
Appears in Proceedings of SIGMETRICS 2002 Conference, June 15-19, 2002, Marina Del Rey, California.

Analysis of Methods for Scheduling Low Priority
Disk Drive Tasks

Eitan Bachmat
Ben-Gurion University

Beer Sheva, Israel

ebachmat@cs.bgu.ac.il

Jiri Schindler
Carnegie Mellon University

Pittsburgh, PA, USA

jiri@andrew.cmu.edu

ABSTRACT
This paper analyzes various algorithms for scheduling low prior-
ity disk drive tasks. The derived closed form solution is applicable
to class of greedy algorithms that include a variety of background
disk scanning applications. By paying close attention to many char-
acteristics of modern disk drives, the analytical solutions achieve
very high accuracy—the difference between the predicted response
times and the measurements on two different disks is only 3% for
all but one examined workload. This paper also proves a theo-
rem which shows that background tasks implemented by greedy
algorithms can be accomplished with very little seek penalty. Us-
ing greedy algorithm gives a 10% shorter response time for the
foreground application requests and up to a 20% decrease in to-
tal background task run time compared to results from previously
published techniques.

1. INTRODUCTION
Many storage systems perform tasks that fall into two broad cate-
gories— high priority foreground tasks and low priority background
tasks. Foreground tasks are generated from a primary application
of the system such as online transaction processing (OLTP). Back-
ground tasks result from upkeep and maintenance activity and do
not contribute to the forward progress of the primary application.
When requests from these two types of tasks are scheduled concur-
rently (either when the system is always busy or when the back-
ground task must maintain a certain rate of forward progress) the
background requests have negative impact on the performance.

There are numerous examples of solutions that analytically express
the impact of background tasks on foreground activity [4, 8, 9, 22].
All these solutions focus on tasks that fall into a class of algo-
rithms that proceed sequentially from the beginning of the disk. We
call these algorithms ordered. In this paper, we analyze a class of
greedy algorithms that minimize the negative impact on response
times of foreground requests and yield shorter completion times
for the background activity. The analysis applies to disk scanning
applications running as background tasks such as scrubbing, data
backup, and rebuild, or to tasks that access only a portion of a disk
such as disk reorganization and virus detection.

Reducing the completion time and minimizing the performance im-
pact on foreground activity is particularly valuable for data rebuild
in RAID configurations [4, 10]. The observed 19.2% faster rebuild
time with our greedy algorithm shortens the window of opportu-
nity for data loss due to another disk failure when the system is in
degraded mode (i.e., rebuilding data after a disk failure). In addi-
tion, our greedy algorithm offers 10% shorter foreground request
response times than the ordered algorithm, allowing the system to
handle its load more gracefully when in degraded mode.

The analysis of methods for scheduling low priority disk drive tasks
presented in this paper makes three contributions. First, it gives a
closed form analytical solution to the class of greedy algorithms.
The main theoretical result of this analysis is Theorem 1 which
states that background tasks scheduled by greedy algorithms can be
serviced with very little seek penalty. Second, it analytically and
experimentally evaluates previously proposed algorithms for data
rebuilds in RAID systems and applies them to other background
tasks. And third, by paying close attention to many disk character-
istics including zero-latency access, head switch times, and detailed
seek profile and layout information, we observe a difference of at
most 3% between the model predictions and the measurements on
a real disk for all but one of the studied workloads.

The remainder of the paper is organized into three parts. Sec-
tions 2 and 3 identify various background tasks in storage systems
and summarize prior work in background task analysis. Sections 4
and 5 describe two background task algorithms and analyze their
performance using a variety of models. Section 6 gives both ana-
lytical and empirical results for the two algorithms and compares
them to the results of prior work.

2. BACKGROUND TASKS
Storage systems experience many different low priority background
tasks that occur simultaneously with high priority foreground activ-
ity. These background tasks are a result of preventive, maintenance,
and repair activities of the system, or simply tasks of a secondary
application whose performance is not as critical.

In RAID disk arrays [10], these activities include data integrity
checking, write-back, prefetching, and data rebuild after a disk fail-
ure. Data integrity checking, or RAID scrubbing, is a periodic ac-
tivity that verifies the integrity of the data stored on the disk to
identify problematic areas where unrecoverable errors might later
occur. Write-back is a process of moving data from a disk array’s
cache to the disk when the cache fills up or the number of dirty
blocks in the cache reaches a certain threshold. Reads have priority
over writes since a host is waiting for the data. Therefore, writes
can be considered a background task.

Tasks originating from a secondary application include activities
such as data reorganization (to optimize access times), reclamation
of fragmented space (e.g., log-structured file system cleaning [15]),
and a variety of scanning applications such as data backup, virus
detection, or data mining on a live OLTP system [14]. Lumb et
al. [7] describe in more detail various classes of background appli-
cations.

When scheduling a background request we must determine the size
of the request, its location, and timing with respect to the fore-
ground requests. Larger request sizes cause longer service times
with higher impact on the performance of the primary application.
Thus, background requests should be generated such that they in-
terfere with the foreground activity as little as possible.

First, setting the request size equal to the physical track size is a
good compromise between the background task progress and the
impact on foreground application [4, 8, 22]. It also achieves the
highest disk efficiency [3, 18], especially when combined with the
zero-latency access feature of modern disk drives, and simplifies
our analysis.

Recall that zero-latency access allows sectors on a single track to be
read out of logical block order. Thus, it takes at most one revolution
to read an entire track because the disk head can start reading data
as soon as it arrives at the destination track rather than waiting for
the logical beginning of the track. In comparison, a disk without
the zero-latency access feature will take, on average, one and a half
revolutions to read a single track.

Second, in deciding when to schedule the next background request,
one may schedule them at fixed time intervals or take into account
the load of the system. In this paper, we consider the case of issuing
the next background request as soon as the previous one finishes
irrespective of the load.

A third choice concerns the priority given to the background task
in the system’s queue. A background request can have the same
priority as foreground requests. This is known as the permanent
customer model [2] (one that reenters the queue once it is serviced)
and it has been analyzed extensively by others [4, 8, 22]. Another
choice is to give the background requests lower priority and service
them only when there is no other foreground request in the queue.
This is known as the vacationing server model [20].

The fourth choice centers around the issue of what data to access
next. In previous work on disk reconstruction in RAID systems,
the choice was simply to read the next unreconstructed unit [8, 22].
This choice is inevitable in the context of RAID5, where a parity
group is divided among N disks with N � 1 disks containing data
and one disk containing the parity information. When reconstruct-
ing a failed disk, allN�1 disks must be accessed to reconstruct the
N -th one. Since the disk heads of the N � 1 independent disks are
at different locations, each disk access will incur a seek regardless
of the order in which the data is reconstructed.

In RAID1 (i.e., two mirrored disks) reconstruction the data is read
from only one disk. Therefore, we can reconstruct data that are
closest to the current head position. This minimizes (or completely
eliminates) the seek penalty and thus lowers the access time for
the background reconstruction request and lessens the impact on
the foreground requests. Reading data opportunistically closest to
the current head position benefits any background disk scanning
application, not just RAID1 reconstruction.

3. RELATED WORK
Many researchers studied and analyzed data reconstruction algo-
rithms for RAID configurations using queueing theory, but their
analysis is only applicable to a specific disk configuration (i.e.,
RAID level).

Thomasian and Menon [22] provide extensive analysis of various
reconstruction policies for RAID5 systems using the vacationing
server model. All policies, which assume independent head move-
ment for all disks in the same parity group, collect data from the
same physical location on different disk drives. The seeks that
bring the disk heads to the same position may vary greatly and the
time spent seeking is essentially the maximum of several identi-
cally distributed random variables. They give the foreground re-
quests higher priority and thus issue a background reconstruction
request only when the RAID5 group of disks is idle.

Because of the need to bring all disk heads to the same position,
their analysis uses the fork-join estimates [21] and considers or-
dered reconstruction, which proceeds sequentially, starting at the
logical beginning of the disk, and maintains a pointer indicating
the position of the last recovered block.

We present an analysis of the greedy reconstruction using the va-
cationing server model which is applicable to a large class of disk
scanning background tasks including data reconstruction in RAID1.
However, it does not apply to the RAID5 reconstruction because of
the disk head independence assumption.

Merchant and Yu [8] devised a model for ordered data reconstruc-
tion for RAID1 using a variant of a permanent customer model.
Their disk queue, serviced in FCFS order, always contains one
background reconstruction task in addition to the foreground tasks,
giving the foreground and background requests the same prior-
ity. We extend their analysis of the permanent customer model to
greedy algorithms and compare it to the vacationing server model
described by Thomasian and Menon [22] and applied to RAID1.

Lumb et al. experimentally studied the performance of background
tasks issued to the disk drive [7]. Their freeblock scheduler issues
only those background requests that can be serviced within a ro-
tational latency between two foreground requests. Thus, the back-
ground requests have no impact on the performance of the fore-
ground application. Unfortunately, the freeblock scheduler cannot
serve as a general purpose background task scheduler since the re-
quest size is limited by the size of the opportunity window, result-
ing in long run times unacceptable for certain applications. The-
orem 1 in Section 5.4 provides a partial analysis of such heavily
constrained schedulers.

4. ALGORITHMS
We consider two classes of algorithms for issuing background tasks.
The first class, which we call ordered, is derived from other models
for data reconstruction in RAID1 and RAID5 disk arrays [8, 22].
The second class, which we call greedy, is a new alternative to the
ordered class that offers better performance.

For the remainder of the paper, we will consider the task of re-
constructing a disk after a failure in a mirrored system (RAID1)
and thus refer to the algorithms as ordered and greedy reconstruc-
tion. However, our analysis applies without loss of generality to
any scanning background task issuing requests to a single disk.

We choose a single track as a unit of reconstruction. While this
may complicate the implementation as disks have different number
of sectors per track for different zones, the time to read a track is
always the same and thus useful in our analysis. We will address
the issue of disk zones in Section 6.

4.1 Ordered algorithm
The ordered reconstruction algorithm reads data sequentially from
a primary disk and keeps a pointer to the next unreconstructed
track. A single background request is thus a read of a single track
marked by the pointer:

1. Point to the first track on the disk.
2. When it is time to service a reconstruction request, read the

unreconstructed track marked by the pointer.
3. Advance the pointer to the next track.
4. If the entire disk has not yet been read, return to 2.

4.2 Greedy algorithm
The greedy reconstruction algorithm chooses the unreconstructed
track near the current head position and works as follows:

1. Maintain the head position by observing the location of the
last foreground request.

2. When it is time to service a reconstruction request, read the
unreconstructed track closest to the current head position.

3. Mark the track as reconstructed.
4. If the entire disk has not yet been read, return to 1.

Unlike the ordered reconstruction algorithm, which requires only a
single pointer, this algorithm must keep a table of the tracks recon-
structed so far. However, using a single bit for each reconstructed
track on a modern 72 GB disk requires only about 60 KB of mem-
ory.

5. ANALYSIS
We analyze the ordered and greedy algorithms using two different
models—the vacationing server and the permanent customer mod-
els. The ordered algorithm analysis is based on previous work. The
greedy algorithm analysis is our original work and is based on mod-
els well known in the queueing theory community. We apply these
models to the particulars of disk drive characteristics.

Our analysis of the ordered reconstruction with vacationing server
model is derived from the work of Thomasian and Menon [22]. We
make minor adjustments to their analysis and apply it in the broader
context of background tasks. We do not include a presentation of
the permanent customer model of ordered reconstruction as we can
directly apply the results of Merchant and Yu [8].

In our discussion we assume that the access pattern for the fore-
ground requests is random and uniform over the entire disk, the
request inter-arrival times are exponentially distributed with param-
eter �, and that the request size is fixed and small (on the order of
several KB).

5.1 Definitions
A foreground read request consists of a seek, whose duration we
denote by K, some rotational latency L, and data transfer. We as-
sume that the request size is fixed and small and hence the media
transfer time is a small constant which we denote by X . Then, the
mean time to service a request isE[S] = E[K]+E[L]+E[X]. As-
suming that the seek time K can be computed by equation F (d) =

A+Bd as a function of cylinder distance d, where 0 � d � 1, the
expected service time becomes

E[S] = A+B=3 +R=2 +X (1)

given the random uniform request distribution, the average seek
distance d is 1=3 with an average rotational latency of half a revo-
lution R (E[L] = R=2).

The distribution of seek time from a certain radial location r (which
we assume by symmetry to satisfy r � 1=2) to a random location
is given by the PDF Jr , whose density J 0r(t) is given by the for-
mula1

J 0r(t) =

�
2
B

if A � t � A+ rB
1
B

if A+ rB � t � A+ (1� r)B
(2)

5.2 Vacationing server model
In the vacationing server model we consider an M/G/1 server (ex-
ponential inter-arrival, general service time PDF, single server) with
a FCFS queue. Foreground requests arrive to the server with arrival
rate � and the request service time is S. When the queue contains
no foreground requests (i.e., the queue is empty), the server takes
a vacation. In our case a vacation is the service of a single back-
ground request.

The length of the first vacation is given by a PDF V1. During
that vacation no service is provided to the incoming foreground
requests. If there is no request in the queue upon the completion
of the first vacation, the server takes another vacation with length
given by the PDF V2. More generally, if the request queue is empty
upon the completion of the i-th vacation, the server takes a vacation
with PDF Vi+1, whose Laplace transform V � is defined as

V �

i (t) =

Z
1

0

e�txV 0i (x)dx: (3)

A busy period of the server starts with the arrival of a foreground
request to an empty queue and ends when all foreground requests in
the queue have been serviced and the queue is empty again. There-
fore, a vacation occurs only at the end of a busy period. A busy
cycle is thus the time between the starts of two consecutive busy
periods, that is, it is a sum of all service times of the foreground
requests in the queue and all vacations taken by the server after the
queue is emptied.

5.2.1 Ordered algorithm
Ordered reconstruction is modeled by a two vacation model where
all the vacations starting from the second are equally distributed,
that is, V2 = V3 = ::: = Vi for all i > 1. The first vacation in
the ordered reconstruction includes a seek to the location that was
last reconstructed and reading the blocks of one reconstruction unit.
Therefore, V1 = Jr(t) +R when the reconstruction unit is exactly
one track of a zero-latency disk. For disks that do not implement
zero-latency reads V1 = Jr(t) + 3R=2.

The calculations in this paper assume zero-latency disks and thus
use the former expression for V1. Also note that adding the deter-
ministic random variable R to Jr has the same effect as changing
the term A to A + R in the seek time function F (d). Thus, in all

1For a general seek time function t = F (d) we have J0r(t) =
2=(F 0(F�1(t))) if F (0) � t � F (r) and J 0r(t) =
1=(F 0(F�1(t))) for F (r) � t � F (1 � r), where F�1 refers
to the inverse function which exists when F is strictly increasing.

computations regarding Jr , replacing A by A + R will give the
correct result for Jr +R.

Any vacation for i > 1 consists of head repositioning to the next
track, which incurs a head switch or possibly a one-cylinder seek,
and reading of the data from the track. Thus, Vi = H + R, where
H is the head switch time or one-cylinder seek time which are the
same in today’s high-end SCSI disks [13, 19].

The first request in a busy cycle has an exceptional service time Si
as it has to wait for the i-th vacation to finish. Since the disk head
position at the end of the vacation is approximately the same as it
was at the start of the vacation and the foreground requests are ran-
domly and uniformly distributed across the entire disk, we use the
seek distribution Jr to determine the seek portion of the first fore-
ground request in a busy cycle. We approximate the moments of
the waiting time of the first request by the moments of the residual
vacation time as

Æi;j =
i+1;j

(i+ 1)i;j
(4)

where i;j is the i-th moment of the j-th vacation and Æi;j is the
i-th residual moment of the j-th vacation as defined by [6, 20].

The probability of no request arrival during the first vacation period
isZ

1

0

�
1 �

�
1 � e��t

��
dJr(t) =

Z
1

0

e��tdJr(t) = J�r (�)

Hence, the probability that the first request in a busy cycle arrives
during the first vacation is 1�(Jr+R)�(�). The mean service time
for the first foreground request that arrived during the i-th vacation
(including the waiting time until the end of the vacation) is

E[Si] = Æ1;i +E[Jr] +R=2 +X (5)

where Æ1;i is the expected residual duration of the i-th vacation,
E[Jr] is the expected seek time from the location r of the head
after the vacation, and R=2 and X the expected rotational latency
and transfer time, respectively, of the request. A simple calculation
yields

E[Jr] =

Z A+rB

A

2t

B
dt+

Z A+(1�r)B

A+rB

t

B
dt

= A+ (
1

2
� r + r2)B (6)

and

E[J2
r] =

(A+ rB)3 + (A+ (1� r)B)3 � 2A3

3B
(7)

Now, we can express the first residual moment for the first vacation

Æ1;1 =
2;1
21;1

=
E[(Jr +R)2]

2E[Jr +R]
=

(A+R+ rB)3 + (A+R+ (1� r)B)3 � 2(A+R)3

6B
�
A+R+ (1

2
� r + r2)B

�
and the first residual moment for the second vacation

Æ1;2 =
V 2
2

2V2
=

(H +R)2

2(H +R)
=
H +R

2
(8)

From Equation 2.2.33 in [20], the mean duration of a busy period
after the server took an i-th vacation is

Di =
E[Si]

1� �
(9)

where � = �E[S] = �(A+B=3+R=2+X). During such a busy
period, the first request is serviced with mean service time E[Si]
and all other requests are serviced with mean service time E[S].
Hence the average number of requests which are serviced during a
busy cycle is

Ni = 1 +

E[Si]

1��
�E[Si]

E[S]
= 1 +

�E[Si]

1� �
(10)

The mean response time for requests in a busy period is by Equation
2.2.40a in [20]

E[Ti] =
�E[S2]

2(1 � �)
+
�(E[S2

i] �E[S2])

2(1 + �E[Si] � �)
+

+
E[Si]

1 + �E[Si]� �
(11)

The first term comes from the Pollaczek-Khinchine formula, the
second is a correction to the formula coming from the first excep-
tional request and the third term is the mean service time.

Before we can calculate E[Ti] explicitly, we need to express the
terms E[S2] and E[S2

i]. Recalling that the service time S is the
sum of seek time K, latency L, and transfer time X , the second
moment of service time E[S2] = E[(K + L + X)2]. Since all
three components are independent of each other, we only need to
find the densities and second moments of K, L, and X . Thus2,

K0(t) =
2(A+B � t)

B2
for A � t � A+B

L0 =
1

R
for 0 � t � R

and

E[K2] =
2

B2

Z A+B

A

(A+B � t)t2dt = A2 +
2AB

3
+
B2

6

E[L2] =
1

R

Z R

0

t2dt =
R2

3

Since the transfer time X is by our assumption deterministic, its
density and second moment are 0 and X2, respectively. Therefore,

E[S2] = E[(K + L+X)2]

= A2 +
2AB

3
+
B2

6
+
R2

3
+R

�
A+

B

3

�
+

+ 2X

�
A+

B

3

�
+RX +X2 (12)

Finally, we express the second moment of the exceptional service
time, E[S2

i], to get

E[S2
i] = E[(�i + Jr + L+X)2]

= �2
i + 2�iJr + J2

r +�iR+ JrR+

+
R2

3
+ 2�iX + 2JrX +RX +X2 (13)

where �i = Æ1;i and �2
i = Æ2;i. All the terms have been computed

except for Æ2;i. For i = 2, �2
i = Æ2;2 = (H+R)=3, and for i = 1,

2For a general seek function t = F (d) we have K0(t) = 2(1 �
F�1(t))=(F 0(F�1(t))).

we can compute Æ2;1 from Equation 4. Thus,

Æ2;1 =
3;1
32;1

=
E[(Jr +R)3]

3E[(Jr +R)2]
=

(A+R+ rB)4 + (A+R+ (1� r)B)4 � 2(A+R)4

4((A+R+ rB)3 + (A+R+ (1� r)B)3 � 2(A+R)3)

The mean time between the start of two consecutive busy periods,
Z, is given by

Z =
1

�
+
E[Si]

1� �
(14)

The average number of vacations, M , taken between these two
busy periods is M =

P
1

i=1 ipi, where pi is the probability that
i vacations were taken. For ordered reconstruction with two types
of vacations

p1 = 1� V �

1 (�)

pi = (1� V �

2 (�))V
�

1 (�)V
�

2 (�)
i�2 for i > 1

and therefore

M = 1 +
V �

1 (�)

1� V �

2 (�)
(15)

If V1 = V2 = V (i.e., when all vacations taken after a busy period
are the same), M = 1=(1� V �(�)).

It is easy to see that the average reconstruction time of a single
track at radius r is the average time between the starts of two busy
periods, Zr , divided by the average number of tracks reconstructed
during a single busy cycle, Mr .

There are two types of busy periods that depend on the type of
vacation taken when the first request of the busy period arrived.
We denote their durations as D1 and D2 and compute them by
Equation 9. Furthermore, since the arrival process is exponential,
the average time between the end of a busy period and the start of
a new one is 1=�. Thus,

Zr =
1

�
+ p1D1 + (1� p1)D2

=
1

�
+ (1 � (Jr +R)�(�))D1 + (Jr +R)�(�)D2

To compute the total reconstruction time, Ttotal , we sum over all
radii and multiply by the number of tracks being reconstructed to
get

Ttotal = Ntracks

Z 1

0

Zr
Mr

dr (16)

The vacationing server formulas allow us to compute this time ex-
plicitly, where

V �

1 (�) =
e��(A+R)

�B

�
2� e��rB � e��(1�r)B

�
V �

2 (�) = e��(H+R)

To calculate the average response time of the foreground request,
E[T], when the process is at radius r, we look at the average num-
ber of requests serviced during a busy cycle, Ni, which was ex-
pressed by Equation 10. To express E[T] more conveniently we
define Qi = (1� �)Ni = 1� �+ �E(Si) and have

E[T] =
(1� V �

1 (�))Q1E[T1] + V �

1 (�)Q2E[T2]

(1� V �

1 (�))Q1 + V �

1 (�)Q2
(17)

Having defined previously all the terms in this equation, we can
compute explicitly the mean response time of the foreground re-
quest.

5.2.2 Greedy algorithm
The analysis of the greedy reconstruction algorithm is simpler if
we make two assumptions:

(i) we can find an unreconstructed track very close to the current
head position

(ii) after reconstructing the i-th track, we do not have to seek far
to reconstruct another track.

These two assumptions, which are closely related (the second is an
iteration of the first), allow us to apply a single vacation model with
Vi = H +R and to compute Z and M .

To compute the average response time of the foreground request,
we use the expected wait time E[W] = �E[S2]=(2(1��))+ Æ1;1
from equation 2.2.14a of [20] and get

E[T] = E[S] +E[W] = E[S] +
�E[S2]

2(1 � �)
+
H +R

2
(18)

where E[S] is expressed in Equation 1 and E[S2] in Equation 12.

Finally, the time needed to reconstruct a single track, E[Ttrack],
is the same as the average response time of a background request.
Thus, using the equation from [20] for calculating the average du-
ration of a vacation, we get

E[Ttrack] =
E[V]

1� �
=
H +R

1� �
(19)

5.3 Permanent customer model
The queue of the permanent customer M/G/1 service center always
contains a single background request (i.e., “customer”). As soon
as a background request is serviced, a new one is inserted into the
FCFS queue. Both foreground and background requests have the
same priority.

5.3.1 Ordered algorithm
The analysis of the ordered reconstruction using a permanent cus-
tomer model has been done previously by Merchant and Yu [8].

5.3.2 Greedy algorithm
To analyze the greedy algorithm for the permanent customer model
we can apply the gated service vacationing server model [20]. Us-
ing the equation for the mean response time in the gated service
vacationing server (equation 2.5.24a in [20]), we get

E[T] = E[S] +
�E(S2)

2(1� �)
+ Æ1;1 +

�(H +R)

1 � �
(20)

Compared to Equation 18, which calculates the response time in
the greedy vacationing server model, this expression includes an
additional term. Thus, the response time of the foreground request
using the vacationing server model will always be better. This is
not surprising because the vacationing server model gives the fore-
ground tasks higher priority, while the permanent customer model
treats the foreground and background requests equally.

As before, the average time needed to reconstruct a single track in
the permanent customer model, E[Ttrack], is equal to that of the
vacationing server model. Hence, there is no benefit in making

Suppose there are 16 locations to be reconstructed (N = 16), X12 = 10, and that the locations 0; 2; 3; 5; 6; 8; 9; 10; 11; 14; 15 are already
marked. We first check for k = 0 if the interval I10;0 = f10g is fully marked. It is and so are the intervals I10;1 = f10; 11g and
I10;2 = f8; 9; 10; 11g for k = 1 and k = 2. We then consider I10;3 = f8; 9; 10; 11; 12; 13; 14; 15g and find out that in that dyadic interval
12 and 13 are unmarked. We then randomly choose one of them, say 13, as Y12.

Figure 1: An example of a dyadic algorithm.

the priority of the background and foreground requests the same,
especially since the mean response time, E[T], of the foreground
request is affected more than in the vacationing server model.

These results seems at first to contradict the “no free lunch the-
orem” [6] which states that, in a non-preemptive priority system
where the arrival and service times of requests are independent of
the priorities, a weighted average of the response times for the pri-
ority classes is independent of the priorities. However, since the
arrival times in the permanent customer model are not independent
of the priority assignment, the assumptions of the theorem do not
hold and thus the theorem does not apply. Other cases, in which the
dependence of service time on priorities leads to similar anomalies,
have been observed by other researchers [1, 20].

5.4 Assumptions for the greedy algorithm
We now discuss the assumptions in Section 5.2.2 that helped us
with the analysis of the greedy reconstruction algorithm. Specifi-
cally, we prove a theorem which states that, until the very end of
the reconstruction process, all background request seeks are at most
logarithmic (in the number of tracks).

Consider a disk withN tracks and assume that (j�1) tracks, whose
locations are T1; :::; Tj�1, have already been reconstructed. LetXj

be the location of the disk head before the reconstruction of the j-th
track. If the j-th track is the first one to be reconstructed after a busy
period, then Xj is a uniformly distributed random location on the
disk. Otherwise, the j-th track is reconstructed immediately after
the (j � 1)-th track in the same vacation period and Xj = Tj�1.
We define Sj = jTj � Xj j to be the seek distance to the j-th
background request’s location.

A dyadic interval of order k is a set of all integers whose binary
representation is yz with a fixed bit pattern y and a variable bit
pattern z of length k. Stated otherwise, a dyadic interval of order k
consists of all integers in the range y2k; y2k+1; : : : ; y2k+(2k�1).
For a given k and a given integer X , we denote by IX;k the dyadic
interval of order k containing X . Note that dyadic intervals of the
same order are either disjoint or equal.

Using our notation, we now define a variant of the greedy algo-
rithm, called dyadic, that is easier to analyze than the greedy algo-
rithm in Section 4.2. Given Xj , search for the minimal k for which
a dyadic interval IXj ;k is not fully marked. To obtain Tj , randomly
choose an unmarked integer from the interval IXj ;k as shown in
the example listed in Figure 1. Note that any observations about
the dyadic algorithm apply to the original greedy algorithm, be-
cause the track chosen by this algorithm may be even closer to the
current head position than the one chosen by the dyadic algorithm.

An important property of the dyadic algorithm is that Ti is cho-
sen from the interval IXi;k only if IXi;k�1 is fully marked (i.e., all
locations closer to Xi have already been reconstructed). This prop-
erty is important for proving the following theorem that validates
our assumptions of the greedy algorithm.

THEOREM 1. Consider a greedy reconstruction process imple-
mented by the dyadic algorithm using the vacationing server model.
Then there exist constants s1(c) and s2(c) dependent on c with
0 < c < 1 such that, with high probability, it is possible to recon-
struct cN tracks with average seek s1(c) and without ever seeking
more than s2(c) lnN tracks.

We first prove this theorem for the case when the server only takes a
single vacation between busy periods. We then show how to adjust
the argument to the more general case where more than one track
is reconstructed after a single busy period, thus validating both as-
sumptions about the greedy algorithm.

PROOF. For a given k, let j(k) = cN be the first time index
for which Sj > 2k�1. This implies that Tj is not in IXj ;k�1 and
hence, by the main property of the dyadic algorithm, IXj ;k�1 is
fully marked at time j(k). Let = be the first interval of order k� 1
which was fully marked.

We show that with high probability no interval of size greater or
equal to

��1= ln ce1�c
�
lnN is fully marked. Hence this interval

size bounds the maximal seek distance up to the reconstruction of
cN tracks. To show this, we express the probability of a given
interval of order k� 1 being fully marked and determine when this
probability is o(1=N). Since there are at most N=2k�1 intervals of
order k� 1, this will ensure that with probability 1� o(1) none of
them are marked.

Let = = fyk�12
k�1; yk�12

k�1 + 1; : : : ; (yk�12
k�1+ (2k�1 �

1))g, tm be the time in which Ytm = zk�12
k�1 +m was marked,

and let tm � j(k) with m 2 f0; : : : ; 2k�1 � 1g. We claim that
Xtm 2 = for all m. We call intervals with this property self-
marking.

Assume that for some m, Xtm =2 =. Then IXtm ;k�1 is a dyadic
interval of order k � 1 that differs from = and hence is disjoint
from it. We conclude that Ytm is not in IXtm ;k�1. However, the
main property of the dyadic algorithm implies that IXtm ;k�1 was
already fully marked at time tm, contradicting the definition = as
the first fully marked interval of order k�1. Conversely, if there are
2k�1 time indexes all less than or equal to j(k) for whichXti 2 =,
then by time j(k), = is fully marked.

Let l = 2k�1 be the probability that exactly l pointsXt0 ; : : : ; Xtl�1

fall in the interval =, as given by a Binomial(cN; l=N) distribu-
tion, which we denote B and define as

P (B = l) =
(cN)!

l!(cN � l)!

�
l

N

�l�
1� l

N

�cN�l

� (cl)l

l!
e�lc

�
1� l

N

�
�l

For the purposes of the proof, let l be of the form s lnN with s be-
ing a constant not dependent on N . Then, the last factor in the ex-

pression for P (B = l) is approximately equal to one. Thus we can
ignore it and our estimate for P (B = l) becomes a Poisson(cl)
that we denote by C.

For our claim that = will be fully marked after cN steps, we are
interested in the probability P (C = l). Since we do not want any
of the dyadic intervals of order k � 1 to be fully marked, we want
this probability to be o(1=N).

Using Stirling’s approximation, we get

P (C = l) =
(cl)l

l!
e�cl �

� c

ec�1

�l
(2�l)�1=2

Letting l = s lnN , qc = ce1�c, and ignoring the non-dominant
term (2�l)�1=2, we get P (C = s lnN) � qs lnNc = Ns ln qc

Since ex � x + 1, we observe that qc < 1. Setting s ln qc < �1
gives the inequality s > �1= ln qc > 0 from which we can express
the upper bound on the seek distance as

s2(c) =
�1

ln qc
=

1

c� 1� ln c

To prove the assertion regarding s1(c) we need the following com-
binatorial lemma which can be proved using an inductive argument
from the main property of the dyadic process.

LEMMA 1. Let I be a dyadic interval of size 2k . For all m > k
let Im be a unique dyadic interval of size 2m which contains I .
Assume that I became fully marked at time t and that I was not
self marking. Then, there exists a self marking dyadic interval I0,of
the form Im � Im�1, which became fully marked at time t0 < t.

Sj > l only if I = I(Xj ; k) is fully marked. By the lemma,
either I was self marking, or a specific interval of size 2m�1 =
l2m�1�k � l was self marking. From our previous computa-
tion, the probability that a dyadic interval of size l0 (where l0 =

l2m�1�k) is self marking by time j is approximately (2�l0)�1=2ql
0

c .
Summing over all possibilities we obtain the estimate

P (Sj > l) � (2�l)�1=2qlc +
1X
h=1

�
2�l2h

�
�1=2

ql2
h�1

c

� (2�l)�1=2

qlc +

1X
h=1

qlhc

!

� 2(2�l)�1=2

�
qlc

1� qc

�

� 2qlc
1� qc

:

Using this estimate for all 2k � h < 2k+1 we obtain the following
bound on the average seek at time j

s1(c) =
1X
h=0

hP (Sj = h) � 2

1� qc

1X
i=0

lqic

=
2

(1� qc)

1

(1� qc)2

=
2

(1� cec�1)3

Next we demonstrate how to extend the results to the situation when
Xj = Tj�1. Since we derived s1(c) from the existence of s2(c), it

is sufficient to establish the existence of the latter constant. Since
reading a single track takes H + R time, the number of tracks re-
constructed between busy periods is essentially exponentially dis-
tributed with parameter �1 = �(H + R) because of the exponen-
tially distributed foreground request arrival times.

Instead of considering the maximal seek after j = cN tracks have
been reconstructed, we consider the maximal seek after cN�1 va-
cation periods. By the law of large numbers, the number of tracks
reconstructed during those periods is essentially equal to j = cN ,
so this change is immaterial.

Repeating our arguments from the previous case, the number of va-
cation periods that began with the disk head positioned in a dyadic
interval I of size l may be approximated by a Poisson(c�1l) dis-
tribution. Since each vacation period entails an exponentially dis-
tributed number of track reconstructions, we need to estimate the
probability that the sum of (approximately) c�1l exponential dis-
tributions with parameter �1 will be greater then l.

This sum has a Gamma distribution and the probability of our in-
terest is given by

e��1l
�
1 + �1l+

(�1l)
2

2!
+ ::: +

(�1l)
c�1l

(c�1l)!

�
:

Since c < 1, this distribution is dominated by the last term, which,
by Stirling’s formula, has order of magnitude rlc =

�
ec�1=cc

��1l.
Hence, s2(c) = �1= ln rc and we express s1(c) as before.

The dyadic reconstruction algorithm is closely related to linear probe
hashing. The main difference is that linear probe hashing assumes
a circular geometry where bins (disk drive tracks) 0 and N � 1 are
adjacent to each other. The circular symmetry allows exact calcula-
tions of the maximal seek distance for the hashing (reconstruction)
process [11, 12] . Because the tracks of a real disk are not laid
out in this way, we had to use the dyadic algorithm to avoid costly
full-strobe seeks between tracks 0 and N � 1.

Despite the difference in geometry, our maximal seek distance cal-
culations are in complete agreement with previous work on linear
probe hashing with sparse tables [12]. Our average seek calcula-
tions lead to the same orders of magnitude as those of linear probe
hashing [5].

6. EVALUATION
This section compares the performance of the ordered and greedy
algorithms. We show numerical results for the analytic solutions
presented in Section 5 and validate those against measurements of
an experimental system with a SCSI disk connected to a PC work-
station.

6.1 Experimental setup
All experiments were performed on a 550 MHz Pentium III PC
workstation with 128 MB of memory running the Linux 2.4.2 ker-
nel. We report results for Quantum Atlas 10k II and Seagate Chee-
tah X15 disks. Both disks were connected via an Adaptec AHA-
7892A 160 MB SCSI adapter. Basic characteristics of the two disks
are listed in Figure 2(a).

We wrote a user-level application that generates both foreground
and background requests. In this application, the background task
is a full disk scan which is the same as RAID1 reconstruction after

Quantum Seagate
Atlas 10k II Cheetah X15

RPM 10000 15000
Head switch 0.6 ms 0.8 ms
Avg. seek 4.7 ms 3.9 ms
Zero-latency yes no
Cylinders 13630 10377
Surfaces 3 10
Sectors/track 353—528 286—386
Capacity 9 GB 18 GB

(a) Disk Characteristics.

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7

8
Quantum Atlas 10k II Seek Profile

Seek Distance [Cylinders]

S
ee

k
T

im
e

[m
s]

disk seek curve
approximation

(b) Quantum Atlas 10k II.

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8
Seagate Cheetah X15 Seek Profile

Seek Distance [Cylinders]

S
ee

k
T

im
e

[m
s]

disk seek curve
approximation

(c) Seagate Cheetah X15.

Figure 2: Characteristics of disks used in the experiments. The graphs plot the seek time as a function of distance in cylinders. The
dashed line shows best fit to the linear portion of the seek curve. The vertical line shows the cutoff point.

a disk failure. Thus, when all blocks of the disk are collected, the
application stops. The requests are directly issued to the disk via
Linux’ SCSI generic driver, thus bypassing the file system cache.

The foreground requests are uniformly distributed across the entire
disk and have exponential inter-arrival rates. The size of each re-
quest is 4 KB. The application issues only one request at a time
to avoid possible reordering at the disk and keeps the remaining
outstanding requests in its internal queue.

Background requests are issued by the greedy or ordered algorithm
according to the vacationing or permanent customer models. The
request sizes are set to read the full track and are adjusted to account
for different numbers of sectors per track for different disk zones.
Using the precise layout information obtained from the disk by the
DIXtrac tool [17] ensures that a single background request never
crosses a track boundary even when the track contains defects or
spare sectors. The application is instrumented to measure response
times and to keep various statistics about queue depths and seek
distances. The seek distances were obtained from the information
DIXtrac provides.

6.2 Numerical results
To numerically evaluate the results of our analysis in Section 5, we
first need to determine the values for the model parameters. From
the Atlas 10k II disk characteristics listed in Figure 2(a) we have
H = 0:6 ms, X = 0:1 ms, and R = 6:0 ms. To determine
the values for parameters A and B, we approximate the real disk
seek profile (depicted in Figure 2(b)) with a piecewise seek equa-
tion described by Ruemmler and Wilkes [16]. The piecewise seek
equation F (d) for seek distance d is defined as

F (d) =

�
A+Bd for d � C

D +E
p
d for 0 < d < C

Using linear best fit to the Quantum Atlas 10k II seek profile and
normalizing for 0 < d � 1, we determine C = 0:0587 (800 cylin-
ders), A = 3:02, and B = 4:77. The dashed line in Figure 2(b)
shows the best fit for the linear portion of the seek curve.

The numerical results for the vacationing server model with ordered
and greedy algorithms are shown in Table 1(a) under the column
basic model. The table lists, for a given arrival rate of foreground

requests � (and the corresponding load � = �E[S] withE[S] com-
puted from Equation 1), the average response time of a foreground
request with r = 0:25. This value of r corresponds to an aver-
age seek of 1/4 cylinders after a vacation. Varying r from 0.15 to
0.5 (the maximal value for our assumptions) yields response time
differences of only a few tenths of a millisecond.

The greedy algorithm yields 7.3%–10.6% shorter response times
for � � 0:77 (� � 100) and 3.1% for � = 0:93 (� = 120).
However, note that for high loads of the system (� > 0:62, � >
80), the average response time grows to 25 and 63 ms.

6.3 Experimental results
Using our experimental setup, we measured the response times and
total run times for both the vacationing server and permanent cus-
tomer models using ordered and greedy algorithms with different
arrival rates of foreground requests. The results from these mea-
surements of the Atlas 10k II disk are summarized in Figure 3. The
first graph shows the average of the observed foreground request
response times as a function of arrival rate �. The second graph
shows the total run time for a given model and algorithm used. The
individual data points in both graphs represent an average of three
runs.

6.3.1 Response time
With increasing arrival rate of foreground requests, �, the average
response time of a foreground request increases for both the or-
dered and greedy algorithms. For the vacationing server model, the
average response time of the foreground task is 3.8%–6.6% better
when the greedy algorithm is used instead of the ordered algorithm.
Similarly, the greedy algorithm with the permanent customer model
yields 6.3%–14.7% better average response time than the ordered
algorithm.

For all loads, the permanent customer model with ordered recon-
struction gives worse average response time for the foreground re-
quests than the vacationing server model for both greedy and or-
dered reconstruction. And finally, for a given load, the foreground
requests mean response time for the greedy algorithm is always
smaller than for the ordered reconstruction for both vacationing
server and permanent customer models.

Avg. Response Time [ms]
Workload basic model model with bus transfer experiments
� � Ordered Greedy % diff Ordered Greedy % diff Ordered Greedy

20 0.15 12.92 11.77 9.8% 13.91 12.98 7.2% 13.48 13.10
40 0.31 14.22 12.86 10.6% 15.04 14.07 6.9% 14.87 14.08
60 0.46 16.13 14.58 10.6% 16.78 15.78 6.3% 16.62 15.67
80 0.62 19.39 17.70 9.6% 19.91 18.90 5.4% 19.85 18.40

100 0.77 26.86 25.02 7.3% 27.26 26.22 3.9% 26.37 24.84
120 0.93 65.04 63.08 3.1% 65.33 64.38 1.6% 53.88 51.24

(a) Quantum Atlas 10k II.

Avg. Response Time [ms]
Workload basic model model with bus transfer experiments
� � Ordered Greedy % diff Ordered Greedy % diff Ordered Greedy

20 0.13 11.27 10.60 6.4% 13.54 13.04 3.8% 13.30 13.01
40 0.29 11.87 11.34 4.7% 14.16 13.94 1.6% 14.85 14.05
60 0.43 12.81 12.40 3.3% 15.28 15.28 0.0% 15.72 15.46
80 0.57 14.38 14.08 2.1% 17.33 17.52 1.1% 17.43 17.80

100 0.72 17.29 17.09 1.2% 22.68 22.03 1.6% 22.86 22.30
120 0.85 24.28 24.09 0.5% 35.21 35.69 1.4% 36.44 36.23

(b) Seagate Cheetah X15.

Table 1: Vacationing server model numerical results. The tables list the mean response time of a foreground request for different
arrival rates � (requests/s) for the vacationing server model with ordered and greedy algorithms with r = 0:25. The % diffvalues
show improvement of greedy over ordered. The columns basic model and model with bus transfer list numerical solutions with bus
transfer U set to 0 and to the disks’ respective values of 2.4 and 2.2 ms. The column experiments shows the values measured on a real
disk.

The average response time for the background requests using the
greedy reconstruction algorithm with the vacationing server model
is 9.6 ms. This consists of a 0.6 ms head switch, 6.0 ms rotation and
media transfer, 2.4 ms bus transfer, and 0.6 ms system overhead.
In comparison, the average response time of background requests
for the ordered reconstruction with the vacationing server model is
11.4 ms because it includes a seek time for moving to the location
just beyond the last reconstructed track.

6.3.2 Total reconstruction time
In addition to achieving better average response time, the greedy
algorithm with the vacationing server model yields shorter total re-
construction time. Compared to ordered reconstruction, the im-
provement of total run time for the greedy reconstruction ranges
from 4.9% for � = 0:15 (� = 20), to 19.2% for � = 0:62
(� = 80). For higher loads, the improvement is even greater.

The comparison of the reconstruction policies under different mod-
els gives an interesting result. For light loads (� � 0:62), the to-
tal reconstruction time of the greedy algorithm with the permanent
customer model is at most 2.1% longer than that of the greedy al-
gorithm under the vacationing server model.

This surprising result is completely consistent with our analysis
which predicted equal completion times. For high loads (� > 0:9),
however, the total reconstruction time of the greedy permanent cus-
tomer model is shorter by 43%, giving an interesting trade-off be-
tween total reconstruction time and performance of foreground ap-
plications.

6.4 Validation of analytical solutions
To be able to directly compare the numerical results of our ana-
lytical models with the measured response times, we introduce an
additional parameter, U , which corresponds to the bus transfer time
of the reconstruction unit. Thus we get V1 = Jr(t) + R + U for
the first vacation and Vi = H +R+U for the i-th vacation. From
measurements on our experimental setup, U = 2:4 ms given an
average track size of 200 KB for the Atlas 10k II disk.

With the exception of the values for � = 0:93 (� = 120), the av-
erage response time for foreground requests obtained numerically
and listed in Table 1(a) under the column labeled model with bus
transfer differs from the experimental results listed in column ex-
periments by at most 3% for both greedy and ordered vacationing
server model. This favorable comparison thus validates our analyt-
ical model.

Notice that the numerical results for the basic model showed an
average response time reduction of 10% for the greedy algorithm
compared to the ordered algorithm, while for the model with bus
transfer, the benefit is only 6%. However, when a background task
does not need to transfer the data from the disk to the host, as is
typically done in disk scrubbing implemented by the SCSI VERIFY

command, we still expect the full 10% reduction in response time.

6.5 Results for other disks
We repeated the same experiments for an 18GB Seagate Cheetah
X15 disk. Using the seek profile in Figure 2(c) and the data in
Figure 2(a), we determined the values of the model parameters to
be C = 0:17 (1800 cylinders), A = 2:95, B = 4:83, H = 0:8 ms,

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90
Quantum Atlas 10k II − Foreground Requests

λ [arrivals/s]

A
vg

. R
es

po
ns

e
T

im
e

[m
s]

PC ordered
PC greedy
VS ordered
VS greedy

20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000
Quantum Atlas 10k II (9GB)

λ [arrivals/s]

R
ec

on
st

ru
ct

io
n

T
im

e
[s

]

VS ordered
PC ordered
VS greedy
PC greedy

(a) Quantum Atlas 10k II.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90
Seagate Cheetah X15 − Foreground Requests

λ [arrivals/s]

A
vg

. R
es

po
ns

e
T

im
e

[m
s]

PC ordered
PC greedy
VS ordered
VS greedy

20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000
Seagate Cheetah X15 (18GB)

λ [arrivals/s]

R
ec

on
st

ru
ct

io
n

T
im

e
[s

]

VS ordered
PC ordered
VS greedy
PC greedy

(b) Seagate Cheetah X15.

Figure 3: Foreground request mean response time and total reconstruction time measured on a real disk. The x-axis show the fore-
ground requests arrival rate � (requests/s). The data labeled PC is for the permanent customer model and VS is for the vacationing
server model.

X = 0:1 ms, R = 4 ms, and U = 2:2 ms (the Cheetah X15 disk
has fewer sectors per track). Since this disk does not implement
zero-latency access, we use V1 = Jr(t) + 3R=2 + U .

The numerical results for the Cheetah X15 vacationing server model
are displayed in Table 1(b). The trends are similar to the Atlas
10k II disk. However, there are a couple of interesting points. No-
tice that the greedy algorithm performs only slightly better than the
ordered one (0%–3.8% for the model with bus transfer).

Since the Cheetah X15 disk does not implement zero-latency ac-
cess, reading the track immediately next to the current head po-
sition still includes an average rotational latency of 2 ms (half of
revolution). Note that the foreground response times are smaller
than those of the Atlas 10k II disk, because the disk rotates at
15,000 RPM. Thus, the load on the disk is smaller given the same
arrival rate �.

The experimental results are displayed in Figure 3(b). Again, the
trends are similar to the trends for the Atlas 10k II disk. Interest-
ingly, even though the Cheetah X15 has double the capacity of the
Atlas 10k II, the total reconstruction time is not twice as long. This
is because of the shorter response times as discussed above.

6.6 Average seek distance
We now examine the average seek distance of background requests
for the greedy algorithm to experimentally verify the result of The-
orem 1. As can be seen from Table 2, for the majority of loads,
there are no larger than logarithmic seeks when reconstructing up
to 50% of the disk. In fact, the average seek distance in this range
is less than 1 cylinder.

When reconstructing more than 50% of the disk, the number of
“missed” seeks (i.e., seeks larger than logarithmic) grows moder-
ately. Notice that for up to 90% of the disk, the average seek for a
background request is at most 93 cylinders. Finally, reconstructing
the last 5% of the disk accounts for almost half of the total missed
seeks.

7. CONCLUSIONS
We have compared several algorithms for scheduling background
tasks. We have also presented a new algorithm that has less impact
on foreground activity of a storage system. Using an example of
data reconstruction in RAID1 configurations, we have shown, both
analytically and experimentally, a 6–10% shorter average response

number of missed seeks average seek distance (cylinders)
% disk 20 40 60 80 100 120 20 40 60 80 100 120

10% 0 0 0 0 0 0 0.2 0.2 0.1 0.1 0.1 0.0
25% 0 0 0 0 0 0 0.3 0.2 0.2 0.1 0.1 0.1
50% 17 4 0 0 0 0 0.4 0.3 0.3 0.2 0.2 0.2
75% 203 137 108 37 49 62 0.7 0.6 0.6 0.5 0.5 0.5
80% 332 279 233 121 148 192 1.0 0.8 0.8 0.6 0.6 0.7
90% 683 750 882 699 848 986 2.0 1.9 2.6 1.6 2.3 2.4
95% 997 1243 1557 1469 1727 2070 7.3 10.3 37.3 36.3 42.7 92.9
99% 1352 1800 2306 2437 2828 3356 51.1 79.0 135.6 158.1 193.7 280.1

100% 1449 1978 2564 2773 3160 3756 63.9 105.5 178.4 211.2 248.8 344.9

Table 2: Background request seek statistics for the Atlas 10k II disk. The column % disk represents the percentage of disk re-
constructed so far. Missed seeks are seeks greater than log2(MAXSEEK) = 14 cylinders. The other columns show the measured
quantities for foreground request arrival rate � ranging from 20 to 120 reqs/s. The total number of background requests to recon-
struct 100% of the disk was 40889.

time for foreground requests when using this algorithm. The algo-
rithm also reduces the total reconstruction time by up to 20%.

Furthermore, we have presented a theorem that shows that greedy
reconstruction proceeds very efficiently for almost the entire recon-
struction process and confirmed the experimental results of previ-
ous work by Lumb et al. [7]. Our future work will focus on quanti-
fying later stages of the reconstruction process.

8. ACKNOWLEDGMENTS
We would like to thank Daniel Behrend and Benjamin Weiss for
numerous discussions that helped us clarify our thoughts and Andy
Klosterman for valuable suggestions on drafts of this paper.

9. REFERENCES
[1] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT

scheduling: investigating unfairness. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems (Cambridge, MA), pages 279–290, June 2001.

[2] O. J. Boxma and J. W. Cohen. The M/G/1 queue with
permanent customers. Journal of Selected Areas in
Communications, 9(2):179–184, February 1991.

[3] Peter M. Chen and David A. Patterson. Maximizing
performance in a striped disk array. UCB/CSD 90/559.
Computer Science Div., Department of Electrical
Engineering and Computer Science, University of California
at Berkeley, February 1990.

[4] Mark Holland, Garth A. Gibson, and Daniel P. Siewiorek.
Fast, on-line failure recovery in redundant disk arrays. 23rd
International Symposium on Fault-Tolerant Compter Systems
(Toulouse, France, 22–24 June 1993), pages 422–431. IEEE
Computing Services, August 1993.

[5] Svante Janson. Asymptotic distribution for the cost of linear
probing hashing. Random structures and algorithms,
19:438-471, 2001.

[6] Leonard Kleinrock. Queueing systems volume I: theory. John
Wiley and Sons, 1975.

[7] Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger,
David F. Nagle, and Erik Riedel. Towards higher disk head
utilization: extracting free bandwidth from busy disk drives.
Symposium on Operating Systems Design and
Implementation (San Diego, CA, 23–25 October 2000),
pages 87–102. USENIX Association, 2000.

[8] A. Merchant and P. S. Yu. An analytical model of
reconstruction time in mirrored disks. Performance
Evaluation, 20(1–3):115–129, May 1994.

[9] Richard R. Muntz and John C. S. Lui. Performance analysis
of disk arrays under failure. International Conference on
Very Large Databases (Brisbane, Australia), pages 162–173,
13–16 August 1990.

[10] David A. Patterson, Garth Gibson, and Randy H. Katz. A
case for redundant arrays of inexpensive disks (RAID). ACM
SIGMOD International Conference on Management of Data
(Chicago, IL), pages 109–116, 1–3 June 1988.

[11] Yuri Pavlov. The asymptotic distribution of maximum tree
size in a random forest. Theory of probability and
applications, 22:509-520, 1977.

[12] Boris Pittel. Linear probing: The probable largest search
time grows logarithmically with the number of records.
Journal of algorithms, 8:236-249, 1987.

[13] Quantum Corporation. Quantum Atlas 10K II
9.2/18.4/36.7/73.4 GB Ultra 160/m S product manual,
Document number 81-122517-04, June 2000.

[14] Erik Riedel, Christos Faloutsos, Greg Ganger, and David
Nagle. Data mining on an OLTP system (nearly) for free.
Technical report CMU–CS–99–151. Carnegie-Mellon
University, Pittsburgh, PA, June 1999.

[15] Mendel Rosenblum and John K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Symposium on Operating System Principles (Pacific Grove,
CA, 13–16 October 1991). Published as Operating Systems
Review, 25(5):1–15, 1991.

[16] Chris Ruemmler and John Wilkes. An introduction to disk
drive modeling. IEEE Computer, 27(3):17–28, March 1994.

[17] Jiri Schindler and Gregory R. Ganger. Automated disk drive
characterization. Technical report CMU–CS–99–176.
Carnegie-Mellon University, Pittsburgh, PA, December 1999.

[18] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb,
and Gregory R. Ganger. Track-aligned extents: matching
access patterns to disk drive characteristics. Conference on
File and Storage Technologies (Monterey, CA, 28–30
January 2002), pages 259–274. USENIX Association, 2002.

[19] Seagate. Seagate Cheetah X15 FC disk drive
ST318451FC/FCV product manual, volume 1, Document
number 83329486, June 2000.

[20] Hideaki Takagi. Queueing Analysis Volume 1: Vacations and
Priority Systems. North-Holland, 1991.

[21] A. Thomasian and A. Tantawi. Approximate solutions for
M/G/1 fork-join synchronization. Winter Simulation
Conference, December 1994.

[22] Alexander Thomasian and Jai Menon. Performance analysis
of RAID5 disk arrays with a vacationing server model for
rebuild mode operation. International Conference on Data
Engineering (Houston, TX), pages 111–119, February 1994.

