
Parity Declustering for Continuous Operation in Redundant Disk Arrays

Abstract

We describe and evaluate a strategy for declustering the
parity encoding in a redundant disk array. This declustered
parity organization balances cost against data reliability
and performance during failure recovery. It is targeted at
highly-available parity-based arrays for use in continuous-
operation systems. It improves on standard parity organiza-
tions by reducing the additional load on surviving disks dur-
ing the reconstruction of a failed disk’s contents. This yields
higher user throughput during recovery, and/or shorter
recovery time.

We first address the generalized parity layout problem, bas-
ing our solution on balanced incomplete and complete
block designs. A software implementation of declustering is
then evaluated using a disk array simulator under a highly
concurrent workload comprised of small user accesses. We
show that declustered parity penalizes user response time
while a disk is being repaired (before and during its recov-
ery) less than comparable non-declustered (RAID5) organi-
zations without any penalty to user response time in the
fault-free state.

We then show that previously proposed modifications to a
simple, single-sweep reconstruction algorithm further
decrease user response times during recovery, but, contrary
to previous suggestions, the inclusion of these modifications
may, for many configurations, also slow the reconstruction
process. This result arises from the simple model of disk
access performance used in previous work, which did not
consider throughput variations due to positioning delays.

1. Introduction

Many applications, notably database and transaction
processing, require both high throughput and high data
availability from their storage subsystems. The most

demanding of these applications require continuous opera-
tion, which in terms of a storage subsystem requires (1) the
ability to satisfy all user requests for data even in the pres-
ence of a disk failure, and (2) the ability to reconstruct the
contents of a failed disk onto a replacement disk, thereby
restoring itself to a fault-free state. It is not enough to fulfill
these two requirements with arbitrarily degraded perfor-
mance; it is not unusual for an organization that requires
continuously-available data to incur financial losses sub-
stantially larger than the organization’s total investment in
computing equipment if service is severely degraded for a
prolonged period of time. Since the time necessary to recon-
struct the contents of a failed disk is certainly minutes and
possibly hours, we focus this paper on the performance of a
continuous-operation storage subsystem during on-line fail-
ure recovery. We do not recommend on-line failure recov-
ery in an environment that can tolerate off-line recovery
because the latter restores high performance and high data
reliability more quickly.

Redundant disk arrays, proposed for increasing input/-
output performance and for reducing the cost of high data
reliability [Kim86, Livny87, Patterson88, Salem86], also
offer an opportunity to achieve high data availability with-
out sacrificing throughput goals. A single-failure-correcting
redundant disk array consists of a set of disks, a mapping of
user data to these disks that yields high throughput
[Chen90b], and a mapping of a parity encoding for the
array’s data such that data lost when a disk fails can be
recovered without taking the system off-line [Lee91].

Most single-failure-correcting disk arrays employ
eithermirrored or parity-encoded redundancy. In mirroring
[Bitton88, Copeland89, Hsiao90], one or more duplicate
copies of all data are stored on separate disks. In parity
encoding [Kim86, Patterson88, Gibson91], popularized as
Redundant Arrays of Inexpensive Disks (RAID), some sub-
set of the physical blocks in the array are used to store a sin-
gle-error-correction code (usually parity) computed over
subsets of the data. Mirrored systems, while potentially able
to deliver higher throughput than parity-based systems for
some workloads [Chen90a, Gray90], increase cost by con-
suming much more disk capacity for redundancy. In this

Mark Holland
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

holland@ece.cmu.edu

Garth A. Gibson
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

garth@cs.cmu.edu

This work was supported by the National Science Foundation
under grant number ECD-8907068, by the Defense Advanced
Research Projects Agency monitored by DARPA/CMO under con-
tract MDA972-90-C-0035, and by an IBM Graduate Fellowship.

Proceedings of the 5th Conference on Architectural Support for Programming Languages and Operating Systems, 1992.

paper, we examine a parity-based redundancy scheme
called parity declustering, which provides better perfor-
mance during on-line failure recovery than more common
RAID schemes, without the high capacity overhead of mir-
roring [Muntz90]1.

Our primary figures of merit in this paper are recon-
struction time, which is the wallclock time taken to recon-
struct the contents of a failed disk after replacement, and
user response time during reconstruction. Reconstruction
time is important because it determines the length of time
that the system operates at degraded performance, and
because it is a significant contributor to the length of time
that the system is vulnerable to data loss caused by a second
failure. Given a fixed user throughput, contrasting user
fault-free response time to the response time after failure
(both before and during reconstruction) gives us the mea-
sure of our system’s performance degradation during failure
recovery.

Section 2 of this paper describes our terminology and
presents the declustered parity organization. Section 3
describes related studies, notably the introduction of declus-
tering by Muntz and Lui [Muntz90], and explains the moti-
vations behind our investigation. Section 4 presents our
parity mapping, which was left as an open problem by
Muntz and Lui. Section 5 gives a brief overview of our sim-
ulation environment and Sections 6 and 7 present brief anal-
yses of the performance of a declustered array when it is
fault-free, and when there is a failed disk but no replace-
ment. Section 8 then covers reconstruction performance,
contrasting single-thread and parallel reconstruction, and
evaluating alternative reconstruction algorithms. Section 9
concludes the paper with a look at interesting topics for
future work.

2. The declustered parity layout policy

Figure 2-1 illustrates the parity and data layout for a
left-symmetric RAID5 redundant disk array [Lee91].A data
stripe unit, or simply adata unit is defined as the minimum
amount of contiguous user data allocated to one disk before
any data is allocated to any other disk. Aparity stripe unit,
or simply aparity unit, is a block of parity information that
is the size of a data stripe unit. We use the termstripe unit
instead ofdata unit or parity unit when the distinction
between data and parity is not pertinent to the point being
made. The size of a stripe unit, called aunit for conve-
nience, must be an integral number of sectors, and is often
the minimum unit of update used by system software. A
parity stripe2 is the set of data units over which a parity unit
is computed, plus the parity unit itself. In Figure 2-1, Di.j
represents one of the four data units in parity stripe number

1. Muntz and Lui use the termclustered where we use the term
declustered. Their use may be derived from “clustering” indepen-
dent RAIDs into a single array with the same parity overhead. Our
use follows the earlier work of Copeland and Keller [Copeland89]
where redundancy information is “declustered” over more than the
minimal collection of disks.

i, andPi represents the parity unit for parity stripei. Parity
units are distributed across the disks of the array to avoid
the write bottleneck that would occur if a single disk con-
tained all parity units.

The disk array’s data layout provides the abstraction of
a linear (“logical block”) address space to the file system. In
addition to mapping data units to parity stripes, a left-sym-
metric RAID5 organization also specifies the data layout:
data is mapped to stripe unitsDi.j according to ascendingj
within ascendingi. In Figure 2-1, this means that user data
is logically D0.0, D0.1, D0.2, D0.3, D1.0, D1.1, etc. This is
a good choice because any set of five contiguous data units
map to five different disks, maximizing read parallelism.
However, a file system may or may not allocate user blocks
contiguously in this address space, so a disk array data map-
ping can not alone insure maximal parallelism.

In Figure 2-1, parity is computed over the entire width
of the array; that is, P0 is the cumulative parity (exclusive-
or) of data units D0.0 through D0.3. When a disk is identi-
fied as failed, any data unit can be reconstructed by reading
the corresponding units in the parity stripe, including the
parity unit, and computing the cumulative exclusive-or of
this data. Note, however, that all the disks in the array are
needed by every access that requires reconstruction. We
shall see that declustered parity relaxes this constraint.

Following Muntz and Lui, letG be the number of units
in a parity stripe, including the parity unit, and consider the
problem of decouplingG from the number of disks in the
array. This reduces to a problem of finding a parity mapping
that will allow parity stripes of sizeG units to be distributed
over some larger number of disks,C. For our purposes, this
larger set ofC disks is the whole array. For comparison pur-
poses, the RAID5 example in Figure 2-1 hasG = C = 5.
This property, thatG = C, defines RAID5 mappings in the
context of this paper.

One perspective on the concept of parity declustering
in redundant disk arrays is demonstrated in Figure 2-2; a
logical RAID5 array with G = 4 is distributed over
C = 7 > G disks, each containing fewer units. (The way this

2. Muntz and Lui [Muntz90] use the termgroup to denote what
we call a parity stripe, but we avoid this usage as it conflicts with
the Patterson, et. al. definition [Patterson88] as a set of disks,
rather than a set of disk blocks.

P0

Figure 2-1: Parity and data layout in a left-
symmetric RAID5 organization.

D1.0

D2.1

D3.2

D4.3

D0.3

P1

D2.0

D3.1

D4.2

D0.2

D1.3

P2

D3.0

D4.1

D0.1

D1.2

D2.3

P3

D4.0

D0.0

D1.1

D2.2

D3.3

P4

DISK0 DISK1 DISK2 DISK3 DISK4

0

1

2

3

4

Offset

mapping is generated is the topic of Section 4.) The advan-
tage of this approach is that it reduces the reconstruction
workload applied to each disk during failure recovery. To
see this, note that for any given stripe unit on a failed (phys-
ical) disk, the parity stripe to which it belongs includes units
on only a subset of the total number of disks in the array. In
Figure 2-2, for example, disks 2, 3, and 6 do not participate
in the reconstruction of the parity stripe marked ‘S’. Hence,
these disks are called on less often in the reconstruction of
one of the other disks. In contrast, a RAID5 array has
C = G, and so all disks participate in the reconstruction of
all units of the failed disk.

Figure 2-3 presents a declustered parity layout for
G = 4 andC = 5 that is described in Section 4. What is
important at this point is that fifteen data units are mapped
onto five parity stripes in the array’s first twenty disk units,
while in the RAID5 organization of Figure 2-1, sixteen data
units are mapped onto four parity stripes in the same num-
ber of disk units. More disk units are consumed by parity,
but not every parity stripe is represented on each disk, so a
smaller fraction of each surviving disk is read during recon-
struction. For example, if, in Figure 2-3, disk zero fails, par-
ity stripe four will not have to be read during reconstruction.
Note that the successive stripe units in a parity stripe occur
at varying disk offsets: Section 6 shows that this has no sig-
nificant performance impact. Although Figure 2-3 does not
spread parity units evenly over all disks, the constructions
we present in Section 4 all possess this property.

Muntz and Lui define the ratio (G-1)/(C-1) asα. This
parameter, which we call thedeclustering ratio, indicates

1 20

Logical Array Physical Array

0

S S S

3

S

Figure 2-2: One possible declustering of a parity
stripe of size four over an array of seven disks.

C

G

S

1 2 3 5 6

S
S S
4

P1

P2

P3

P4

P0

D2.2

D3.2

D4.2

D0.2

D1.2

D3.1

D4.1

D0.1

D1.1

D2.1

D4.0

D0.0

D1.0

D2.0

D3.0

DISK0 DISK1 DISK2 DISK3 DISK4

0

1

2

3

Offset

Figure 2-3: Example data layout in a declustered
parity organization.

the fraction of each surviving disk that must be read during
the reconstruction of a failed disk. Note thatα = 1 for the
RAID5 organization, indicating that all of every surviving
disk participates in a reconstruction. All of our performance
graphs in Sections 6, 7, and 8 are parameterized byα.

The parametersC andG and the ratio α together deter-
mine the reconstruction performance, the data reliability,
and the cost-effectiveness of the array.C determines the
cost of the array because it specifies the number of disks. It
also determines the array’s data reliability because our map-
pings require some data from all surviving disks to recon-
struct a failed disk. Thus any two failures in the C disks
constituting the array will cause data loss.G, on the other
hand, determines the percentage of total disk space con-
sumed by parity, 1/G. Finally, the declustering ratioα deter-
mines the reconstruction performance of the system; a
smaller value should yield better reconstruction perfor-
mance since a failed disk’s reconstruction workload is
spread over a larger number of disks. In general, system
administrators need to be able to specifyC andG at installa-
tion time according to their cost, performance, capacity, and
data reliability needs. This paper provides analyses upon
which these decisions can be based.

3. Related work

The idea of improving failure-mode performance by
declustering redundancy information originated with mir-
rored systems [Copeland89, Hsiao90]. Copeland and Keller
describe a scheme calledinterleaved declustering which
treatsprimary and secondary data copies differently. Tradi-
tionally, mirrored systems allocate one disk as a primary
and another as a secondary. Copeland and Keller instead
allocate only half of each disk for primary copies. The other
half of each disk contains a portion of the secondary copy
data from each of the primaries on all other disks. This
insures that a failure can be recovered since the primary and
secondary copies of any data are on different disks. It also
distributes the workload associated with reconstructing a
failed disk across all surviving disks in the array. Hsiao and
DeWitt propose a variant calledchained declustering, that
increases the array’s data reliability.

Muntz and Lui applied ideas similar to those of Copel-
and and Keller to parity-based arrays. They proposed the
declustered parity organization described in Section 2, and
then modeled it analytically, making a number of simplify-
ing assumptions. We attempt in this paper to identify the
limits of this theoretical analysis and provide performance
predictions based instead on a software implementation and
array simulation. Toward this end we have two primary con-
cerns with the Muntz and Lui analysis.

First, their study assumes that either the set of surviv-
ing disks or the replacement disk is driven at 100% utiliza-
tion. Unfortunately, driving a queueing system such as a
magnetic disk at full utilization leads to arbitrarily long
response times. Response time is important to all customers

and critical in database and on-line transaction-processing
(OLTP) systems. The specifications for OLTP systems often
require some minimal level of responsiveness, for example,
one benchmark requires that 90% of the transactions must
complete in under two seconds [TPCA89]. In a continuous-
operation system that requires minutes to hours for the
recovery of a failed disk, this rule will apply even during
these relatively rare recovery intervals. Our analysis reports
on user response time during recovery and presents a simple
scheme trading off reconstruction time for user response
time.

Our second concern with the Muntz and Lui analysis
is that their modeling technique assumes that all disk
accesses have the same service time distribution. Real disk
accesses are, however, subject to positioning delays that are
dependent on the current head position and the position of
target data. As an example, suppose that a given track on a
replacement disk is being reconstructed, and that a few
widely scattered stripe units on that track are already valid
because they were written as a result of user (not recon-
struction) accesses during reconstruction. These units may
be skipped over by reconstruction, or they may simply be
reconstructed along with the rest of the track and over-writ-
ten with the data that they already hold. Whichever option is
selected, the previously-reconstructed sectors will still have
to rotate under the disk heads, and hence the time needed to
reconstruct the track will not decrease. The Muntz and Lui
model assumes that the track reconstruction time is reduced
by a factor equal to the size of the units not needing recon-
struction divided by the size of the track, which is not the
case. This idea that disk drives are not “work-preserving”
due to head positioning and spindle rotation delays is an
effect that is difficult to model analytically, but relatively
straightforward to address in a simulation-based study.

 In this paper we will use balanced incomplete and
complete block designs (described in Section 4.2) to
achieve better performance during reconstruction. Reddy
[Reddy91] has also used block designs to improve the
recovery-mode performance of an array. His approach gen-
erates a layout with properties similar to ours, but is
restricted to the case whereG = C/2.

4. Data layout strategy

In this section, we describe our layout goals, and the
technique used to achieve them. We then comment on the
generality of our approach.

4.1. Layout goals

Previous work on declustered parity has left open the
problem of allocating parity stripes in an array. Extending
from non-declustered parity layout research [Lee90, Dib-
ble90], we have identified six criteria for a good parity lay-
out. The first four of these deal exclusively with
relationships between stripe units and parity stripe member-
ship, while the last two make recommendations for the rela-

tionship between user data allocation and parity stripe
organization. Because file systems are free to and often do
allocate user data arbitrarily into whatever logical space a
storage subsystem presents, our parity layout procedures
have no direct control over these latter two criteria.

1. Single failure correcting. No two stripe units in the
same parity stripe may reside on the same physical
disk. This is the basic characteristic of any redundancy
organization that recovers the data of failed disks. In
arrays in which groups of disks have a common failure
mode, such as power or data cabling, this criteria
should be extended to prohibit the allocation of stripe
units from one parity stripe to two or more disks shar-
ing that common failure mode [Schulze89, Gibson93].

2. Distributed reconstruction. When any disk fails, its
user workload should be evenly distributed across all
other disks in the array. When replaced or repaired, its
reconstruction workload should also be evenly distrib-
uted.

3. Distributed parity. Parity information should be evenly
distributed across the array. Every data update causes a
parity update, and so an uneven parity distribution
would lead to imbalanced utilization (hot spots), since
the disks with more parity would experience more load.

4. Efficient mapping. The functions mapping a file sys-
tem’s logical block address to physical disk addresses
for the corresponding data units and parity stripes, and
the appropriate inverse mappings, must be efficiently
implementable; they should consume neither excessive
computation nor memory resources.

5. Large write optimization. The allocation of contiguous
user data to data units should correspond to the alloca-
tion of data units to parity stripes. This insures that
whenever a user performs a write that is the size of the
data portion of a parity stripe and starts on a parity
stripe boundary, it is possible to execute the write with-
out pre-reading the prior contents of any disk data,
since the new parity unit depends only on the new data.

6. Maximal parallelism. A read of contiguous user data
with size equal to a data unit times the number of disks
in the array should induce a single data unit read on all
disks in the array (while requiring alignment only to a
data unit boundary). This insures that maximum paral-
lelism can be obtained.

As shown in Figure 2-1, the left-symmetric mapping
for RAID5 arrays meets all of these criteria.

4.2. Layout strategy

Our declustered parity layouts are specifically
designed to meet our criterion for distributed reconstruction
while also lowering the amount of reconstruction work done
by each surviving disk. The distributed reconstruction crite-
rion requires that the same number of units be read from

each surviving disk during the reconstruction of a failed
disk. This will be achieved if the number of times that a pair
of disks contain stripe units from the same parity stripe is
constant across all pairs of disks. Muntz and Lui recognized
and suggested that such layouts might be found in the litera-
ture for balanced incomplete block designs [Hall86]. This
paper demonstrates that this can be done and one way to do
it.

A block design is an arrangement ofv distinct objects
into b tuples3, each containingk elements, such that each
object appears in exactlyr tuples, and each pair of objects
appears in exactlyλp tuples. For example, using non-nega-
tive integers as objects, a block design with b = 5, v = 5,
k = 4, r = 4, andλp = 3 is given in Figure 4-1.

This example demonstrates a simple form of block
design called acomplete block design which includes all
combinations of exactlyk distinct elements selected from
the set ofv objects. The number of these combinations is

. It is useful to note that only three ofv, k, b, r,andλp are

free variables because the following two relations are
always true:bk = vr, andr(k-1) = λp(v-1). The first of these
relations counts the objects in the block design in two ways,
and the second counts the pairs in two ways.

The layout we use associates disks with objects and
parity stripes with tuples. For clarity, the following discus-
sion is illustrated by the construction of the layout in Figure
4-2 from the block design in Figure 4-1. To build a parity
layout, we find a block design withv = C, k = G, and the
minimum possible value forb (as explained in Section 4.3).
Our mapping identifies the elements of a tuple in a block
design with the disk numbers on which each successive
stripe unit of a parity stripe are allocated. In Figure 4-2, the
first tuple in the design of Figure 4-1 is used to lay out parity
stripe 0: the three data blocks in parity stripe 0 are on disks
0, 1, and 2, and the parity block is on disk 3. Based on the
second tuple, stripe 1 is on disks 0, 1, and 2, with parity on
disk 4. In general, stripe unitj of parity stripei is assigned to
the lowest available offset on the disk identified by thejth

element of tuplei mod b in the block design. The layout
shown in the top quarter of Figure 4-2, and in Figure 2-3, is
derived via this process from the block design in Figure 4-1.

It is apparent from Figure 2-3 that this approach pro-
duces a layout that violates our distributed parity criterion
(3). To resolve this violation, we derive a layout as above
and duplicate itG times (four times in Figure 4-2), assign-
ing parity to a different element of each tuple in each dupli-

3. These tuples are calledblocks in the block design literature. We
avoid this name as it conflicts with the commonly held definition
of a block as a contiguous chunk of data.

Figure 4-1: A sample complete block design.

Tuple 0: 0, 1, 2, 3
Tuple 1: 0, 1, 2, 4
Tuple 2: 0, 1, 3, 4

Tuple 3: 0, 2, 3, 4
Tuple 4: 1, 2, 3, 4

v
k

cation, as shown in the right side of Figure 4-2. This layout,
the entire contents of Figure 4-2, is further duplicated until
all stripe units on each disk are mapped to parity stripes. We
refer to one iteration of this layout (the first four blocks on
each disk in Figure 4-2) as theblock design table, and one
complete cycle (all blocks in Figure 4-2) as thefull block
design table.

We now show how well this layout procedure meets
the first four of our layout criteria. No pair of stripe units in
the same parity stripe will be assigned to the same disk
because theG elements of each tuple are distinct. This
insures our single failure correcting criterion. The second
criterion, which is that reconstruction be distributed evenly,
is guaranteed because each pair of objects appears in
exactlyλp tuples. This means that in each copy of the block
design table, diski occurs in exactlyλp parity stripes with
each other disk. Hence, when diski fails, every other disk
reads exactlyλp stripe units while reconstructing the stripe
units associated with each block design table. Note that the
actual value ofλp is not significant. It is only necessary that
it be constant across all pairs of disks, and this is guaranteed
by the definition of a block design.

 Our distributed parity criterion is achieved because a
full block design table is composed ofG block design tables
each assigning parity to a different element of each tuple.
This results in the assignment of parity to each disk in the
cluster exactlyr times over the course of a full block design
table. To see this, refer to Figure 4-2: if we group together
the vertical boxes in the right half of the figure we see that
we have reconstituted one block design table; that is, the
parity assignment function touches each element of the
block design table exactly once over the course of one full
block design table. Since each object appears in exactlyr
tuples in a block design table, each disk will be assigned
parity in exactlyr tuples in the full block design table.

Unfortunately it is not guaranteed that our layout will
have an efficient mapping, our fourth criterion, because the
size of a block design table is not guaranteed to be small.
However, Section 4.3 demonstrates that small block design
tables are available for a wide range of parity stripe and
array sizes.

Finally, our fifth and sixth criteria depend on the data
mapping function used by higher levels of software. Unfor-
tunately, the simple mapping of data to successive data units
within successive parity stripes (Figure 4-2) that we use in
our simulations, while meeting our large-write optimization
criterion, does not meet our maximal parallelism criterion;
that is, not all sets of five adjacent data units from the map-
ping, D0.0, D0.1, D0.2, D1.0, D1.1, D1.2, D2.0, etc., in Fig-
ure 4-2 are allocated on five different disks. Instead, reading
five adjacent data units starting at data unit zero causes disk
0 and 1 to be used twice, and disks 3 and 4 not at all. On the
other hand, if we were to employ a data mapping similar to
Lee’s left-symmetric parity (for non-declustered RAID5
arrays), we may fail to satisfy our large-write optimization

criterion. We leave for future work the development of a
declustered parity scheme that satisfies both of these crite-
ria.

4.3. On the generation of block designs

Complete block designs such as the one in Figure 4-1
are easily generated, but in many cases they are insufficient
for our purposes. When the number of disks in an array (C)
is large relative to the number of stripe units in a parity
stripe (G) then the size of the block design table becomes
unacceptably large and the layout fails our efficient map-
ping criterion. For example, a 41 disk array with 20% parity
overhead (G=5) allocated by a complete block design will
have about 3,750,000 tuples in its full block design table. In
addition to the exorbitant memory requirement for this
table, the layout will not meet our distributed parity or dis-
tributed reconstruction criteria because even large disks
rarely have more than a few million sectors. For this reason
we turn to the theory ofbalanced incomplete block designs
[Hall86].

Our goal, then, is to find a small block design onC
objects with a tuple size ofG. This is a difficult problem for
generalC andG. Hall presents a number of techniques, but
these are of more theoretical interest than practical value
since they do not provide sufficiently general techniques for
the direct construction of the necessary designs. Fortu-
nately, Hall also presents a list containing a large number of
known block designs, and states that, within the bounds of
this list, a solution is given in every case where one is
known to exist. Figure 4-34 presents a scatter plot of a sub-
set of Hall’s list of designs. Whenever possible, our parity
declustering implementation uses one of Hall’s designs.

Sometimes a balanced incomplete block design with
the required parameters may not be known. In cases where
we cannot find a balanced incomplete block design, we
attempt to use a complete block design on the indicated
parameters. When this method produces an unacceptably
large design, we resort to choosing the closest feasible
design point; that is, the point which yields a value ofα
closest to what is desired. All of our results indicate that the
performance of an array is not highly sensitive to such small
variations inα. The block designs we used in our simula-
tions are given in [Holland92].

4. These block designs (and others) are available via anonymous
ftp from niagara.nectar.cs.cmu.edu (128.2.250.200) in the file
/usr0/anon/pub/Declustering/BD_database.tar.Z.

Figure 4-3: Known block designs.

Declustering Ratio (α)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
rr

ay
 S

iz
e

(C
)

10

20

30

40

50

60

70

80

90

100

0
0.0

C = 5, G = 4

Figure 4-2: Full block design table for a parity declustering organization.

D0.0 D0.1 D0.2 P0 P1
D1.0 D1.1 D1.2 D2.2 P2
D2.0 D2.1 D3.1 D3.2 P3
D3.0 D4.0 D4.1 D4.2 P4
D5.0 D5.1 P5 D5.2 D6.2
D6.0 D6.1 P6 P7 D7.2
D7.0 D7.1 D8.1 P8 D8.2
D8.0 D9.0 D9.1 P9 D9.2

P10 D10.1 D10.2 D11.2
P11 D11.1 D12.1 D12.2
P12 P13 D13.1 D13.2

D14.0 P14 D14.1 D14.2
D15.0 D15.1 D15.2 D16.2
D16.0 D16.1 D17.1 D17.2
D17.0 D18.0 D18.1 D18.2
P19 D19.0 D19.1 D19.2

D10.0
D11.0
D12.0
D13.0
P15
P16
P17
P18

DISK1 DISK2 DISK3 DISK4DISK0Offset

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

TUPLEParity Stripe

Parity Block
Design
Table

Full
Block
Design
Table

Data Layout on Physical Array Layout Derivation from Block Designs

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

0
1
2
3
4

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

5
6
7
8
9

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

10
11
12
13
14

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

15
16
17
18
19

5. The simulation environment

We acquired an event-driven disk-array simulator
calledraidSim [Chen90b, Lee91] for our analyses. The sim-
ulator was developed for the RAID project at U.C. Berkeley
[Katz89]. It consists of four primary components, which are
illustrated in Figure 5-1. Each component is described
below.

At the top level of abstraction is asynthetic reference
generator, which is capable of producing user request
streams drawn from a variety of distributions. Table 5-1 (a)
shows the configuration of the workload generator used in
our simulations. We have restricted our attention to random
accesses of size 4 KB to model an OLTP system with an
effective buffer cache [Ramakrishnan92]. Each request pro-
duced by this generator is sent to aRAID striping driver,
which was originally the actual code used by the Sprite
operating system [Ousterhout88] to implement a RAID
device on a set of independent disks. Table 5-1 (b) shows
the configuration of our extended version of this striping
driver. These upper two levels ofraidSim should actually
run on a Sprite machine. Low-level disk operations gener-
ated by the striping driver are sent to adisk simulation mod-
ule, which accurately models significant aspects of each
specific disk access (seek time, rotation time, cylinder lay-
out, etc.). Table 5-1 (c) shows the characteristics of the 314
MB, 3 1/2 inch diameter IBM 0661 Model 370 (Lightning)
disks on which our simulations are based [IBM0661]. At
the lowest level of abstraction inraidSim is anevent-driven
simulator, which is invoked to cause simulated time to pass.

The striping driver code was originally taken directly
from the Sprite source code, with essentially zero modifica-
tion to accommodate simulation, and all our modifications
conform to Sprite constraints. This assures that reference
streams generated by this driver are identical to those that
would be observed in an actual disk array running the same
synthetic workload generator. It also forces us to actually
implement our layout strategy and reconstruction optimiza-
tions, since we have extended the code in such a way that it
could be re-incorporated into an operating system at any
time. This minimizes the possibility that un-considered
implementation details will lead to erroneous conclusions.
All reconstruction algorithms discussed in Section 8 have
been fully implemented and tested under simulation in our
version of the RAID striping driver.

It is evident that our simulator models a software
implementation of a striped disk array, but we expect a
hardware implementation to deliver similar performance.
This is because (1) we do not model the time taken to com-
pute the XOR functions in the CPU, (2) our simulator does
not incur rotation slips due to interrupt overhead and com-

Synthetic
Reference

RAID
Striping
Driver

Disk
Simulation

Module

Event
Driven

SimulatorGenerator

Figure 5-1: The structure of raidSim.

mand processing time in the CPU, and (3) the code path
length for the mapping functions is not significantly longer
in our declustered layouts than in the RAID5 case.

6. Fault-free performance

Figures 6-1 and 6-25 show the average response time
experienced by read and write requests in a fault-free disk
array as a function of the declustering ratio,α. Our simu-
lated system has 21 disks, so the fraction of space consumed
by parity units, 1/G, is 1/(20α+1). In the 100% read case we
show three average response time curves corresponding to
user access rates (λ) of 105, 210, and 3786 random reads of
4 KB per second (on average, 5, 10, and 18 user reads of 4
KB per second per disk are applied to disks capable of a
maximum of about 46 random 4 KB reads per second). In
the 100% write case we show two curves with much longer
average response time, corresponding toλ = 105 and

5. In all performance plots, each data point is an average over five
independently-seeded runs of the simulator. We find that the 95%
confidence intervals are too small to include on any graph. The
maximum width of a confidence interval over all data points on all
plots is 6.7% of the value of the data point.
6. In our simulated arrays of 21 disks, 105, 210, and 378 accesses
per second correspond to 5, 10, and 18 accesses per second per
disk. These user accesses expand into even more physical accesses
due to four-cycle writes and on-the-fly reconstruction. Five access-
es/second/disk was chosen as a low load, ten was chosen as a value
close to the maximum supportable workload (50% writes) in
reconstruction mode, and eighteen was determined to be the maxi-
mum supportable user per-disk access write (50% writes) in the
fault-free mode.

Geometry: 949 cylinders, 14 heads, 48 sectors/track
Sector Size: 512 bytes
Revolution Time: 13.9 ms
Seek Time Model: (ms)

2 ms min, 12.5 ms avg, 25 ms max
Track Skew: 4 sectors

2.0 0.01 dist⋅ 0.46 dist⋅+ +

(c) Disk Parameters

Access size: Fixed at 4 KB
User access rate: 105, 210, and 378 accesses/second
Alignment: Fixed at 4 KB
Distribution: Uniform over all data
Write Ratio: 0% and 100% (Sections 6, 7)

50% (Section 8)

(a) Workload Parameters

Stripe Unit: Fixed at 4KB
Number of Disks: Fixed at 21 spindle-synchronized disks.
Head Scheduling: CVSCAN [Geist87]
Parity Stripe Size: 3, 4, 5, 6, 10, 14, 18, and 21 stripe units
Parity Overhead: 33, 25, 20, 17, 10, 7, 6, and 5%, resp.
Data Layout: RAID5: Left Symmetric

Declustered: By parity stripe index
Parity Layout: RAID5: Left Symmetric

Declustered: Block Design Based
Power/Cabling: Disks independently powered/cabled

(b) Array Parameters

Table 5-1: Simulation parameters.

λ = 210 random user writes of 4 KB per second. User writes
are much slower than user reads because writes must update
parity units as well as data units. Our striping driver’s fault-
free behavior is to execute four separate disk accesses for
each user write instead of the single disk access needed by a
user read. Because of this high cost for user writes, our sys-
tem is not able to sustain 378 user writes of 4 KB per second
(this would be 72 4 KB accesses per second per disk).

Although using four separate disk accesses for every user
write is pessimistic [Patterson88, Menon92, Rosenblum91],
it gives our results wider generality than would result from
simulating specifically optimized systems.

Figures 6-1 and 6-2 show that, except for writes with
α = 0.1, fault-free performance is essentially independent of
parity declustering. This exception is the result of an opti-
mization that the RAID striping driver employs when
requests for one data unit are applied to parity stripes con-
taining only three stripe units [Chen90a]. In this case the
driver can choose to write the specified data unit, read the

Figure 6-1: Response time: 100% reads.

λ=105 λ=105
λ=210 λ=210
λ=378 λ=378

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
es

po
ns

e
T

im
e

(m
s)

10

20

30

40

50

0
0.0

________Fault-Free ________Degraded

Figure 6-2: Response time: 100% writes.

λ=105 λ=105
λ=210 λ=210

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
es

po
ns

e
T

im
e

(m
s)

20

40

60

80

100

120

140

160

180

200

220

0
0.0

________Fault-Free ________Degraded

other data unit in this parity stripe, then directly write the
corresponding parity unit in three disk accesses, instead of
pre-reading and overwriting both the specified data unit and
corresponding parity unit in four disk accesses. In the rest of
this paper we will neglect the case ofα = 0.1 (G = 3) to
avoid repeating this optimization discussion.

We note that our parity declustering implementation
may not perform equivalently to a left-symmetric RAID5
mapping when user requests are larger than one data unit.
Declustered parity has the advantage of exploiting our
large-write optimization with smaller user writes because it
has smaller parity stripes. On the other hand, because our
implementation does not currently meet our maximal paral-
lelism criterion, it will not be as able to exploit the full par-
allelism of the array on large user accesses. Overall
performance for workloads not modeled by our simulations
will be dictated by the balancing of these two effects, and
will depend on the access size distribution.

7. Degraded-mode performance

Figures 6-1 and 6-2 also show average response time
curves for our array when it is degraded by a failed disk that
has not yet been replaced. In this case, an on-the-fly recon-
struction takes place on every access that requires data from
the failed disk. When such an access is a read, the failed
disk’s contents are reconstructed by reading and computing
an exclusive-or over all surviving units of the requested
data’s parity stripe. Because the amount of work this entails
depends on the size of each parity stripe,G, these degraded-
mode average response time curves suffer less degradation
with a lower parity declustering ratio (smallerα) when the
array size is fixed (C = 21). This is the only effect shown in
Figure 6-1 (100% reads), but for writes there is another con-
sideration. When a user write specifies data on a surviving
disk whose associated parity unit is on the failed disk, there
is no value in trying to update this lost parity. In this case a
user write induces only one, rather than four, disk accesses.
This effect decreases the workload of the array relative to
the fault-free case, and, at low declustering ratios, it may
lead to slightly better average response time in the degraded
rather than fault-free mode!

8. Reconstruction performance

The primary purpose for employing parity decluster-
ing over RAID5 organizations has been given as the desire
to support higher user performance during recovery and
shorter recovery periods [Muntz90]. In this section we show
this to be effective, although we also show that previously
proposed optimizations do not always improve reconstruc-
tion performance. We also demonstrate that there remains
an important trade-off between higher performance during
recovery and shorter recovery periods.

Reconstruction, in its simplest form, involves a single
sweep through the contents of a failed disk. For each stripe
unit on a replacement disk, the reconstruction process reads

all other stripe units in the corresponding parity stripe and
computes an exclusive-or on these units. The resulting unit
is then written to the replacement disk. The time needed to
entirely repair a failed disk is equal to the time needed to
replace it in the array plus the time needed to reconstruct its
entire contents and store them on the replacement. This lat-
ter time is termed thereconstruction time. In an array that
maintains a pool of on-line spare disks, the replacement
time can be kept sufficiently small that repair time is essen-
tially reconstruction time. Highly available disk arrays
require short repair times to assure high data reliability
because the mean time until data loss is inversely propor-
tional to mean repair time [Patterson88, Gibson93]. How-
ever, minimal reconstruction time occurs when user access
is denied during reconstruction. Because this cannot take
less than the three minutes it takes to read all sectors on our
disks, and usually takes much longer, continuous-operation
systems require data availability during reconstruction.

Muntz and Lui identify two optimizations to a simple
sweep reconstruction:redirection of reads andpiggyback-
ing of writes. In the first, user accesses7 to data that has
already been reconstructed are serviced by (redirected to)
the replacement disk, rather than invoking on-the-fly recon-
struction as they would if the data were not yet available.
This reduces the number of disk accesses invoked by a typi-
cal request during reconstruction. In the second optimiza-
tion, user reads that cause on-the-fly reconstruction also
cause the reconstructed data to be written to the replacement
disk. This is targeted at speeding reconstruction, since those
units need not be subsequently reconstructed.

Muntz and Lui also mention that in servicing a user’s
write to a data unit whose contents have not yet been recon-
structed, the device driver has a choice of writing the new
data directly to the replacement disk or updating only the
parity unit(s) to reflect the modification. In the latter case,
the data unit(s) remains invalid until the reconstruction pro-
cess reaches it. Their model assumes that a user-write tar-
geted at a disk under reconstruction is always sent to the
replacement, but for reasons explained below, we question
whether this is always a good idea. Therefore, we investi-
gate four algorithms, distinguished by the amount and type
of non-reconstruction workload sent to the replacement
disk. In our minimal-updatealgorithm, no extra work is
sent; whenever possible user writes are folded into the par-
ity unit, and neither reconstruction optimization is enabled.
In our user-writes algorithm (which corresponds to Muntz
and Lui’sbaseline case), all user writes explicitly targeted at
the replacement disk are sent directly to the replacement.
Theredirection algorithm adds the redirection of reads opti-
mization to the user-writes case. Finally, theredirect-plus-
piggyback algorithm adds the piggybacking of writes opti-

7. In what follows, we distinguish betweenuser accesses, which
are those generated by applications as part of the normal workload,
andreconstruction accesses, which are those generated by a back-
ground reconstruction process to regenerate lost data and store it
on a replacement disk.

mization to the redirection algorithm.

8.1 Single thread vs. parallel reconstruction

Figures 8-1 and 8-2 present the reconstruction time
and average user response time for our four reconstruction
algorithms under a user workload that is 50% 4 KB random
reads and 50% 4 KB random writes. These figures show the
substantial effectiveness of parity declustering for lowering
both the reconstruction time and average user response time
relative to a RAID5 organization (α = 1.0). For example, at
105 user accesses per second, an array with declustering
ratio 0.15 reconstructs a failed disk about twice as fast as
the RAID5 array while delivering an average user response
time that is about 33% lower.

While Figures 8-1 and 8-2 make a strong case for the
advantages of declustering parity, even the fastest recon-

Figure 8-1: Single-thread reconstruction time:
50% reads, 50% writes.

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0
0.0

______λ = 105

______λ = 210

Figure 8-2: Single-thread average user response
time: 50% reads, 50% writes.

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
es

po
ns

e
T

im
e

(m
s)

10

20

30

40

50

60

70

80

90

100

110

120

0
0.0

______λ = 105

______λ = 210

struction shown, about 60 minutes8, is 20 times longer than
the physical minimum time these disks take to read or write
their entire contents. The problem here is that a single
reconstruction process, which uses blocking I/O operations,
is not able to highly utilize the array’s disks, particularly at
low declustering ratios. To further reduce reconstruction
time we introduce parallel reconstruction processes. This
should speed reconstruction substantially, although it will
also further degrade the response time of concurrent user
accesses.

Figures 8-3 and 8-4 show the reconstruction time and
average user response time when eight processes are con-
currently reconstructing a single replacement disk9. For
workloads of 105 and 210 user accesses per second, recon-
struction time is reduced by a factor of four to six relative to
Figure 8-1. This gives reconstruction times between 10 and
40 minutes. However, response times suffer increases of
35% to 75%. Still, even the worst of these average response
times is less than 200 ms, so a simple transaction such as the
one used in the TPC-A benchmark, which should require
less than three disk accesses per transaction, should have a
good chance of meeting its required transaction response
time of two seconds.

8.2 Comparing reconstruction algorithms

The response time curves of Figures 8-2 and 8-4 show
that Muntz and Lui’s redirection of reads optimization has
little benefit in lightly-loaded arrays with a low declustering
ratio, but can benefit heavily-loaded RAID5 arrays with
10% to 15% reductions in response time. The addition of
piggybacking of writes to the redirection of reads algorithm

8. For comparison, RAID products available today specify on-line
reconstruction time to be in the range of one to four hours [Mea-
dor89, Rudeseal92].
9. Each reconstruction process acquires the identifier of the next
stripe to be reconstructed off of a synchronized list, reconstructs
that stripe, and then repeats the process.

Figure 8-3: Eight-way parallel reconstruction
time: 50% reads, 50% writes.

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0
0.0

______λ = 105

______λ = 210

is intended to reduce reconstruction time without penalty to
average user response time. With the user loads we employ,
piggybacking of writes yields performance that differs very
little from redirection of reads alone. We will not pursue
piggybacking of writes further in this section.

Figures 8-1 and 8-2 also show that the two “more opti-
mized” reconstruction algorithms do not consistently
decrease reconstruction time relative to the simpler algo-
rithms. In particular, under single-threaded reconstruction,
the user-writes algorithm yields faster reconstruction times
than all others for all values ofα less than 0.5. Similarly, the
eight-way parallel minimal-update and user-writes algo-
rithms yields faster reconstruction times than the other two
for all values ofα less than 0.5. These are surprising results.
We had expected the more optimized algorithms to experi-
ence improved reconstruction time due to the off-loading of
work from the over-utilized surviving disks to the under-uti-
lized replacement disk, and also because in the piggyback-
ing case, they reduce the number of units that need to get
reconstructed. The reason for this reversal is that loading
the replacement disk with random work penalizes the recon-
struction writes to this disk more than off-loading benefits
the surviving disks unless the surviving disks are highly uti-
lized. A more complete explanation follows.

For clarity, consider single-threaded reconstruction.
Because reconstruction time is the time taken to reconstruct
all parity stripes associated with the failed disk’s data, one
at a time, our unexpected effect can be understood by exam-
ining the number of and time taken by reconstructions of a
single unit as shown in Figure 8-5. We call this single stripe
unit reconstruction period areconstruction cycle. It is com-
posed of a read phase and a write phase. The length of the
read phase, the time needed to collect and exclusive-or the
surviving stripe units, is approximately the maximum of
G-1 reads of disks that are also supporting a moderate load

Figure 8-4: Eight-way parallel average user
response time: 50% reads, 50% writes.

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
es

po
ns

e
T

im
e

(m
s)

20

40

60

80

100

120

140

160

180

200

0
0.0

______λ = 105

______λ = 210

of random user requests. Since these disks are not saturated,
off-loading a small amount of work from them will not sig-
nificantly reduce this maximum access time. But, even a
small amount of random load imposed on the replacement
disk may greatly increase its average access times because
reconstruction writes are sequential and do not require long
seeks. This effect, suggesting a preference for algorithms
that minimize non-reconstruction activity in the replace-
ment disk, must be contrasted with the reduction in number
of reconstruction cycles that occurs when user activity
causes writes to the portion of the replacement disk’s data
that has not yet been reconstructed.

Figure 8-6 presents a sample of the durations of the
intervals illustrated in Figure 8-5. These numbers are aver-
aged over the reconstruction of the last 300 stripe units on a
replacement disk. For these final reconstruction cycles, the
piggybacking of writes is not likely to occur, but the redi-
rection of reads will be at its greatest utility. We selected
this operating point to give the redirection of reads algo-
rithm its maximum advantage. The figure shows that in the
eight-way parallel case, the more complex algorithms tend
to yield lower read phase times and higher write phase
times. These numbers suggest that with a low declustering
ratio the minimal-update algorithm has an advantage over
the user-writes algorithm and both are faster than the other
two algorithms.

The single-thread case of Figure 8-6 and Figures 8-1
and 8-3 do not entirely bear out this suggestion because the
minimal-update algorithm gets none of its reconstruction
work done for it by user requests, as is the case for the other
algorithms. In the single-threaded case, reconstruction is so
slow that the loss of this “free reconstruction” benefit domi-
nates and the minimal-update algorithm reconstructs more
slowly than the others for all but the smallest declustering
ratio. However, in the eight-way parallel case, reconstruc-
tion is fast enough that free reconstruction does not com-
pensate for longer services times experienced by the
replacement disk because free reconstruction moves the
heads around randomly.

8.3 Comparison to analytic model

Muntz and Lui also proposed an analytic expression
for reconstruction time in an array employing declustered

Simple Algorithms

Write
Replacement

“Optimizations”

Write
Replacement

Time

Read
Surviving

Disks

Read
Surviving

Disks

Figure 8-5: The effect of redirection and
piggybacking on the reconstruction cycle.

parity [Muntz90]. Figure 8-7 shows our best attempt to rec-
oncile their model with our simulations. Because their
model takes as input the fault-free arrival rate and read-frac-
tion of accesses to the disk rather than of user requests, we
apply the following conversions, required because each user
write induces two disk reads and two disk writes. Letting
the fraction of user accesses that are reads beR, Muntz and
Lui’s rate of arrival of disk accesses is (4-3R) times larger
than our user request arrival rate, and the fraction of their
disk accesses that are reads is (2-R)/(4-3R).

Their model also requires as input the maximum rate

Figure 8-6: Reconstruction cycle time (ms) at 210 user
accesses per second.

20

160
140
120
100
80
60
40

180
200
220

MU UW R RP MU UW R RP MU UW R RP
α = 0.15 α = 0.45 α = 1.0

MU = Minimal-Update
UW = User-Writes
R = Redirect
RP = Redirect +Piggyback

Read Time (ms)

Write Time (ms)

(a) Single Thread Reconstruction

(b) Eight-Way Parallel Reconstruction

20
40
60
80

100
120
140
160
180
200
220
240

MU UW R RP
α = 0.15

MU UW R RP
α = 0.45

MU UW R RP
α = 1.0

Figure 8-7: Comparing reconstruction time model
to simulation: 210 user accesses/second.

User-Writes
Redirect
Redirect+Piggyback

Minimal-Update
User-Writes
Redirect
Redirect+Piggyback

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

0
0.0

__________M&L Model

_________Simulation

at which each disk executes its accesses. It is this parameter
that causes most of the disagreement between their model
and our simulations. In Figure 8-7 we use the maximum rate
at which one disk services entirely random accesses (46
accesses per second) in their model. This is consistent with
the way Muntz and Lui’s designed their model, but it does
not account for the fact that real disks execute sequential
accesses much faster than random accesses. For example,
with these disks and random accesses the minimum time
required to read or write an entire disk is over 1700 seconds,
which is more than three times longer than our fastest simu-
lated reconstruction time.

The other manifestation of the problem of using a sin-
gle disk service rate is their predictions for the benefits of
the redirection of reads and piggybacking of writes optimi-
zations. Because redirecting work to the replacement disk in
their model does not increase this disk’s average access
time, their predictions for the user-writes algorithm are
more pessimistic than for their other algorithms.

9. Conclusions and future work

In this paper we have demonstrated that parity declus-
tering, a strategy for allocating parity in a single-failure-cor-
recting redundant disk array that trades increased parity
overhead for reduced user-performance degradation during
on-line failure recovery, can be effectively implemented in
array-controlling software. We have exploited the special
characteristics of balanced incomplete and complete block
designs to provide array configuration flexibility while
meeting most of our proposed criteria for the “goodness” of
a parity allocation. In particular, using block designs to map
parity stripes onto a disk array insures that both the parity
update load and the on-line reconstruction load is balanced
over all (surviving) disks in the array. This is achieved with-
out performance penalty in a normal (non-recovering) user
workload dominated by small (4 KB) disk accesses.

Previous work proposing declustered parity mappings
for redundant disk arrays has suggested, without implemen-
tation, the use of block designs, has proposed two optimiza-
tions to a simple sweep reconstruction algorithm, and has
analytically modeled the resultant expected reconstruction
time [Muntz90]. In addition to extending their proposal to
an implementation, our work evaluates their optimizations
and reconstruction time models in the context of our soft-
ware implementation running on a disk-accurate simulator.
Our findings are strongly in agreement with theirs about the
overall utility of parity declustering, but we disagree with
their projections for expected reconstruction time and the
value of their optimized reconstruction algorithms. Our dis-
agreements largely result because of our more accurate
models of magnetic-disk accesses. We find that their esti-
mates for reconstruction time are significantly pessimistic
and that their optimizations actually slow reconstruction in
some cases. We also find that in practice, multiple, parallel
reconstruction processes are necessary to attain fast recon-

struction, although this additional load can degrade user
response time substantially. Our most surprising result is
that in an array with a low declustering ratio and parallel
reconstruction processes, the simplest reconstruction algo-
rithm produces the fastest reconstruction time because it
best avoids disk seeks.

We feel that parity declustering and related perfor-
mance/reliability tradeoffs is an area rich in research prob-
lems, a sample of which we give here. Reconstruction time
could be further improved by making the parity unit size
larger than the data unit size. This amounts to striping the
data on a finer grain than the parity, and would allow recon-
struction to proceed in larger units. We also have not spent
much time on the data mapping in our declustered parity
arrays; we think many of our layouts may be amenable to
both our large write optimization and maximal parallelism
criteria. With an eye to our performance modeling, we
would like to see an analytical model of a disk array, or
even of a single drive, that incorporates more of the com-
plexity of disk accesses. We view analytical modeling as
very useful for generating performance predictions in short
periods of time, but this paper has demonstrated that care
must be taken in their formulation. To broaden our results,
we intend to explore disk arrays with different stripe unit
sizes and user workload characteristics. One important con-
cern that neither our nor Muntz and Lui’s work considers is
the impact of CPU overhead and architectural bottlenecks in
the reconstructing system [Chervenak91]. For greater con-
trol of the reconstruction process we intend to implement
throttling of reconstruction and/or user workload as well as
a flexible prioritization scheme that reduces user response
time degradation without starving reconstruction. Finally,
we hope to install our software implementation of parity
declustering on an experimental, high-performance redun-
dant disk array and measure its performance directly.

Acknowledgments

We’re indebted to Ed Lee and the Berkeley RAID
project for supplying us with the raidSim simulator, and to
Peter Chen, Art Rudeseal, Dan Siewiorek, Dan Stodolsky,
Terri Watson, and John Wilkes for their insightful reviews
of early drafts of the paper. Bob Barker, Karl Brace, Derek
Feltham, Anurag Gupta, John Hagerman, Augustine Kuo,
Jason Lee, Kevin Lucas, Tom Marchok, Lily Mummert,
Howard Read, Roland Schaefer, and Terri Watson gra-
ciously supplied compute cycles on their workstations when
time was short, and we would never have met our deadlines
without them.

References
[Bitton88] D. Bitton and J. Gray, “Disk Shadowing,”Proceedings
of the 14th Conference on Very Large Data Bases, 1988, pp. 331-
338.

[Chen90a] P. Chen, et. al., “An Evaluation of Redundant Arrays
of Disks using an Amdahl 5890,”Proceedings of the ACM SIG-
METRICS Conference, 1990, pp. 74-85.

[Chen90b] P. Chen and D. Patterson, “Maximizing Performance
in a Striped Disk Array”,Proceedings of ACM SIGARCH Confer-
ence, 1990, pp. 322-331.

[Chervenak91] A. Chervenak and R. Katz, “Performance of a
RAID Prototype,”Proceedings of the ACM SIGMETRICS Confer-
ence, 1991, pp. 188-197.

[Copeland89] G. Copeland and T. Keller, “A Comparison of
High-Availability Media Recovery Techniques,”Proceedings of
the ACM SIGMOD Conference, 1989, pp. 98-109.

[Dibble90] P. Dibble, “A Parallel Interleaved File System,” Uni-
versity of Rochester, Technical Report 334, 1990.

[Geist87] R. Geist and S. Daniel, “A Continuum of Disk Schedul-
ing Algorithms,” ACM Transactions on Computer Systems, Vol.
5(1), 1987, pp. 77-92.

[Gibson91] G. Gibson, “Redundant Disk Arrays: Reliable, Paral-
lel Secondary Storage,” Ph.D. Dissertation, University of Califor-
nia, UCB/CSD 91/613, 1991. Also to be published by MIT Press.

[Gibson93] G. Gibson and D. Patterson, “Designing Disk Arrays
for High Data Reliability,”Journal of Parallel and Distributed
Computing, to appear in January, 1993.

[Gray90] G. Gray, B. Horst, and M. Walker, “Parity Striping of
Disc Arrays: Low-Cost Reliable Storage with Acceptable
Throughput,”Proceedings of the 16th Conference on Very Large
Data Bases, 1990, pp. 148-160.

[Hall86] M. Hall, Combinatorial Theory (2nd Edition), Wiley-
Interscience, 1986.

[Holland92] M. Holland and G. Gibson, “Parity Declustering for
Continuous Operation in Redundant Disk Arrays”, Carnegie Mel-
lon University School of Computer Science Technical Report
CMU-CS-92-130, 1992.

[Hsiao90] H.-I. Hsiao and D. DeWitt, “Chained Declustering: A
New Availability Strategy for MultiProcessor Database
Machines,”Proceedings of the 6th International Data Engineering
Conference, 1990, pp. 18-28.

[IBM0661] IBM Corporation, IBM 0661 Disk Drive Product
Description, Model 370, First Edition, Low End Storage Products,
504/114-2, 1989.

[Katz89] R. Katz, et. al., “A Project on High Performance I/O
Subsystems,”ACM Computer Architecture News, Vol. 17(5),
1989, pp. 24-31.

[Kim86] M. Kim, “Synchronized Disk Interleaving,”IEEE
Transactions on Computers, Vol. 35 (11), 1986, pp. 978-988.

[Lee90] E. Lee, “Software and Performance Issues in the Imple-
mentation of a RAID Prototype,” University of California, Techni-
cal Report UCB/CSD 90/573, 1990.

[Lee91] E. Lee and R. Katz, “Performance Consequences of Par-
ity Placement in Disk Arrays,”Proceedings of ASPLOS-IV, 1991,
pp. 190-199.

[Livny87] M. Livny, S. Khoshafian, and H. Boral, “Multi-Disk
Management Algorithms,”Proceedings of the ACM SIGMETRICS
Conference, 1987, pp. 69-77.

[Meador89] W. Meador, “Disk Array Systems,”Proceedings of
COMPCON, 1989, pp. 143-146.

[Menon92] J. Menon and J. Kasson, “Methods for Improved
Update Performance of Disk Arrays,”Proceedings of the Hawaii
International Conference on System Sciences, 1992, pp. 74-83.

[Muntz90] R. Muntz and J. Lui, “Performance Analysis of Disk
Arrays Under Failure,”Proceedings of the 16th Conference on

Very Large Data Bases, 1990, pp. 162-173.

[Ousterhout88] J. Ousterhout, et. al., “The Sprite Network Oper-
ating System,”IEEE Computer, February 1988, pp. 23-36.

[Patterson88] D. Patterson, G. Gibson, and R. Katz, “A Case for
Redundant Arrays of Inexpensive Disks (RAID),”Proceedings of
the ACM SIGMOD Conference, 1988, pp. 109-116.

[Ramakrishnan92] K. Ramakrishnan, P. Biswas, and R. Karedla,
“Analysis of File I/O Traces in Commercial Computing Environ-
ments,”Proceedings of the ACM SIGMETRICS Conference, 1992,
pp. 78-90.

[Reddy91] A. Reddy and P. Bannerjee, “Gracefully Degradable
Disk Arrays,”Proceedings of FTCS-21, 1991, pp. 401-408.

[Rosenblum91] M. Rosenblum and J. Ousterhout, “The Design
and Implementation of a Log-Structured File System,”Proceed-
ings of the 13th ACM Symposium on Operating System Principles,
1991, pp. 1-15.

[Rudeseal92] A. Rudeseal, private communication, 1992.

[Salem86] K. Salem, H. Garcia-Molina, “Disk Striping”,Pro-
ceedings of the 2nd IEEE Conference on Data Engineering, 1986.

[Schulze89] M. Schulze, G. Gibson, R. Katz, and D. Patterson,
“How Reliable is a RAID?”,Proceedings of COMPCON,1989,
pp. 118-123.

[TPCA89] The TPC-A Benchmark: A Standard Specification,
Transaction Processing Performance Council, 1989.

