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Abstract

Component failure in large-scale IT installations such asster supercomputers or internet service providers isb@&ag an ever
larger problem as the number of processors, memory chipgdeshd in a single cluster approaches a million.

In this paper, we present and analyze field-gathered didkcement data from five systems in production use at thresnargtions,
two supercomputing sites and one internet service provideout 70,000 disks are covered by this data, some for aredifiétime
of 5 years. All disks were high-performance enterprisel{S8CSI or FC), whose datasheet MTTF of 1,200,000 hours stigge
nominal annual failure rate of at most 0.75%.

We find that in the field, annual disk replacement rates extégdwith 2-4% common and up to 12% observed on some systems.
This suggests that field replacement is a fairly differeicpss than one might predict based on datasheet MTTF, and ten
be quite variable installation to installation.

We also find evidence that failure rate is not constant with, @agnd that rather than a significant infant mortality effest see a
significant early onset of wear-out degradation. That iglaeement rates in our data grew constantly with age, arcefiéen
assumed not to set in until after 5 years of use.

In our statistical analysis of the data, we find that time kegtw failure is not well modeled by an exponential distriutisince the
empirical distribution exhibits higher levels of variaityland decreasing hazard rates. We also find significanti$enfecorrelation
between failures, including autocorrelation and long-gerdependence.
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1 Motivation

Despite major efforts, both in industry and in academiah Inidiability remains a major challenge in running
large-scale IT systems, and disaster prevention and cesttodl disasters make up a large fraction of the
total cost of ownership. With ever larger server clustezfiability and availability are a growing problem
for many sites, including high-performance computing eyst and internet service providers. A particu-
larly big concern is the reliability of storage systems, deweral reasons. First, failure of storage can not
only cause temporary data unavailability, but in the woesteclead to permanent data loss. Second, many
believe that technology trends and market forces may cagrtbimake storage system failures occur more
frequently in the future [19]. Finally, the size of storagstems in modern, large-scale IT installations has
grown to an unprecedented scale with thousands of storageede making component failures the norm
rather than the exception [5].

Large-scale IT systems, therefore, need better systergrdasd management to cope with more fre-
guent failures. One might expect increasing levels of rdduny designed for specific failure modes [2],
for example. Such designs and management systems are lmegexy simple models of component failure
and repair processes [18]. Researchers today require ketieledge about statistical properties of storage
failure processes, such as the distribution of time betviaiures, in order to more accurately estimate the
reliability of new storage system designs.

Unfortunately, many aspects of disks failures in real syistare not well understood, as it is just human
nature not to advertise the details of ones failures. Asultrgwactitioners usually rely on vendor specified
mean-time-to-failure (MTTF) values to model failure preses, although many are skeptical of the accuracy
of those models [3, 4, 27]. Too much academic and corporatareh is based on anecdotes and back of
the envelope calculations, rather than empirical data [22]

The work in this paper is part of a broader research agendietiwgtiong-term goal of providing a better
understanding of failures in IT systems by collecting, gnialg and making publicly available a diverse set
of real failure histories from large-scale production syss. In our pursuit, we have spoken to a number of
large production sites and were able to convince three of tioeprovide failure data from several of their
systems.

In this paper, we provide an analysis of five data sets we hallected, with a focus on storage-
related failures. The data sets come from five differenteacale production systems at three different
sites, including two large high-performance computingssiind one large internet services site. The data
sets vary in duration from 1 month to 5 years and cover in @tabpulation of more than 70,000 drives
from four different vendors. All disk drives included in tdata were either SCSI or fibre-channel drives,
commonly represented as the most reliable types of diskslriv

We analyze the data from three different aspects. We begBedation 3 by asking how disk failure
frequencies compare to that of other hardware componduntdai In Section 4, we provide a quantitative
analysis of disk failure rates observed in the field and compar observations with common predictors
and models used by vendors. In Section 5, we analyze thet&altiproperties of disk failures. We study
correlations between failures and identify the key praopsrof the statistical distribution of time between
failures, and compare our results to common models and gdsuns on disk failure characteristics.

2 Methodology

2.1 Data sources

Table 1 provides an overview over the five data sets used snsthdy. Data sets HPC1 and HPC2 were
collected in two large cluster systems at two different nigations using supercomputers. Data sets COM1,
COM2, and COMS3 were collected at three different clustetesyis at a large internet service provider. In



Data set Type of Duration Total | #Disk # Servers Disk Disk MTTF System
cluster #Events| events Count Type (Mhours) | Deploym.
HPC1 HPC | 08/2001-05/20064 1800 474 765 2,318 | 18GB 10K SCSI 12 08/2001
463 | 124 64 1,088 | 36GB 10K SCSI 12
HPC2 HPC | 01/2004 - 07/2006 14 14 256 520 | 36GB 10K SCSI 12 12/2001
COML1 || Int. serv. May 2006 465 | 84 N/A 26,734 10K SCSI 1 2001
COM2 || Int. serv. | 09/2004 - 04/2006 667 | 506 9,232 | 39,039 15K SCSiI 12 2004
COM3 || Int. serv.| 01/2005 - 12/2005 104 | 104 N/A 432 10K FC-AL 12 1998
2 2 N/A 56 10K FC-AL 12 N/A
132 | 132 N/A 2,450 10K FC-AL 12 N/A
108 | 108 N/A 796 10K FC-AL 12 N/A

Table 1:Overview of the five failure data sets

all cases, our data reports on only a portion of the compuystems run by each organization. Below we
describe each data set and the system it comes from in soneedetaiil.

HPCL1 is a five year log of hardware failures collected from & @6de high-performance computing
cluster. Each of the 765 nodes is a 4-way SMP with 4 GB of merandy3-4 18GB 10K rpm SCSI drives.
64 of the nodes are used as filesystem nodes containing iticewdtdi the 3-4 18GB drives, 17 36GB 10K
rpm SCSI drives. The applications running on those systemgypically large-scale scientific simulations
or visualization applications. The data contains, for daafuware failure that was recorded during the 5
year lifetime of this system, when the problem started, tvimode and which hardware component was
affected, and a brief description of the corrective action.

HPC2 is arecord of disk failures observed on the computesiobie 256 node HPC cluster. Each node
is a 4-way SMP with 16 GB of memory and contains two 36GB 10K @S5I drives, except for 8 of the
nodes, which contain eight 36GB 10K rpm SCSI drives each. apmications running on those systems
are typically large-scale scientific simulations or viszetion applications. For each disk failure the data
set records the number of the affected node, the start tinieedfilure, and the slot number of the failed
drive.

COM1 is a log of hardware failures recorded at a cluster angrriet service provider. Each fail-
ure record in the data contains a timestamp on when the dai@as repaired, information on the failure
symptoms, and a list of steps that were taken to repair thielgmo Note that this data does not contain
information on when a failure actually happened, only whegair took place. The data covers a population
of 26,734 10K SCSI disk drives. The number of servers in tir@mment is not known.

COM2 is also a vendor-created log of hardware failures dEmbrat a cluster at an internet service
provider. Each failure record contains a repair code (eReplace hard drive”) and the time when the
repair was finished. Again there’s no information on thetdtare of a failure. The log does not contain
entries for failures of disks that were replaced as hot-swsince the data was created by the vendor, who
doesn't see those replacements. To account for the misskgeplacements we obtained numbers for disk
replacements from the internet service provider. The sizeeunderlying system changed significantly
during the measurement period, starting with 420 serve200# and ending with 9,232 servers in 2006.
We obtained hardware purchase records for the system fotithe period to estimate the size of the disk
population for each quarter of the measurement period.

The COM3 dataset comes from a large storage system at anahtrvice provider and comprises
four populations of different types of fibre-channel diskedg Table 1). While this data was gathered in
2005, the system has some legacy components that are asfabinas998. COM3 differs from the other
data sets in that it provides only aggregate statisticss¥ fiilures, rather than individual records for each
failure. The data contains the counts of disks that failedhaere replaced in 2005 for each of the four disk
populations.




2.2 Statistical methods

We characterize an empirical distribution using two imguo#dtrics: the mean, and the squared coefficient
of variation C?). The squared coefficient of variation is a measure of thiabaity of a distribution and is
defined as the squared standard deviation divided by theesjuzean. The advantage of using the squared
coefficient of variation as a measure of variability, rattiem the variance or the standard deviation, is that
it is normalized by the mean, and hence allows comparisomdhility across distributions with different
means.

We also consider the empirical cumulative distributiondiion (CDF) and how well it is fit by four
probability distributions commonly used in reliabilityebry*: the exponential distribution; the Weibull
distribution; the gamma distribution; and the lognormadtidibution. We parameterize the distributions
through maximum likelihood estimation and evaluate thedpess of fit by visual inspection, the negative
log-likelihood and the chi-square test.

Since we are interested in correlations between disk &sluwwe need a measure for the degree of
correlation. The autocorrelation function (ACF) measuhescorrelation of a random variable with itself at
different time lagd. The ACF can for example be used to determine whether the ewuaflfailures in one
day is correlated with number of failures observathys later. The autocorrelation coefficient can range
between 1 (high positive correlation) and -1 (high negativeelation).

Another aspect of the failure process that we will study igloange dependence. Long-range depen-
dence measures the memory of a process, in particular haklguhe autocorrelation coefficient decays
with growing lags. The strength of the long-range depenelénquantified by the Hurst exponent. A series
exhibits long-range dependence if the Hurst exponent Has<(H < 1. We use the Selfis tool [12] to ob-
tain estimates of the Hurst parameter using five differerthods: the absolute value method, the variance
method, the R/S method, the periodogram method, and thelgvestimator.

3 Comparing failuresof disksto other hardware components

The reliability of a system depends on all its componentd,raut just the hard drive(s). A natural question
is therefore what the relative frequency of drive failuresdompared to that of other types of hardware
failures. To answer this question we consult data sets HBQIM1, and COM3, since these data sets
contain records for any type of hardware failure, not onkkdailures.

We begin by considering onlyermanenhardware failures, i.e. failures that require replacenoétite
affected hardware component. Table 2 shows, for each dita st of the ten most frequently replaced
hardware components and the fraction of replacements nmabg each component. We observe that while
the actual fraction of disk replacements varies acrossdteskts (ranging from 20% to 50%), it makes up a
significant fraction in all three cases. In the HPC1 and COMIi2 dets, disk drives are the most commonly
replaced hardware component accounting for 30% and 50% béalware replacements, respectively. In
the COM1 data set, disks are a close runner-up accountingeéoty 20% of all hardware replacements.

While Table 2 suggests that disks are among the most commapigced hardware components, it does
not necessarily imply that disks are less reliable or havesasar lifespan than other hardware components.
The number of disks in the systems might simply be much laiggn that of other hardware components.
In order to compare the reliability of different hardwarargmnents, we need to normalize the number of
component replacements by the component’s populatiors siz

Unfortunately, we do not have, for any of the five systemscepapulation counts of all hardware
components. However, we do have enough information on thelH#ystem to estimate counts of the four

IWe also considered another distribution, which has regdrekn found to be useful in characterizing various aspefcts o
computer systems, the Pareto distribution. However, we'diithd it to be a better fit than any of the four standard digttions for
our data and therefore did not include it in these results.



HPC1 COM1 COM2
Component % Component % Component %
Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 23.4
Misc/Unk 14.4 Hard drive 18.1 Power supply | 10.1
CPU 12.4 Case 11.4 RAID card 41
PCI motherboard 4.9 Fan 8.0 Memory 3.4
Controller 29 CPU 2.0 SCSI cable 2.2
QsSw 1.7 SCSI Board 0.6 Fan 2.2
Power supply 1.6 NIC Card 1.2 CPU 2.2
MLB 1.0 LV Power Board| 0.6 CD-ROM 0.6
SCSIBP 0.3 CPU heatsink 0.6 Raid Controller| 0.6

Table 2:Relative frequency of hardware component failures thatiirecreplacement

hardware components that fail most frequently in this sys€PU, memory, disks, motherboards). We
estimate that there is a total of 3,060 CPUs, 3,060 dimms,7&3dmother boards, compared to a disk
population of 3,406. Combining these numbers with the dafBable 2, we conclude that for the HPC1
system, the probability that in 5 years of use a memory dimlnb&ireplaced is roughly comparable to that
of a hard drive replacement; a CPU is about 2.5 times lesky ltkebe replaced than a hard drive; and a
motherboard is 50% less likely to be replaced than a hare driv

The above discussion focused only on permanent failuesfailures that required a hardware com-
ponent to be replaced. When running a large system one israésested in other hardware failures, that
cause a node to go down. The HPCL1 data also contains recordarfiware related failures that caused a
node outage, but did not require hardware replacement.e Tabives a per-component breakdown of all
hardware failures in HPC1, including those that did not mreghardware replacement. We observe that the
percentage of failures caused by disk drives is 16% (cordpar80% in Table 2), making it the third most
common hardware-related root cause of a node outage. Mdailhumes are nearly two times more common
than disk failures, and CPU failures are almost three timermommon than disk failures.

HPC1
Component %
CPU 44
Memory 29
Hard drive 16
PCI motherboard 9
Power supply 2

Table 3: Relative frequency of hardware-related failures, inchglithose that did not require component
replacement

For a complete picture, we also need to take the severity aflaré into account. A closer look
at the HPC1 data reveals that a large number of the CPU and mdailures are triggered by parity
errors, i.e. the number of errors is too large for the embeddeor correcting code to correct them. Those
errors just require a reboot to bring the affected node backQn the other hand, the majority of the disk
failures (around 90%) recorded in HPC1 was permanent, riaguinore time-consuming and expensive
repair actions.
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Figure 1: Comparison of datasheet AFRs (solid and dashed line in thplyrand AFRs observed in the
field (bars in the graph). Left-most bar in a set is the res@itambining all types of disks in the data set.

4 Disk failurerates

4.1 Specifying disk reliability and failure frequency

Drive manufacturers specify the reliability of their pradsiin terms of two related metrics: the@nualized
failure rate (AFR)which is the percentage of disk drives in a population théiri a test scaled to a per year
estimation; and thenean time to failure (MTTE)The AFR of a new product is typically estimated based
on accelerated life and stress tests or based on field dategfadier products [1]. The MTTF is estimated
as the number of power on hours per Yedivided by the AFR. The MTTFs specified for today’s highest
guality disks range from 1,000,000 hours to 1,400,000 hamsesponding to AFRs of 0.63% to 0.88%.

The AFR and MTTF estimates of the manufacturer are includexddrive’s datasheet and we refer to
them in the remainder as thiatasheet AFRnd thedatasheet MTTHN contrast, we will refer to the AFR
and MTTF computed from the data sets asdhserved AFRindobserved MTTFrespectively.

4.2 Disk failuresand MTTF

In the following, we study how field experience with disk faiés compares to datasheet specifications of
disk reliability. Figure 1 shows the datasheet AFRs (hariabsolid and dashed line) and the observed AFR
for each of the five data sets. For HPC1 and COM3, which covierent types of disks, the graph contains
several bars, one for the observed AFR across all types lofléit-most bar), and one for the AFR of each
type of disk (remaining bars in the order of the correspagdintries in Table 1).

We observe a significant discrepancy between the observ&dakid the datasheet AFR for all data
sets. While the datasheet AFRs are either 0.73% or 0.88%ghtberved AFRs range from from 1.1% to
as high as 25%. That is the observed AFRs are by a factor oblup to a factor of 30 higher than the
datasheet AFRs.

A striking observation in Figure 1 is the huge variation ofRd-across the systems, in particular the
extremely large AFRs observed in system COM3. While 3,30@®fdisks in COM3 were at all times less
than 5 years old, 432 of the disks in this system were instatiel 998, making them at least 7 years old at
the end of the data set. Since this is well outside the vesdarninal lifetime for disks, it is not surprising
that the disks might be wearing out. But even without the 48tete disks, COM3 has quite large AFRs.

2A common assumption for enterprise drives is that they af94.6f the time powered on. Our data set providers all believe
that their disks are 100% powered on.
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Figure 2:Life cycle failure pattern of hard drives [27].

The data for HPC1 covers almost exactly 5 years, the nomifietihie, and exhibits an AFR signifi-
cantly higher than the datasheet AFR (3.4% instead of 0.88%g data for COM2 covers the first 2 years
of operation and has an AFR of 3.1%, also much higher thandtesbeet AFR of 0.88%.

It is interesting to observe that the only system that conmsedo the datasheet AFR is HPC2, which
with an observed AFR of 1.1%, deviates from the datasheet ByRnly” 50%. After talking to people
involved in running system HPC2, we identified as a possikfgamation the potentially very low usage of
the disks in HPC2. The disks in this data set are local disksampute nodes, whose applications primarily
use a separate, shared parallel file system, whose diskoanectuded in the data set. The local disks,
which are included in the data set, are mostly used only fotibg to the operating system, and fetching
system executables/libs. Users are allowed to write ongygmallish /tmp area of the disks and are thought
to do this rarely, and swapping almost never happens.

Below we summarize the key observations of this section.

Observation 1. Variance between datasheet MTTF and field failure datageiahan one might expect.

Observation 2: For older systems (5-8 years of age), data sheet MTTFs carestinate failure rates by
as much as a factor of 30.

Observation 3: Even during the first few years of a system’s lifetime § years), when wear-out is not
expected to be a significant factor, the difference betwesasticet MTTF and observed MTTF can be as
large as a factor of 6.

4.3 Age-dependent failurerates

One aspect of failure rates that single-value metrics ssddBTF and AFR cannot capture is that in real
life failure rates are not constant [4]. Failure rates oftlaare products typically follow a “bathtub curve”
with high failure rates at the beginning (infant mortalignd the end (wear-out) of the lifecycle. Figure 2
shows the failure rate pattern that is expected for the {ifdecof hard drives [3, 4, 27]. According to this
model, the first year of operation is characterized by eailyries (or infant mortality). In years 2-5, the
failure rates are approximately in steady state, and tHear, y@ears 5-7, wear-out starts to kick in.

The common concern, that MTTFs don’t capture infant mdytatas lead the International Disk drive
Equipment and Materials Association (IDEMA) to propose @& s¢gandard for specifying disk drive relia-
bility, based on the failure model depicted in Figure 2 [4heThew standard requests that vendors provide
four different MTTF estimates, one for the first 1-3 monthgpération, one for months 4-6, one for months
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Figure 3: Number of failures observed per year over the first 5 yeargystesn HPC1's lifetime, for the
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Figure 4: Number of failures observed per month over the first 5 yeasystem HPC1's lifetime, for the
compute nodes (left) and the file system nodes (right).

7-12, and one for months 13-60.

The goal of this section is to study, based on our field rephece data, how failure rates in large-scale
installations vary over a system’s life cycle.

The best data set to study failure rates across the systewrylife is system HPC1. The reason is that
this data set spans the entire first 5 years of operation gfja kystem. Moreover, in HPC1 the hard drive
population is homogeneous, with all 3,406 drives in theesysbeing nearly identical (except for having
two different sizes, 17 vs 36 GB), and the population sizeaiaed the same over the 5 years, except for the
small fraction of replaced components.

We study the change of failure rates across system HPCddytife at two different granularities, on
a per-month and a per-year basis, to make it easier to daidtshort term and long term trends. Figure 3
shows the yearly failure rates for the disks in the computdeamf system HPCL1 (left) and the file system
nodes of system HPC1 (right). We make two interesting olagiemns. First, failure rates in all years, except
for year 1, are dramatically larger than the datasheet MTBElevsuggest. The solid line in the graph
represents the number of failures expected per year bastteatata sheet MTTF. In year 2, disk failure
rates are 20% larger than expected for the file system nodés factor of two larger than expected for the
compute nodes. In year 4 and year 5 (which are still withinnibwinal lifetime of these disks), the actual
failure rates are 7-10 times higher than expected.

The second observation is that failure rates are risingfgigntly over the years, even during early
years in the lifecycle. Failure rates nearly double when imgp¥rom year 2 to 3 or from year 3 to 4.
This observation suggests that wear-out may start mucieetirhn expected, leading to steadily increasing
failure rates during most of a system’s useful life. This nisiateresting observation because it does not
agree with the common assumption that after the first yeapefation, failure rates reach a steady state for



a few years, forming the “bottom of the bathtub”.

Next, we move to the per-month view of system HPC1's failates, shown in Figure 4. We observe
that for the file system nodes, there’s is no detectable imfaomtality: there are no failures observed during
the first 12 months of operation. In the case of the computesiadfant mortality is limited to the first
month of operation and is not above the steady state estiohalbe datasheet MTTF. Looking at the life-
cycle after month 12, we again see continuously rising ffailates, instead of the expected “bottom of the
bathtub”.

Below we summarize the key observations of this section.

Observation 4: Contrary to common and proposed models, hard drive failtesrdon’t enter steady state
after the first year of operation. Instead failure rates seesteadily increase over time.

Observation 5: Early onset of wear-out seems to have a much stronger impalifecycle failure rates
than infant mortality, even when considering only the firgir® years of a system’s lifetime. Wear-out
should therefore be a incorporated into new standards $érdtive reliability. The new standard suggested
by IDEMA does not take wear-out into account.

5 Statistical properties of disk failures

In the previous sections, we have focused on aggregatedaitatistics, e.g. the average failure rate in a
time period. Often one wants more information on the statisproperties of the time between failures than
just the mean. For example, determining the expected tirfadltwe for a RAID system requires an estimate
on the probability of experiencing a second disk failure shart period, that is while reconstructing lost
data from redundant data. This probability depends on tlienlying probability distribution and maybe
poorly estimated by scaling an annual failure rate down @aatours.

The most common assumption about the statistical chaistaterof disk failures is that they form a
Poisson process, which implies two key properties:

1. Failures are independent.
2. The time between failures follows an exponential digtidn.

The goal of this section is to evaluate how realistic the atemssumptions are. We begin by providing
statistical evidence that disk failures in the real world anlikely to follow a Poisson process. We then
examine in Section 5.2 and Section 5.3 each of the two keygptiep (independent failures and exponential
time between failures) independently and characterizeetaildhow and where the Poisson assumption
breaks. In our study, we focus on the HPC1 data set, sincestiiie only data set that contains precise
failure time stamps (rather than just repair time stamps).

5.1 The Poisson assumption

The Poisson assumption implies that the number of failutemg a given time interval (e.g. a week or a
month) is distributed according to the Poisson distributiBigure 5 (left) shows the empirical CDF of the
number of failures observed per month in the HPC1 data sgther with the Poisson distribution fit to the
data’s observed mean.

We find that the Poisson distribution does not provide a gaodifithe number of failures observed
per month in the data, in particular for very small and vergdanumbers of failures. For example, under
the Poisson distribution the probability of seeird@0 failures in a given month is less than 0.0024, yet we

8
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Figure 5:CDF of number of failures per month in HPC1

see 20 or more failures in nearly 20% of all months in HPCi&titne. Similarly, the probability of seeing
zero or one failure in a given month is only 0.0003 under thisgem distribution, yet in 20% of all months
in HPC1's lifetime we observe zero or one failure.

A chi-square test reveals that we can reject the hypothesishie number of failures per month follows
a Poisson distribution at the 0.05 significance level. Albabresults are similar when looking at the
distribution of failures per day or per week, rather thanmpenth.

One reason for the poor fit of the Poisson distribution mightHat failure rates are not steady over the
lifetime of HPC1. We therefore repeat the same process figrpart of HPC1's lifetime. Figure 5 (right)
shows the distribution of failures per month, using onlyadabm years 2 and 3 of HPC1. The Poisson dis-
tribution achieves a better fit for this time period and thiestjuare test cannot reject the Poisson hypothesis
at a significance level of 0.05. Note, however, that this do®snecessarily mean that the failure process
during years 2 and 3 does follow a Poisson process, sincevthikl also require the two key properties of
a Poisson process (independent failures and exponenmtialtetween failures) to hold. We study these two
properties in detail in the next two sections.

5.2 Corrdations

In this section, we focus on the first key property of a Poigsmtess, the independence of failures. In-
tuitively, it is clear that in practice failures of disks inet same system are never completely independent.
The failure probability of disks depends for example on envinental factors, such as temperature, that
are shared by all disks in the system. When the temperatwenachine room rises, all disks in the room
experience a higher than normal probability of failure. Dwal of this section is to statistically quantify
and characterize the correlation between disk failures.

We start with a simple test in which we determine the corni@hadf the number of failures observed in
successive weeks/months by computing the correlatiorficasit between the number of failures in a given
week/month and the previous week/month. For data coming fidPoisson processes we would expect
correlation coefficients close to 0. Instead we find signifidavels of correlations, both at the month and
the week level. The correlation coefficient between conserwveeks is 0.72 the correlation coefficient
between consecutive months is 0.79. We repeated the samssiteg only the data of one year at a time,
and we still find significant levels of correlation with cdation coefficients of 0.4-0.8.

Statistically, the above correlation coefficients indicatstrong correlation, but it would be nice to have
a more intuitive interpretation of this result. One way dahiting of the correlation of failure rates is that
the failure rate in one time interval is predictive of thdueg rate in the following time interval. To test the
strength of this prediction, we assign each week in HPCfEstdi one of three buckets, depending on the
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Figure 7: Autocorrelation function for the number of failures per we®mputed across the entire lifetime
of the HPC1 system (left) and computed across only one yddPGfl's operation (right).

number of failures observed during that week, creating &dtuor weeks with small, medium, and large
number of failures, respectively The expectation is that a week that follows a week with a 1Emamber

of failures is more likely to see a small number of failurdmr a week that follows a week with a “large”
number of failures. Figure 6 (left) shows the expected nurobéailures in a week of HPC1's lifetime as
a function of which bucket the preceding week falls in. Weeanlie that the expected number of failures in
a week varies by a factor of 9, depending on whether the pregeceek falls into the first or third bucket.
When repeating the same process on the data of only year 3@1HRfetime, we see a differences of a
close to factor of 2 between the first and third bucket.

So far, we have only considered correlations between ssigeeme intervals, e.g. between two
successive weeks. A more general way to characterize atores is to study correlations at different time
lags by using the autocorrelation function. Figure 7 (Isftpws the autocorrelation function for the number
of failures per week computed across the HPC1 data set. Ratiangry failure process (e.g. data coming
from a Poisson process) the autocorrelation would be ctogero at all lags. Instead, we observe strong
autocorrelation even for large lags in the range of 100 wéadarly 2 years).

We also repeated the same test for only parts of HPC1'srhitetand find similar levels of autocorre-
lation. Figure 7 (right), for example, shows the autocatieh function computed only on the data of the
third year of HPC1’s life. Correlation is significant for e the range of up to 30 weeks.

Another measure for dependency is long range dependencgiaasified by the Hurst exponeht.

SMore precisely, we choose the cutoffs between the buckets that each bucket contains the same number of samples (i.e.
weeks) by using the 33th percentile and the 66th percerftileecempirical distribution as cutoffs between the buckets

10



Empirical CDF Empirical CDF

— Data
Lognormal
Gamma

v Weibull
- - Exponentiall

— Data
Lognormal
il Gamma
v Weibull
- - - Exponential

10° 10* 10° 10° 10’ 10? 10° 10* 10° 10°
Time between Failures (sec) Time between Failures (sec)

All years Year 3

Figure 8:Distribution of time between failures across all nodes inG1P

The Hurst exponent measures how fast the autocorrelatioctifuns drops with increasing lags. A Hurst
parameter between 0.5-1 signifies a statistical processatting memory and a slow drop of the autocor-
relation function. Applying several different estimatgsge Section 2) to the HPC1 data, we determine a
Hurst exponent between 0.6-0.8 at the weekly granularites€ values are comparable to Hurst exponents
reported for Ethernet traffic, which is known to exhibit stygdong range dependence.

Observation 6: Disk failures exhibit significant levels of autocorrelatio

Observation 7: Disk failures exhibit long-range dependence.

5.3 Distribution of time between failure

In this section, we focus on the second key property of a Boifslure process, the exponentially distributed
time between failures. Figure 8 (left) shows the empiricathalative distribution function of time between
failures as observed in the HPC1 system and four distribstinatched to it.

We find that visually the Gamma and Weibull distributions theebest fit to the data, while exponential
and lognormal distributions provide a poorer fit. This agreéth results we obtain from the negative
log-likelihood, which indicates that the Weibull distriien is the best fit, closely followed by the gamma
distribution. Performing a Chi-Square-Test, we can rdjlegthypothesis that the underlying distribution is
exponential or lognormal at a significance level of 0.05. kndther hand the hypothesis that the underlying
distribution is a Weibull or a gamma cannot be rejected agaifitance level of 0.05.

The poor fit of the exponential distribution might be due te fact that failure rates change over
the lifetime of the system, creating variability in the oh&al times between failure that the exponential
distribution cannot capture. We therefore repeated theeainalysis considering only segments of HPC1'’s
lifetime. Figure 8 (right) shows as one example the resuttsifanalyzing the time between failures in year
3 of HPC1's operation. While visually the exponential disition now seems a slightly better fit, we can
still reject the hypothesis of an underlying exponentiatrifution with a significance level of 0.05. The
same holds for other 1-year and even 6-month segments of HRi€fime. This leads us to conclude that
even during shorter segments of HPC1's lifetime the timevben failures is not realistically modeled by
an exponential distribution.

While it might not come as a surprise that the simple expoaledistribution does not provide as
good a fit as the more flexible two-parameter distributionsingeresting question is what properties of the
empirical time between failure make it different from a thetwal exponential distribution. We identify as a
first differentiating feature that the data exhibits highatiability than a theoretical exponential distribution.
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Figure 9:lllustration of decreasing hazard rates

The data has &2 of 2.4, which is more than two times higher than @feof an exponential distribution
which is 1.

A second differentiating feature is that the time betwednra in the data exhibits decreasing hazard
rates, as indicated by the shape parameters of the fitted @amdWeibull distributions (shape parameter
less than 1). The hazard rate measures how the time sincasthfailure influences the expected time until
the next failure. An increasing hazard rate function prsdilat if the time since a failure is long then the
next failure is coming soon. And a decreasing hazard ratgtimpredicts the reverse.

Figure 9 illustrates the data’s decreasing hazard ratesoyng the expected remaining time until the
next failure (Y-axis) as a function of the time since the fadure (X-axis). We observe that right after a
failure the expected time until the next failure is aroundags] both for the empirical data and the expo-
nential distribution. In the case of the empirical datae@fiurviving for 10 ten days without failures the
expected remaining time until the next failure grows fromtiatly 4 to 10; and after surviving for a total of
20 days without failures the expected time until the nextifaigrows to 15 days. In comparison, under an
exponential distribution the expected remaining time stegnstant (also known as the memoryless prop-

erty).

Observation 8: The hypothesis that time between failures follows an exptialedistribution can be re-
jected with high confidence.

Observation 9: The time between failures has a higher variability than tfian exponential distribution.

Observation 10: The distribution of time between failures exhibits deciegazard rates, that is the ex-
pected remaining time until the next failures grows with tiilee since we have seen the last failure.

6 Reated work

There is very little work published on analyzing failuresr@al, large-scale storage systems, probably as a
result of the reluctance of the owners of such systems teegatid release failure data.

Among the few existing studies is the work by Talagala et28],[which provides a study of error logs
in a research prototype storage system used for a web serdéncudes a comparison of failure rates of
different hardware components. They identify SCSI disk@nhaes as the least reliable components and
SCSiI disks as one of the most reliable component, whichrdiffem our results.

In a recently initiated effort, Schwarz et al. [22] have ®&drto gather failure data at the Internet
Archive, which they plan to use to study disk failure rated &it rot rates and how they are affected by
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different environmental parameters. In their prelimingegults, they report AFR values of 2-6% and note
that the Archive does not seem to see significant infant dityrt®oth observations are in agreement with
our findings.

Gray [25] reports the frequency of uncorrectable read srirodisks and finds that their numbers are
smaller than vendor data sheets suggest. Gray also prodkR®stimates for SCSI and ATA disks, in the
range of 3—-6%, which is in the range of AFRs that we observ& @8l drives in our data sets.

Many have criticized the accuracy of MTTF based failure gedictions and have pointed out the
need for more realistic models. A particular concern is #t that a single MTTF value cannot capture
life cycle patterns [3, 4, 27]. Our analysis of life cycleteabs shows that this concern is justified, since we
find failure rates to vary quite significantly over even thetfi-3 years of the life cycle. However, the most
common life cycle concern in published research is undezsgmting infant mortality. In our analysis, we
don't see that. Instead we observe significant underrepiatsan of the early onset of wear-out.

Early work on RAID systems [6] provided some statisticallgsia of time between disk failures for
disks used in the 1980s, but didn't find sufficient evidenceeject the hypothesis of exponential times
between failure with high confidence. However, time betwsdinre has been analyzed for other, non-
storage data in several studies [9, 13, 20, 21, 24, 26]. Fahecstudies use distribution fitting and find the
Weibull distribution to be a good fit [9, 13, 21, 26], which ags with our results. All studies looked at the
hazard rate function, but come to different conclusionaurfed them [9, 13, 21, 26] find decreasing hazard
rates (Weibull shape parametel0.5). Others find that hazard rates are flat [24], or increastg We find
decreasing hazard rates with Weibull shape parameter €f.8. Disk vendors, in fact, use a Weibull model
to derive the datasheet MTTF based on accelerated/ststByytever short periods of time [1].

Large-scale failure studies are scarce, even when coirgjddrsystems in general and not just storage
systems. Most existing studies are limited to only a few rherdf data, covering typically only a few
hundred failures [11, 16, 17, 20, 24, 26]. And many of the ncoshmonly cited studies on failure analysis
stem from the late 80’s and early 90’s, when computer systehese significantly different from today [7,
8,10, 13, 14, 15, 24].

7 Conclusion

Many have pointed out the need for a better understandinghat disk failures look like in the field. Yet
hardly any published work exists that provides large-ssaldies of disk failures in production systems. As
a first step towards closing this gap, we have analyzed dikkdedata from five different large production
systems, spanning more than 70,000 drives from four diffevendors, including both SCSI and fibre-
channel drives. Below is a summary of a few of our results.

e Large-scale installation field usage appears to differ lyiffern nominal datasheet MTTF conditions.
The field failure rates of systems are significantly largantlone would expect based on datasheet
MTTFs.

e Forless than 5 year old drives, field failure rates are by tfaf 2—12 larger than what the datasheet
MTTF suggests. For 5-8 year old drives, field failure ratas lsa as much as a factor of 30 higher
than what the datasheet MTTF suggests.

e Changes in failure rates during the first 5 years of the lif&eware more dramatic than often assumed.
While failure rates are often expected to be in steady statear 2-5 of operation (bottom of the
“bathtub curve”), we observe a continuous increase infitates, starting as early as in the second
year of operation.
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The common concern that MTTFs underrepresent infant nityrtads led to the proposal of new
standards that incorporate infant mortality [27]. We findttthe underrepresentation of the early
onset of wear-out is a much more serious factor than undesseptation of infant mortality and
recommend to include this in new standards.

While many have suspected that the commonly made assuntgtiexponentially distributed time
between failures is not realistic, previous studies havefaund enough evidence to prove this as-
sumption wrong with significant statistical confidence [Based on our data analysis, we are able to
reject the hypothesis of exponentially distributed timensen failures with high confidence.

We identify as the key features that distinguish the emgliiecne between failure distribution from
the exponential distribution, a higher levels of varidapiland decreasing hazard rates. We find that
the empirical distributions are fit well by a Weibull distiion with shape parameter less than 1.

We also present strong evidence for the existence of ctimetabetween failures. In particular, the
empirical data exhibits significant levels of autocorrielatand long-range dependence.
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