the system logs. In addition, any exploit tools 
(utilities for compromising computer systems) that may 
have been stored on the target machine for use in multi-
stage intrusions are usually deleted. The common 
“solutions” are to try to catch the intruder in the act or to 
hope that he forgot to delete his exploit tools. 

The last step in diagnosing an intrusion is to discover 
what was accessed and modified by the intruder. This is 
difficult, because file access and modification times can 
be changed and system log files can be doctored. In 
addition, checksum databases are of limited use, since 
they are effective only for static files. 

 
3.1.2. Recovery. Because it is usually not possible to 
diagnose an intruder's activities, full system recovery 
generally requires that the compromised machine be 
wiped clean and reinstalled from scratch. Prior to erasing 
the entire state of the system, users may insist that data, 
modified since the intrusion, be saved. The more effort 
that went into creating the changes, the more motivation 
there is to keep this data. Unfortunately, as the size and 
complexity of the data grows, the likelihood that 
tampering will go unnoticed increases. Foolproof 
assessment of the modified data is very difficult, and 
overlooked tampering may hide tainted information or a 
back door inserted by the intruder. 

Upon restoring the OS and any applications on the 
system, the administrator must identify a backup that was 
made prior to the intrusion; the most recent backup may 
not be usable. After restoring data from a pre-intrusion 
backup, the legitimately modified data can be restored to 
the system, and users may resume using the system. This 
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process often takes a considerable amount of time–time 
during which users are denied service. 

 
3.2. Self-securing storage design 

 
Self-securing storage ensures information survival and 

auditing of all accesses by establishing a security 
perimeter around the storage device. Conventional 
storage devices are slaves to host operating systems, 
relying on them to protect users' data. A self-securing 
storage device operates as an independent entity, tasked 
with the responsibility of not only storing data, but 
protecting it. This shift of storage security functionality 
into the storage device's firmware allows data and audit 
information to be safeguarded in the presence of file 
server and client system intrusions. Even if the OSes of 
these systems are compromised and an intruder is able to 
issue commands directly to the self-securing storage 
device, the new security perimeter remains intact. 

Behind the security perimeter, the storage device 
ensures data survival by keeping previous versions of the 
data. This history pool of old data versions, combined 
with the audit log of accesses, can be used to diagnose 
and recover from intrusions. This section discusses the 
benefits of self-securing storage and several core design 
issues that arise in realizing this type of device. 

 
3.2.1.  Enabling intrusion survival. Overall, self-
securing storage assists in intrusion recovery by allowing 
the administrator to view audit information and quickly 
restore modified or deleted files. The audit and version 
information also helps to diagnose intrusions and detect 
the propagation of maliciously modified data. 

Self-securing storage simplifies detection of an 
intrusion since versioned system logs cannot be 
imperceptibly altered. In addition, modified system 
executables are easily noticed. Because of this, self-
securing storage makes conventional tamper detection 
systems obsolete. 

Since the administrator has the complete picture of the 
system's state, from intrusion until discovery, it is 
considerably easier to establish the method used to gain 
entry. For instance, the system logs would have normally 
been doctored, but by examining the versioned copies of 
the logs, the administrator can see any messages that were 
generated during the intrusion and later removed. In 
addition, any exploit tools temporarily stored on the 
system can be recovered. 

Previous versions of system files, from before the 
intrusion, can be quickly and easily restored by 
resurrecting them from the history pool. This prevents the 
need for a complete re-installation of the operating 
system, and it does not rely on having a recent backup or 

up-to-date checksums (for tamper detection) of system 
files. After such restoration, critical data can be 
incrementally recovered from the history pool. 
Additionally, by utilizing the storage device's audit log, it 
is possible to assess which data might have been directly 
affected by the intruder.  

The data protection that self-securing storage provides 
allows easy detection of modifications, selective recovery 
of tampered files, prevention of data loss due to out-of-
date backups, and speedy recovery since data need not be 
loaded from an off-line archive. 

Application 
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File System 
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Device Driver 
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Storage 
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Application 
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Figure 4. New security perimeter. Because the  
storage node executes distinct software on distinct 
hardware, compromising  the client operating 
system does not circumvent the new security 
perimeter.  Also note that the new perimeter 
complements (rather than replaces) any existing 
operating system and firewall perimeters. 

 
3.2.2.  Device security perimeter. The device's security 
model is what makes the ability to keep old versions more 
than just a user convenience. The security perimeter 
consists of self-contained software that exports only a 
simple storage interface to the outside world and verifies 
each command's integrity before processing it. In 
contrast, most file servers and client machines run a 
multitude of services that are susceptible to attack. Since 
the self-securing storage device is a single-function 
device, the task of making it secure is much easier; 
compromising its firmware is analogous to breaking into 
an IDE or SCSI disk. Figure 4 illustrates this new security 
perimeter. 

The actual protocol used to communicate with the 
storage device does not affect the data integrity that the 
new security perimeter provides. The choice of protocol 
does, however, affect the usefulness of the audit log in 
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terms of the actions it can record and its correctness. For 
instance, the NFS protocol provides no authentication or 
integrity guarantees, therefore the audit log may not be 
able to accurately link a request with its originating client. 
Nonetheless, the principles of self-securing storage apply 
equally to “enhanced” disk drives, network-attached 
storage servers, and file servers. 

For network-attached storage devices (as opposed to 
devices attached directly to a single host system), the new 
security perimeter becomes more useful if the device can 
verify each access as coming from both a valid user and a 
valid client. Such verification allows the device to enforce 
access control decisions and partially track propagation of 
tainted data. If clients and users are authenticated, 
accesses can be tracked to a single client machine, and the 
device's audit log can yield the scope of direct damage 
from the intrusion of a given machine or user account. 
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Figure 5. File versions in self-securing storage 
node. The most current versions are shown at the 
top. The history pool consists of the space holding 
all retained historical versions. The detection 
window, shown as the time between the two dashed 
lines, represents the guaranteed window of time 
during which the full history of changes is available 
to the administrator. Beyond that point, some or all 
of the versions may have expired and been removed 
from the history pool. 

3.2.3.  History pool management. Figure 5 illustrates the 
in-device versioning done behind the new security 
perimeter. The old versions of objects kept by the device 
comprise the history pool. Every time an object is 
modified or deleted, the version that existed just prior to 
the modification becomes part of the history pool. 
Eventually an old version will age and have its space 
reclaimed. Because clients cannot be trusted to demarcate 
versions consisting of multiple modifications, a separate 

version should be kept for every modification. This is in 
contrast to versioning file systems that generally create 
new versions only when a file is closed. 

A self-securing storage device guarantees a lower 
bound on the amount of time that a deprecated object 
remains in the history pool before it is reclaimed. During 
this window of time, the old version of the object can be 
completely restored by requesting that the drive copy 
forward the old version, thus making a new version. The 
guaranteed window of time during which an object can be 
restored is called the detection window. When 
determining the size of this window, the administrator 
must examine the tradeoff between the detection latency 
provided by a large window and the extra disk space that 
is consumed by the proportionally larger history pool. 

Although the capacity of disk drives is growing at a 
remarkable rate, it is still finite, which poses two 
problems: 

• Providing a reasonable detection window in 
exceptionally busy systems. 

• Dealing with malicious users that attempt to fill 
the history pool. (Note that space exhaustion 
attacks are not unique to self-securing storage. 
However, device-managed versioning makes 
conventional user quotas ineffective for limiting 
them.) 

In a busy system, the amount of data written could 
make providing a reasonable detection window difficult. 
Fortunately, the analysis in Section 3.3 suggests that 
multi-week detection windows can be provided in many 
environments at a reasonable cost. Further, aggressive 
compression and differencing of old versions can 
significantly extend the detection window. 

Deliberate attempts to overflow the history pool 
cannot be prevented by simply increasing the space 
available. As with most denial of service attacks, there is 
no perfect solution. There are three flawed approaches to 
addressing this type of abuse. The first is to have the 
device reclaim the space held by the oldest objects when 
the history pool is full. Unfortunately, this would allow 
an intruder to destroy information by causing its previous 
instances to be reclaimed from the overflowing history 
pool. The second flawed approach is to stop versioning 
objects when the history pool fills; although this will 
allow recovery of old data, system administrators would 
no longer be able to diagnose the actions of an intruder or 
differentiate them from subsequent legitimate changes. 
The third flawed approach is for the drive to deny any 
action that would require additional versions once the 
history pool fills; this would result in denial of service to 
all users (legitimate or not). 

Our hybrid approach to this problem is to try to 
prevent the history pool from being filled by detecting 
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probable abuses and throttling the source machine’s 
accesses. This allows human intervention before the 
system is forced to choose from the above poor 
alternatives. Selectively increasing latency and/or 
decreasing bandwidth allows well-behaved users to 
continue to use the system even while it is under attack. 
Experience will show how well this works in practice. 

Since the history pool will be used for intrusion 
diagnosis and recovery, not just recovering from 
accidental destruction of data, it is difficult to construct a 
safe algorithm that would save space in the history pool 
by pruning versions within the detection window. Almost 
any algorithm that selectively removes versions has the 
potential to be abused by an intruder to cover his tracks 
and to successfully destroy/modify information during a 
break-in.  

 
3.2.4.  History pool access control. The history pool 
contains a wealth of information about the system’s recent 
activity. This makes accessing the history pool a sensitive 
operation, since it allows the resurrection of deleted and 
overwritten objects.  This is a standard problem posed by 
versioning file systems, but is exacerbated by the inability 
to electively delete versions. 

There are two basic approaches that can be taken 
toward access control for the history pool. The first is to 
allow only a single administrative entity to have the 
power to view and restore items from the history pool. 
This could be useful in situations where the old data is 
considered to be highly sensitive. Having a single tightly-
controlled key for accessing historical data decreases the 
likelihood of an intruder gaining access to it. Although 
this improves security, it prevents users from being able 
to recover from their own mistakes, thus consuming the 
administrator’s time to restore users’ files. The second 
approach is to allow users to recover their own old 
objects (in addition to the administrator). This provides 
the convenience of a user being able to recover their 
deleted data easily, but also allows an intruder, who 
obtains valid credentials for a given user, to recover that 
user’s old file versions. 

Our compromise is to allow users to selectively make 
this decision. By choice, a user could thus delete an 
object, version, or all versions from visibility by anyone 
other than the administrator, since permanent deletion of 
data via any other method than aging would be unsafe. 
This choice allows users to enjoy the benefits of 
versioning for presentations and source code, while 
preventing access to visible versions of embarrassing 
images or unsent e-mail drafts. 

 
3.2.5.  Administrative access. A method for secure 
administrative access is needed for the necessary but 

dangerous commands that a self-securing storage device 
must support. Such commands include setting the 
guaranteed detection window, erasing parts of the history 
pool, and accessing data that users have marked as 
“unrecoverable.” Such administrative access can be 
securely granted in a number of ways, including physical 
access (e.g., flipping a switch on the device) or well-
protected cryptographic keys. 

Administrative access is not necessary for users 
attempting to recover their own files from accidents. 
Users' accesses to the history pool should be handled with 
the same form of protection used for their normal 
accesses. This is acceptable for user activity, since all 
actions permitted for ordinary users can be audited and 
repaired. 

 
3.2.6.  Version and administration tools. Since self-
securing storage devices store versions of raw data, users 
and administrators will need assistance in parsing the 
history pool. Tools for traversing the history must assist 
by bridging the gap between standard file interfaces and 
the raw versions that are stored by the device. By being 
aware of both the versioning system and formats of the 
data objects, utilities can present interfaces similar to that 
of Elephant [23], with “time-enhanced” versions of 
standard utilities such as ls and cp. This is 
accomplished by extending the read interfaces of the 
device to include an optional time parameter. When this 
parameter is specified, the drive returns data from the 
version of the object that was valid at the requested time. 

In addition to providing a simple view of data objects 
in isolation, intrusion diagnosis tools can utilize the audit 
log to provide an estimate of damage. For instance, it is 
possible to see all files and directories that a client 
modified during the period of time that it was 
compromised. Further estimates of the propagation of 
data written by compromised clients are also possible, 
though imperfect. For example, diagnosis tools may be 
able to establish a link between objects based on the fact 
that one was read just before another was written. Such a 
link between a source file and its corresponding object 
file would be useful if a user determines that a source file 
had been tampered with; in this situation, the object file 
should also be restored or removed. Exploration of such 
tools will be an important area of future work. 

 
3.3. Feasibility of self-securing storage 

 
There are two basic feasibility concerns with the self-

securing storage concept: performance and capacity. To 
address the former, we have constructed a prototype self-
securing NFS server [26]. Experiments with this 
prototype show that the security and data survivability 
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benefits of self-securing storage can be realized with 
reasonable performance.  Specifically, its performance is 
comparable to FreeBSD’s NFS for both micro-
benchmarks and application benchmarks.  Further, 
detailed analysis shows that the fundamental costs 
associated with self-securing storage degrade 
performance by less than 13% relative to similar systems 
that provide no data protection guarantees. 

To evaluate the capacity requirements of self-securing 
storage, three recent workload studies were examined. 
Figure 6 shows the results of approximations based on 
worst-case write behavior. Spasojevic and 
Satyanarayanan’s AFS trace study [27] reports 
approximately 143MB per day of write traffic per file 
server. The AFS study was conducted using 70 servers 
(consisting of 32,000 cells) distributed across the wide 
area, containing a total of 200GB of data. Based on this 
study, using just 20% of a modern 50GB disk would yield 
over 70 days of history data. Even if the writes consume 
1GB per day per server, as was seen by Vogels’ Windows 
NT file usage study [29], 10 days worth of history data 
can be provided. The NT study consisted of 45 machines 
split into personal, shared, and administrative domains 
running workloads of scientific processing, development, 
and other administrative tasks. Santry, et al. [24] report a 
write data rate of 110MB per day. In this case, over 90 
days of data could be kept. Their environment consisted 
of a single file system holding 15GB of data that was 
being used by a dozen researchers for development. 
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Figure 6. Projected detection window for three 
environments.  This chart shows the expected 
detection window (in days) that could be provided by 
utilizing 10GB for data versioning. This conservative 
history pool would consume only 20% of a 50GB 
disk’s total capacity. The base-line number 
represents the projected number of days worth of 

history information that can be maintained within this 
10GB of space. The gray regions show the 
projected increase that cross-version differencing 
would provide. The black regions show the further 
increase expected from using compression in 
addition to differencing. 

 
Much work has been done in evaluating the efficiency 

of differencing and compression [4][5][6]. To briefly 
explore the potential benefits for self-securing storage, its 
code base was retrieved from the CVS repository at a 
single point each day for a week. After compiling the 
code, both differencing and differencing with 
compression were applied between each tree and its direct 
neighbor in time using Xdelta [18][19]. After applying 
differencing, the space efficiency increased by 200%. 
Applying compression added an additional 200% for a 
total space efficiency of 500%. These results are in line 
with previous work. Applying these estimates to the 
above workloads indicates that a 10GB history pool can 
provide a detection window of between 50 and 470 days. 

 
3.4. Self-securing storage summary 

 
Self-securing storage nodes can ensure data and audit 

log survival in the presence of successful client-side 
intrusions, user and client impersonation, and even 
compromised client operating systems. Experiments (in 
[26]) with a prototype show that self-securing  storage 
nodes can achieve performance that is comparable to 
existing storage servers.  In addition, analysis of recent 
workload studies suggest that complete version histories 
can be kept for several weeks on state-of-the-art disk 
drives.  Future work will focus on developing diagnosis 
and recovery tools that utilize the extensive information 
provided by self-securing storage. 
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