Proceedings of the 5th Conference on Architectural Support for Programming Languages and Operating Systems, 1992.

Parity Declustering for Continuous Operation in Redundant Disk Arrays

Mark Holland Garth A. Gibson
Department of Electrical and Computer Engineering School of Computer Science
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213-3890 Pittsburgh, PA 15213-3890
holland@ece.cmu.edu garth@cs.cmu.edu
Abstract demanding of these applications require continuous opera-

tion, which in terms of a storage subsystem requires (1) the
We describe and evaluate a strategy for declustering theability to satisfy all user requests for data even in the pres-
parity encoding in a redundant disk array. This declusteredence of a disk failure, and (2) the ability to reconstruct the

parity organization balances cost against data reliability : ; -
and performance during failure recovery. It is targeted at contents of a failed disk onto a replacement disk, thereby

highly-available parity-based arrays for use in continuous- "estoring itself to a fault-free state. It is not enough to fulfill

operation systems. It improves on standard parity organiza-these two requirements with arbitrarily degraded perfor-
tions by reducing the additional load on surviving disks dur- mance; it is not unusual for an organization that requires
ing the reconstruction of a failed disk’s contents. This yie'dscontinuously-available data to incur financial losses sub-
higher user throughput during recovery, and/for shorter stantially larger than the organization’s total investment in

recovery time. ; : . oo
])) computing equipment if service is severely degraded for a
We first address the generalized parity layout problem, baspyglonged period of time. Since the time necessary to recon-

ing our solution on balanced incomplete and complete : ‘L ; :
blgck designs. A software implementatpi)on of decluster?ng isstruct the contents of a failed disk is certainly minutes and

then evaluated using a disk array simulator under a highlyP0Ssibly hours, we focus this paper on the performance of a
concurrent workload comprised of small user accesses. Wcontinuous-operation storage subsystem during on-line fail-
show that declustered parity penalizes user response timure recovery. We do not recommend on-line failure recov-

while a disk is being repaired (before and during its reCov-gry jn an environment that can tolerate off-line recovery

ery) less than comparable non-declustered (RAID5) organi- : -
za¥?ons without ang/ penalty to user respo%se tim)e ig thEbecause the latter restores high performance and high data
fault-free state. reliability more quickly.

We then show that previously proposed modifications to Redundant disk arrays, proposed for increasing input/-
simple, single-sweep reconstruction algorithm further output performance and for reducing the cost of high data
decrease user response times during recovery, but, Contrarreliability [Kim86, Livny87, Patterson88, Salem86], also

to previous suggestions, the inclusion of these modification . . . - g
may, for many configurations, also slow the reconstructionOffer an .qp.portunlty to achieve hlgh.data aya|lab|I|ty W'Fh
process. This result arises from the simple model of distout sacrificing throughput goals. A single-failure-correcting

access performance used in previous work, which did noredundant disk array consists of a set of disks, a mapping of

consider throughput variations due to positioning delays. user data to these disks that yields high throughput

1. Introduction [Chen90b], and a mapping of a parity encoding for the
array’s data such that data lost when a disk fails can be

Many applications, notably database and transactior.o.qvered without taking the system off-line [Lee91].
processing, require both high throughput and high date

availability from their storage subsystems. The most Most single-failure-correcting disk arrays employ
eithermirrored or parity-encodededundancy. In mirroring
This work was supported by the National Science Foundatior1[B'tt_0n88' Copeland89, Hsiao90], one or m‘?re dupllcat.e
under grant number ECD-8907068, by the Defense Advanceccopies of all data are stored on separate disks. In parity
Research Projects Agency monitored by DARPA/CMO under con-encoding [Kim86, Patterson88, Gibson91], popularized as
tract MDA972-90-C-0035, and by an IBM Graduate Fellowship. Redundant Arrays of Inexpensive Disks (RAID), some sub-
set of the physical blocks in the array are used to store a sin-
gle-error-correction code (usually parity) computed over
subsets of the data. Mirrored systems, while potentially able
to deliver higher throughput than parity-based systems for
some workloads [Chen90a, Gray90], increase cost by con-
suming much more disk capacity for redundancy. In this

paper, we examine a parity-based redundancy schemi, andPi represents the parity unit for parity stripdarity
called parity declustering which provides better perfor- units are distributed across the disks of the array to avoid
mance during on-line failure recovery than more commonthe write bottleneck that would occur if a single disk con-
RAID schemes, without the high capacity overhead of mir-tained all parity units.

roring [Muntz90f. Offset DISKO DISK1 DISK2 DISK3 DISK4
Our primary figures of merit in this paper are recon- 0 DO0.0 DO.1 DO0.2 DO0.3 PO
struction time, which is the wallclock time taken to recon- D11l D12 (D13 P1 D1.0
struct the conteljts of a_fa|led disk afte_r replacement, an(022 D23 > bzol [bz1
user response time during reconstruction. Reconstructiol
time is important because it determines the length of time D3.3 | P3| |[B3.0 |B3.1 |D3.2
that the system operates at degraded performance, ar P4 D4.0 |D4.1 |D4.2] |D4.3
because it is a significant contributor to the length of time
that the system is vulnerable to data loss caused by a seco
failure. Given a fixed user throughput, contrasting user
fault-free response time to the response time after failure
(both before and during reconstruction) gives us the mea
sure of our system’s performance degradation during failure
recovery.

A W N P

Figure 2-1: Parity and data layout in a left-
symmetric RAID5 organization.

The disk array’s data layout provides the abstraction of
a linear (“logical block™) address space to the file system. In
addition to mapping data units to parity stripes, a left-sym-
metric RAID5 organization also specifies the data layout:

Section 2 of this paper describes our terminology ancdata is mapped to stripe unids.j according to ascendirjg
presents the declustered parity organization. Section :Wwithin ascending. In Figure 2-1, this means that user data
describes related studies, notably the introduction of declusis logically D0.0, D0.1, D0.2, D0.3, D1.0, D1.1, etc. This is
tering by Muntz and Lui [Muntz90], and explains the moti- a good choice because any set of five contiguous data units
vations behind our investigation. Section 4 presents oumap to five different disks, maximizing read parallelism.
parity mapping, which was left as an open problem byHowever, a file system may or may not allocate user blocks
Muntz and Lui. Section 5 gives a brief overview of our sim- contiguously in this address space, so a disk array data map-
ulation environment and Sections 6 and 7 present brief anaping can not alone insure maximal parallelism.
yses of the performance of a declustered array when it i
fault-free, and when there is a failed disk but no replace-

ment. Section 8 then covers reconstruction performanceor) of data units D0.0 through DO0.3. When a disk is identi-

contras_ting single—_thread and pa_rallel rec_onstruction_, aNGied as failed, any data unit can be reconstructed by reading
evaluating alternative reconstruction algorithms. Section che corresponding units in the parity stripe, including the

concludes the paper with a look at interesting topics forparity unit, and computing the cumulative exclusive-or of
future work. this data. Note, however, that all the disks in the array are
2. The declustered parity layout policy needed by every access that requires reconstruction. We
shall see that declustered parity relaxes this constraint.

In Figure 2-1, parity is computed over the entire width
of the array; that is, PO is the cumulative parity (exclusive-

Figure 2-1 illustrates the parity and data layout for a
left-symmetric RAID5 redundant disk array [Lee@A]data Following Muntz and Lui, leG be the number of units
stripe unit or simply adata unitis defined as the minimum in a parity stripe, including the parity unit, and consider the
amount of contiguous user data allocated to one disk beforproblem of decouplings from the number of disks in the
any data is allocated to any other diskpéity stripe unit array. This reduces to a problem of finding a parity mapping
or simply aparity unit, is a block of parity information that that will allow parity stripes of siz& units to be distributed
is the size of a data stripe unit. We use the t&ripe unit over some larger number of disks,For our purposes, this
instead ofdata unit or parity unit when the distinction larger set ofC disks is the whole array. For comparison pur-
between data and parity is not pertinent to the point beingposes, the RAID5 example in Figure 2-1 ltas C=5.
made. The size of a stripe unit, calledumit for conve- This property, thaG = C, defines RAID5 mappings in the
nience, must be an integral number of sectors, and is oftecontext of this paper.
the minimum unit of update used by system software. A
parity stripe is the set of data units over which a parity unit
is computed, plus the parity unit itself. In Figure, 251
represents one of the four data units in parity stripe numbe

One perspective on the concept of parity declustering
in redundant disk arrays is demonstrated in Figure 2-2; a
logical RAID5 array with G=4 is distributed over
C =7 > G disks, each containing fewer units. (The way this

1. Muntz and Lui use the terolusteredwhere we use the term -
declustered Their use may be derived from “clustering” indepen- 2. Muntz and Lui [Muntz90] use the temgnoup to denote what
dent RAIDs into a single array with the same parity overhead. Ouwe call a parity stripe, but we avoid this usage as it conflicts with
use follows the earlier work of Copeland and Keller [Copeland89]the Patterson, et. al. definition [Patterson88] as a set of disks,
where redundancy information is “declustered” over more than therather than a set of disk blocks.

minimal collection of disks.

mapping is generated is the topic of Section 4.) The advanthe fraction of each surviving disk that must be read during
tage of this approach is that it reduces the reconstructiothe reconstruction of a failed disk. Note tlat 1 for the
workload applied to each disk during failure recovery. To RAID5 organization, indicating that all of every surviving
see this, note that for any given stripe unit on a failed (physdisk participates in a reconstruction. All of our performance
ical) disk, the parity stripe to which it belongs includes units graphs in Sections 6, 7, and 8 are parameterized by

on only a subset of the total number of disks in the array. Ir
Figure 2-2, for example, disks 2, 3, and 6 do not participate
in the reconstruction of the parity stripe marked ‘S’. Hence,
these disks are called on less often in the reconstruction ¢
one of the other disks. In contrast, a RAID5 array has

The parameter€ andG and the rati@ together deter-
mine the reconstruction performance, the data reliability,
and the cost-effectiveness of the arr@ydetermines the
cost of the array because it specifies the number of disks. It
C=G, and so all disks participate in the reconstruction ofa!SO determines the array’s data reliabi_lit_y bec_ause our map-
all units of the failed disk. pings require some data from all surviving (_jlsks to recon-

)] struct a failed disk. Thus any two failures in the C disks
Logical Array Physical Array constituting the array will cause data lo€s.on the other

0 1 2 3 0 1 2 3 4 5 6 hand, determines the percentage of total disk space con-

—» sumed by parity, 8. Finally, the declustering rat deter-
mines the reconstruction performance of the system; a
smaller value should yield better reconstruction perfor-
mance since a failed disk’s reconstruction workload is
spread over a larger number of disks. In general, system

C > administrators need to be able to spe€ifgndG at installa-

tion time according to their cost, performance, capacity, and

data reliability needs. This paper provides analyses upon
which these decisions can be based.

[T
[T |
LTI

INNRRNNRRNNRZD

Pa-—
Figure 2-2: One possible declustering of a parity 3. Related work

stripe of size four over an array of seven disks. The idea of improving failure-mode performance by
declustering redundancy information originated with mir-

Figure 2-3 presents a declustered parity layout forrored systems [Copeland89, Hsiao90]. Copeland and Keller
G=4 andC=5 that is described in Section 4. What is describe a scheme callédterleaved declusteringvhich
important at this point is that fifteen data units are mappedreatsprimary andsecondarydata copies differently. Tradi-
onto five parity stripes in the array’s first twenty disk units, tionally, mirrored systems allocate one disk as a primary
while in the RAID5 organization of Figure 2-1, sixteen data and another as a secondary. Copeland and Keller instead
units are mapped onto four parity stripes in the same numallocate only half of each disk for primary copies. The other
ber of disk units. More disk units are consumed by parity,half of each disk contains a portion of the secondary copy
but not every parity stripe is represented on each disk, so data from each of the primaries on all other disks. This
smaller fraction of each surviving disk is read during recon-insures that a failure can be recovered since the primary and
struction. For example, if, in Figure 2-3, disk zero fails, par-secondary copies of any data are on different disks. It also
ity stripe four will not have to be read during reconstruction. distributes the workload associated with reconstructing a
Note that the successive stripe units in a parity stripe occufailed disk across all surviving disks in the array. Hsiao and
at varying disk offsets: Section 6 shows that this has no sigDeWitt propose a variant calledhained declusteringhat
nificant performance impact. Although Figure 2-3 does notincreases the array’s data reliability.
spread parity units evenly over all disks, the constructions

we present in Section 4 all possess this property. Muntz and Lui applied ideas similar to those of Copel-

and and Keller to parity-based arrays. They proposed the
Offset DISKO DISKL DISK2 DISK3 DISK4 declustered parity organization described in Section 2, and

0 oo [ooal [Doz PO Pl .then modeleq it analytically, mgking. a number qf simplify—
ing assumptions. We attempt in this paper to identify the
1 big b1y [D1.2 |D2.2 P2 limits of this theoretical analysis and provide performance
2 |b2.0 |D2.1 |D3.1 |D3.2 P3 predictions based instead on a software implementation and
3 D3.0| |(D4.0| |D4.1 |D4.2 P4 array simulation. Toward this end we have two primary con-

cerns with the Muntz and Lui analysis.
Figure 2-3: Example data layout in a declustered

parity organization. First, their study assumes that either the set of surviv-

ing disks or the replacement disk is driven at 100% utiliza-
Muntz and Lui define the ratig¢1)/(C-1) asa. This tion. Unfortunately, driving a queueing system such as a

parameter, which we call thdeclustering ratip indicates =~ magnetic disk at full utilization leads to arbitrarily long
response times. Response time is important to all customers

and critical in database and on-line transaction-processintionship between user data allocation and parity stripe
(OLTP) systems. The specifications for OLTP systems ofterorganization. Because file systems are free to and often do
require some minimal level of responsiveness, for exampleallocate user data arbitrarily into whatever logical space a
one benchmark requires that 90% of the transactions mustorage subsystem presents, our parity layout procedures

complete in under two seconds [TPCAB89]. In a continuous-have no direct control over these latter two criteria.

operation system that requires minutes to hours for the
recovery of a failed disk, this rule will apply even during
these relatively rare recovery intervals. Our analysis report:
on user response time during recovery and presents a simp
scheme trading off reconstruction time for user respons¢
time.

Our second concern with the Muntz and Lui analysis
is that their modeling technique assumes that all disk
accesses have the same service time distribution. Real di¢
accesses are, however, subject to positioning delays that a
dependent on the current head position and the position ¢
target data. As an example, suppose that a given track on
replacement disk is being reconstructed, and that a fev
widely scattered stripe units on that track are already valic
because they were written as a result of user (not recor
struction) accesses during reconstruction. These units ma
be skipped over by reconstruction, or they may simply be
reconstructed along with the rest of the track and over-writ-
ten with the data that they already hold. Whichever option i<
selected, the previously-reconstructed sectors will still have

to rotate under the disk heads, and hence the time needed 4

reconstruct the track will not decrease. The Muntz and Lui
model assumes that the track reconstruction time is reduce
by a factor equal to the size of the units not needing recon
struction divided by the size of the track, which is not the
case. This idea that disk drives are not “work-preserving”
due to head positioning and spindle rotation delays is at

effect that is difficult to model analytically, but relatively 5.

straightforward to address in a simulation-based study.

In this paper we will use balanced incomplete and
complete block designs (described in Section 4.2) to
achieve better performance during reconstruction. Reddy
[Reddy91] has also used block designs to improve the
recovery-mode performance of an array. His approach gen
erates a layout with properties similar to ours, but is
restricted to the case wheee= C/2.

4. Data layout strategy

In this section, we describe our layout goals, and the
technique used to achieve them. We then comment on th
generality of our approach.

4.1. Layout goals

1. Single failure correctingNo two stripe units in the

same parity stripe may reside on the same physical
disk. This is the basic characteristic of any redundancy
organization that recovers the data of failed disks. In
arrays in which groups of disks have a common failure
mode, such as power or data cabling, this criteria
should be extended to prohibit the allocation of stripe
units from one parity stripe to two or more disks shar-
ing that common failure mode [Schulze89, Gibson93].

. Distributed reconstructionWhen any disk fails, its

user workload should be evenly distributed across all
other disks in the array. When replaced or repaired, its
reconstruction workload should also be evenly distrib-
uted.

. Distributed parity Parity information should be evenly

distributed across the array. Every data update causes a
parity update, and so an uneven parity distribution
would lead to imbalanced utilization (hot spots), since
the disks with more parity would experience more load.

Efficient mapping The functions mapping a file sys-
tem’s logical block address to physical disk addresses
for the corresponding data units and parity stripes, and
the appropriate inverse mappings, must be efficiently
implementable; they should consume neither excessive
computation nor memory resources.

Large write optimizationThe allocation of contiguous
user data to data units should correspond to the alloca-
tion of data units to parity stripes. This insures that
whenever a user performs a write that is the size of the
data portion of a parity stripe and starts on a parity
stripe boundary, it is possible to execute the write with-
out pre-reading the prior contents of any disk data,
since the new parity unit depends only on the new data.

. Maximal parallelism A read of contiguous user data

with size equal to a data unit times the number of disks
in the array should induce a single data unit read on all
disks in the array (while requiring alignment only to a
data unit boundary). This insures that maximum paral-
lelism can be obtained.

As shown in Figure 2-1, the left-symmetric mapping

Previous work on declustered parity has left open thefor RAIDS arrays meets all of these criteria.
problem of allocating parity stripes in an array. Extending4 2 | ayout strategy

from non-declustered parity layout research [Lee90, Dib-
ble90], we have identified six criteria for a good parity lay-
out. The first four of these deal exclusively with

relationships between stripe units and parity stripe member
ship, while the last two make recommendations for the rela

Our declustered parity layouts are specifically

designed to meet our criterion for distributed reconstruction
while also lowering the amount of reconstruction work done
by each surviving disk. The distributed reconstruction crite-
rion requires that the same number of units be read from

each surviving disk during the reconstruction of a failed cation, as shown in the right side of Figure 4-2. This layout,
disk. This will be achieved if the number of times that a pairthe entire contents of Figure 4-2, is further duplicated until
of disks contain stripe units from the same parity stripe isall stripe units on each disk are mapped to parity stripes. We
constant across all pairs of disks. Muntz and Lui recognizewefer to one iteration of this layout (the first four blocks on
and suggested that such layouts might be found in the litereeach disk in Figure 4-2) as théock design tableand one
ture for balanced incomplete block desigpt$all86]. This complete cycle (all blocks in Figure 4-2) as fh# block
paper demonstrates that this can be done and one way to design table
It We now show how well this layout procedure meets
A block design is an arrangementwadistinct objects the first four of our layout criteria. No pair of stripe units in
into b tuples, each containing elements, such that each the same parity stripe will be assigned to the same disk
object appears in exactiytuples, and each pair of objects because thes elements of each tuple are distinct. This

appears in exactly, tuples. For example, using non-nega- insures our single failure correcting criterion. The second
tive integers as objects, a block design with 5, v =5, criterion, which is that reconstruction be distributed evenly,

A i S e | is guaranteed because each pair of objects appears in
k=4,r=4,and\, =3 is given in Figure 4-1. exactlyA, tuples. This means that in each copy of the block

?Jple (i) 8 i % 2 ¥UP:9 2 (1) % g 2 design table, disk occurs in exactij\, parity stripes with
Tﬂglg 20134 uple 4 2, 43, each other disk. Hence, when diskails, every other disk

reads exacti\, stripe units while reconstructing the stripe

units associated with each block design table. Note that the
actual value ol is not significant. It is only necessary that

design called aomplete block desigwhich includes all it be constant across all pairs of disks, and this is guaranteed
combinations of exactlk distinct elements selected from by the definition of a block design.

the set ofv objects. The number of these combinations is Our distributed parity criterion is achieved because a
%, It is useful to note that only three\ofk, b, randA, are full block design table is composed®tlock design tables

free variables because the following two relations areeach assigning parity to a different element of each tuple.
always truebk = vr, andr(k-1) = A(v-1). The first of these This results in t_he assignment of parity to each disk iq the
relations counts the objects in the block design in two Wayscluster exactly times over the course of a full block design

and the second counts the pairs in two ways. table. To see this, refer to Figure 4-2: if we group together
the vertical boxes in the right half of the figure we see that

The layout we use associates disks with objects anwye have reconstituted one block design table; that is, the
parity stripes with tuples. For clarity, the following discus- parity assignment function touches each element of the
sion is illustrated by the construction of the layout in Figurepjock design table exactly once over the course of one full
4-2 from the block design in Figure 4-1. To build a parity piock design table. Since each object appears in exactly
layout, we find a block design with=C, k =G, and the yyples in a block design table, each disk will be assigned

minimum possible value fdy (as explained in Section 4.3). parity in exactlyr tuples in the full block design table.
Our mapping identifies the elements of a tuple in a block

design with the disk numbers on which each successivi Unfortunately it is not guaranteed that our layout will
stripe unit of a parity stripe are allocated. In Figure 4-2, theh_ave an efficient mapping, our fourth criterion, because the
first tuple in the design of Figure 4-1 is used to lay out paritySiz€ of a block design table is not guaranteed to be small.
stripe 0: the three data blocks in parity stripe 0 are on diskHowever, Section 4.3 demonstrates that small block design
0, 1, and 2, and the parity block is on disk 3. Based on thtables are available for a wide range of parity stripe and
second tuple, stripe 1 is on disks 0, 1, and 2, with parity orarray Sizes.

disk 4. In general, stripe unitf parity stripd is assigned to Finally, our fifth and sixth criteria depend on the data
the lowest available offset on the disk identified by jthe mapping function used by higher levels of software. Unfor-
element of tuplé mod bin the block design. The layout tnately, the simple mapping of data to successive data units
shown in the top quarter of Figure 4-2, and in Figure 2-3, isyjthin successive parity stripes (Figure 4-2) that we use in
derived via this process from the block design in Figure 4-1oyr simulations, while meeting our large-write optimization

It is apparent from Figure 2-3 that this approach pro-criterion, does not meet our maximal parallelism criterion;
duces a layout that violates our distributed parity criterionthat is, not all sets of five adjacent data units from the map-

(3). To resolve this violation, we derive a layout as abovePing, D0.0, DO0.1, D0.2, D1.0, D1.1, D1.2, D2.0, etc., in Fig-
and duplicate i times (four times in Figure 4-2), assign- Ure 4-2 are allocated on five different disks. Instead, reading

ing parity to a different element of each tuple in each dupli-five adjacent data units starting at data unit zero causes disk
0 and 1 to be used twice, and disks 3 and 4 not at all. On the

3. These tuples are callbtbcks in the block design literature. We othe’r hand, if we were to.employ a data mapping similar to

avoid this name as it conflicts with the commonly held definition Lee’s left-symmetric parity (for non-declustered RAID5

of a block as a contiguous chunk of data. arrays), we may fail to satisfy our large-write optimization

Figure 4-1: A sample complete block design.

This example demonstrates a simple form of block

Data Layout on Physical Array Layout Derivation from Block Designs
Parity Stripe TUPLE

0 O, 1, 2, 3 Panty
1 1, 2, |4 Block
Offset DISKO DISK1 DISK2 DISK3 DISK4/ 2|0 1T 3 4 Design
0 [D0.0] [Do0.1] [D0.2] [PO P1 i 2’ > g j Table
1 D1.0 D1.1 D1.2 D2.2 P2 ’ ’ ’ .
2 D2.0 D2.1 D3.1 D3.2 P3 —
3 [D3.0] [D4.0] [D41] [D42 P4 510 1, 12/ 3
4 [D5.0] [D54] [P5 | [D5.2] [D6.2 610 1 J2| 4
5 [D6.0| [D6.1] [P6 P7 | [D7.2]=— 7 |[0_1 |3[4]
6 [D7.0| [D7.1]| [D8.1| | P8 | [D8.2 81 0 2 3 4 Full
7 |D8.0| [D9.0| [D9.1] [P9 | [D9.2 °op 1 2 3 4 Block
8 |[D10.0 P10 D10.1] |[Di0.2| |D11.2 — ‘ Desian
9 |[D11.0 P11 D11.1] |D12.1] |D12.2 101 0, |1} 2, 3 g
10 [D12.0| [P12 P13 | [D13.1| [D13.2 11 0, |1 2, 4 Table
11 |D13.0] [D14.0 P14 D14.1] [D14.2 121 0, (1} 3, 4
12 | P15 D15.0| |D15.1 |D15.2| |D16.2 13 | [0 23 4
13 [P16 D16.0f |D16.1] |D17.1 |D17.2 141 1, |2, A3, 4
14 | P17 D17.0| |Di8.0| |D18.1| |D18.2 -
15 | P18 P19 D19.0| |D19.1] |D19.2) 5| (o) 1, 2, 3
6| |0l 1, 2, 4
17| (o] 1, 3, 4
C=5G=4 18| 0| 2, 3, 4
19 | 12,3 4
Figure 4-2: Full block design table for a parity declustering organization.
criterion. We leave for future work the development of a _ 109
declustered parity scheme that satisfies both of these crite% QL +
1 N
ra. @ gop "+ oot
4.3. On the generation of block designs § 0r * . . * N
. - < + +
Complete block designs such as the one in Figure 4-. ~ 60 ™" . , | ..+
are easily generated, but in many cases they are insufficiel s I *+ +t 1
for our purposes. When the number of disks in an a@hy (VI o T
is large relative to the number of stripe units in a parity MRS & S A
: . . 30 e+ +
stripe G) then the size of the block design table becomes a4t AT A a4 1
. .. - + R B + FoE o4 +5 o e+
unacceptably large and the layout fails our efficient map- 20 R e jﬁ R
ping criterion. For example, a 41 disk array with 20% parity 10r T 4ot
overhead G=5) allocated by a complete block design will 0 L L w w w w w w w w
have about 3,750,000 tuples in its full block design table. In 00 01 02 03 04 05 06 07 08 09 10
addition to the exorbitant memory requirement for this Declustering Ratio (o)
ta}ble, the layout WiII_ not meet our distributed parity or d?s— Figure 4-3: Known block designs.
tributed reconstruction criteria because even large disk: .
rarely have more than a few million sectors. For this reasor Sometimes a balanced incomplete block design with
we turn to the theory dfalanced incomplete block designs the required parameters may not be known. In cases where
[Hall86]. we cannot find a balanced incomplete block design, we

_) . attempt to use a complete block design on the indicated

~ Our goal, then, is to find a small block design®@n 53 meters. When this method produces an unacceptably
objects with a tuple size @. This is a difficult problem for large design, we resort to choosing the closest feasible
generalC andG. Hall preser_1ts a number of techniques, bUtdesign point; that is, the point which yields a valuexof
these are of more theoretical interest than practical valuijosest to what is desired. All of our results indicate that the
since they do not provide sufficiently general techniques folperformance of an array is not highly sensitive to such small
the direct construction of the necessary designs. Fortuyariations ina. The block designs we used in our simula-
nately, Hall also presents a list containing a large number otions are given in [Holland92].
known block designs, and states that, within the bounds o
this list, a solution is given in every case where one is
known to exist. Figure 45‘3)resents a scatter plot of a sub-
set of Hall’s list of designs. Whenever possible, our parity4. These block designs (and others) are available via anonymous

inQ i ; , i ftp from niagara.nectar.cs.cmu.edu (128.2.250.200) in the file
declustering implementation uses one of Hall's designs. Jusro/anon/pub/Declustering/BD._database.tar 2.

5. The simulation environment

(a) Workload Parameters

We acquired an event-driven disk-array simulator

e . Access size: Fixed at 4 KB
calledraidSim[Chen90b, Lee91] for our analyses. The sim User access rate: 105, 210, and 378 accesses/second
ulator was developed for the RAID project at U.C. Berkeley Alignment: Fixed at 4 KB
[Katz89]. It consists of four primary components, which are | piciripution: Uniform over all data
illustrated in Figure 5-1. Each component is described| \rite Ratio: 0% and 100% (Sections 6, 7)
below. 50% (Section 8)

Synthetic RAID Disk Event (b) Array Parameters
Reference—| Striping » Simulation—{ Driven Stripe Unit: Fixed at 4KB
Generator Driver Module Simulator Number of Disks: Fixed at 21 spindle-synchronized diskg.

Head Scheduling: CVSCAN [Geist87]
Parity Stripe Size: 3, 4,5, 6, 10, 14, 18, and 21 stripe unjts
Parity Overhead: 33, 25, 20, 17, 10, 7, 6, and 5%, resp

Figure 5-1: The structure of raidSim.

At the top level of abstraction issynthetic reference Data Layout: RAID5: Left Symmetric
generator which is capable of producing user request Declustered: By parity stripe index
streams drawn from a variety of distributions. Table 5-1 (a)| Parity Layout: RAIDS5: Left Symmetric
shows the configuration of the workload generator used ir Declustered: Block Design Based

our simulations. We have restricted our attention to randon| Power/Cabling: Disks independently powered/cabled
accesses of size 4 KB to model an OLTP system with ar

effective buffer cache [Ramakrishnan92]. Each request pro (c) Disk Parameters
duced by this generator is sent tdRAID striping drive;, Geometry: 949 cylinders, 14 heads, 48 sectors/trgck
which was originally the actual code used by the Sprite| Sector Size: 512 bytes

operating system [Ousterhout88] to implement a RAID | Revolution Time: 13.9 ms
device on a set of independent disks. Table 5-1 (b) show| Seek Time Model:2.0+ 0.01[ist+ 0.460/dist (ms)

the configuration of our extended version of this striping 2 ms min, 12.5 ms avg, 25 ms max
driver. These upper two levels cdidSim should actually Track Skew: 4 sectors

run on a Sprite machine. Low-level disk operations gener- - :

ated by the striping driver are sent tdisk simulation mod- Table 5-1: Simulation parameters.

ule, which accurately models significant aspects of eackmand processing time in the CPU, and (3) the code path
specific disk access (seek time, rotation time, cylinder lay-length for the mapping functions is not significantly longer
out, etc.). Table 5-1 (c) shows the characteristics of the 31in our declustered layouts than in the RAID5 case.

MB, 3 1/2 inch diameter IBM 0661 Model 370 (Lightning)
disks on which our simulations are based [IBM0661]. At 6- Fault-free performance

the lowest level of abstraction faidSimis anevent-driven Figures 6-1 and 622show the average response time
simulator which is invoked to cause simulated time to pass.experienced by read and write requests in a fault-free disk

The striping driver code was originally taken directly array as a function of the declustering ratio Our simu-
from the Sprite source code, with essentially zero modificalated system has 21 disks, so the fraction of space consumed
tion to accommodate simulation, and all our modificationsPy parity units, 1/G, is 1/(20+1). In the 100% read case we
conform to Sprite constraints. This assures that referencshow three average response time curves corresponding to
streams generated by this driver are identical to those theUSer access rates)(of 105, 210, and 3gandom reads of
would be observed in an actual disk array running the sam4 KB per second (on average, 5, 10, and 18 user reads of 4
synthetic workload generator. It also forces us to actuallyKB per second per disk are applied to disks capable of a
implement our layout strategy and reconstruction optimiza-maximum of about 46 random 4 KB reads per second). In
tions, since we have extended the code in such a way thatthe 100% write case we show two curves with much longer
could be re-incorporated into an operating system at an@verage response time, corresponding Ate 105 and
time. This minimizes the possibility that un-considered
implementation details will lead to erroneous conclusions.5. In all performance plots, each data point is an average over five

All reconstruction algorithms discussed in Section 8 haveindependently-seeded runs of the simulator. We find that the 95%
confidence intervals are too small to include on any graph. The

been fully implemented and tested under simulation in oulmaximum width of a confidence interval over all data points on all
version of the RAID striping driver. plots is 6.7% of the value of the data point.
. . . 6. In our simulated arrays of 21 disks, 105, 210, and 378 accesses
It is evident that our simulator models a software per second correspond to 5, 10, and 18 accesses per second per
implementation of a striped disk array, but we expect adisk. These user accesses expand into even more physical accesses
hardware implementation to deliver similar performance.due to four-cycle writes and on-the-fly reconstruction. Five access-

s . es/second/disk was chosen as a low load, ten was chosen as a value
This is because (1) we do not model the time taken to COMei5se to the maximum supportable workload (50% writes) in

pute the XOR functions in the CPU, (2) our simulator doesreconstruction mode, and eighteen was determined to be the maxi-
not incur rotation slips due to interrupt overhead and com-mum supportable user per-disk access write (50% writes) in the
fault-free mode.

A =210 random user writes of 4 KB per second. User writesother data unit in this parity stripe, then directly write the

are much slower than user reads because writes must updecorresponding parity unit in three disk accesses, instead of
parity units as well as data units. Our striping driver’s fault- pre-reading and overwriting both the specified data unit and
free behavior is to execute four separate disk accesses fcorresponding parity unit in four disk accesses. In the rest of

each user write instead of the single disk access needed bythiS paper we will neglect the case @ 0.1 5=3) to
user read. Because of this high cost for user writes, our syv0id repeating this optimization discussion.

tem is not able to sustain 378 user writes of 4 KB per secon

We note that our parity declustering implementation

(this would be 72 4 KB accesses per second per diskmay not perform equivalently to a left-symmetric RAID5

%501

Response Time (M
D
o
T

w
o
T

20

10

Fault-Free Degraded
<& A=378 ¢ \=378
O A=210 e A\=210
O A=105 m A\=105

0
00 01 02 03 04 05 06 07 08 09 10

a

Figure 6-1: Response time: 100% reads.

mapping when user requests are larger than one data unit.
Declustered parity has the advantage of exploiting our
large-write optimization with smaller user writes because it
has smaller parity stripes. On the other hand, because our
implementation does not currently meet our maximal paral-
lelism criterion, it will not be as able to exploit the full par-
allelism of the array on large user accesses. Overall
performance for workloads not modeled by our simulations
will be dictated by the balancing of these two effects, and
will depend on the access size distribution.

7. Degraded-mode performance

Figures 6-1 and 6-2 also show average response time
curves for our array when it is degraded by a failed disk that
has not yet been replaced. In this case, an on-the-fly recon-
struction takes place on every access that requires data from
the failed disk. When such an access is a read, the failed
disk’s contents are reconstructed by reading and computing

7220 an exclusive-or over all surviving units of the requested
%200 L data’s parity stripe. Because the amount of work this entails
= depends on the size of each parity stripethese degraded-
‘; 180 mode average response time curves suffer less degradation
S 160 with a lower parity declustering ratio (smaltey when the
T 140t array size is fixed@ = 21). This is the only effect shown in
x 120 Figure 6-1 (100% reads), but for writes there is another con-
sideration. When a user write specifies data on a surviving
100~ disk whose associated parity unit is on the failed disk, there
80 is no value in trying to update this lost parity. In this case a
60 user write induces only one, rather than four, disk accesses.
Fault-Free Degraded This effect decreases the workload of the array relative to
40 o A=210 e \=210 the fault-free case, and, at low declustering ratios, it may
20 O A=105 m A=105 lead to slightly better average response time in the degraded
\ \ \ \ L L L L L \ rather than fault-free mode!

0
00 01 02 03 04 05 06 07 08 09 10

a

Figure 6-2: Response time: 100% writes.

8. Reconstruction performance

The primary purpose for employing parity decluster-
ing over RAID5S organizations has been given as the desire

Although using four separate disk accesses for every useto support higher user performance during recovery and
write is pessimistic [Patterson88, Menon92, Rosenblum91]shorter recovery periods [Muntz90]. In this section we show
it gives our results wider generality than would result from this to be effective, although we also show that previously
simulating specifically optimized systems.

Figures 6-1 and 6-2 show that, except for writes with
a = 0.1, fault-free performance is essentially independent of

proposed optimizations do not always improve reconstruc-
tion performance. We also demonstrate that there remains
an important trade-off between higher performance during
recovery and shorter recovery periods.

parity declustering. This exception is the result of an opti-
mization that the RAID striping driver employs when Reconstruction, in its simplest form, involves a single
requests for one data unit are applied to parity stripes corsweep through the contents of a failed disk. For each stripe

taining only three stripe units [Chen90a]. In this case theunit on a replacement disk, the reconstruction process reads
driver can choose to write the specified data unit, read th

all other stripe units in the corresponding parity stripe andmization to the redirection algorithm.
computes an exclusive-or on these units. The resulting uni
is then written to the replacement disk. The time needed t
entirely repair a failed disk is equal to the time needed tc ~ Figures 8-1 and 8-2 present the reconstruction time
replace it in the array plus the time needed to reconstruct itand average user response time for our four reconstruction
entire contents and store them on the replacement. This ladlgorithms under a user workload that is 50% 4 KB random
ter time is termed theeconstruction timeln an array that reads and 50% 4 KB random writes. These figures show the
maintains a pool of on-line spare disks, the replacemensubstantial effectiveness of parity declustering for lowering
time can be kept sufficiently small that repair time is essenboth the reconstruction time and average user response time
tially reconstruction time. Highly available disk arrays relative to a RAID5 organizatiom (= 1.0). For example, at
require short repair times to assure high data reliabilityl05 user accesses per second, an array with declustering
because the mean time until data loss is inversely proporl’atio 0.15 reconstructs a failed disk about twice as fast as
tional to mean repair time [Patterson88, Gibson93]. How-the RAID5 array while delivering an average user response
ever, minimal reconstruction time occurs when user accestime that is about 33% lower.

is denied during reconstruction. Because this cannot takwglsooo r A =210

less than the three minutes it takes to read all sectors on o/ 2 12000 [- .

8.1 Single thread vs. parallel reconstruction

: . o m Minimal-Update
disks, and usually takes much longer, continuous-operatiol £ 11000~ e User-Writes
systems require data availability during reconstruction. = 10000 v Redirect
o) o) S A Redirect+Piggyback
Muntz and Lui identify two optimizations to a simple 8 9000 |
sweep reconstructiomedirection of readsand piggyback- @ 8000
ing of writes In the first, user accesée® data that has g 7000 [
already been reconstructed are serviced by (redirected tc@ gooo -
the replacement disk, rather than invoking on-the-fly recon- gogg |-
struction as they would if the data were not yet available. 4000 -
This reduces the number of disk accesses invoked by a typ B O Minimal-Update
i i imi 3000 o User-Writes

cal request during reconstruction. In the second optimiza: 2000 - Rediirect

; ; v
tion, user reads that cause on-the-fly reconstruction als 1000 F A Redirect+Piggyback

cause the reconstructed data to be written to the replaceme

disk. This is targeted at speeding reconstruction, since thos | | | | | | | | | |

0
00 01 02 03 04 05 06 07 08 09 10

units need not be subsequently reconstructed. a
Muntz and Lui also mention that in servicing a user’s Figure 8-1: Single-thread reconstruction time:

write to a data unit whose contents have not yet been recor 50% reads, 50% writes.

structed, the device driver has a choice of writing the new

data directly to the replacement disk or updating only the @ 120 [0 A =210

parity unit(s) to reflect the modification. In the latter case, 2 110 = Minimal-Update
the data unit(s) remains invalid until the reconstruction pro- € 15g|- ® User-Writes
cess reaches it. Their model assumes that a user-write ta'y 90l v Redirect
geted at a disk under reconstruction is always sent to th 5 4 Redirect+Pggyback
replacement, but for reasons explained below, we questio @L 80"

whether this is always a good idea. Therefore, we investi © 70
gate four algorithms, distinguished by the amount and type 60|
of non-reconstruction workload sent to the replacemeni gg

disk. In our minimal-updatealgorithm, no extra work is a0F 0 Minima-Update

sent; whenever possible user writes are folded into the pai O User-Writes

ity unit, and neither reconstruction optimization is enabled. 30 v Redirect

In our user-writesalgorithm (which corresponds to Muntz 201 4 Redirect+Piggyback

and Lui'sbaselinecase), all user writes explicitly targeted at 101

the replacement disk are sent directly to the replacemen 0 ! ! ! ! ! ! ! ! ! ‘
Theredirectionalgorithm adds the redirection of reads opti- 00 01 02 03 04 05 06 07 08 09 10
mization to the user-writes case. Finally, tedirect-plus- a
piggybackalgorithm adds the piggybacking of writes opti- Figure 8-2: Single-thread average user response

7. In what follows, we distinguish betweeaser accessesvhich time: 50% reads, 50% writes.

are those generated by applications as part of the normal workloas

andreconstruction accesseshich are those generated by a back- While Figures 8-1 and 8-2 make a strong case for the
ground reconstruction process to regenerate lost data and store

on a replacement disk. advantages of declustering parity, even the fastest recon-

struction shown, about 60 minufess 20 times longer than 5200

the physical minimum time these disks take to read or write £ | . ﬂ)

. . . . o 180~ ®m Minimal-Update
their entire contents. The problem here is that a single 2 e User-Writes
reconstruction process, which uses blocking I/O operationsi= 160 - v Redirect
is not able to highly utilize the array’s disks, particularly at Q A Redirect+Piggyback

low declustering ratios. To further reduce reconstruction § 140
time we introduce parallel reconstruction processes. Thisr?éL 120 -
should speed reconstruction substantially, although it will
also further degrade the response time of concurrent use 100 [
accesses.

80
Figures 8-3 and 8-4 show the reconstruction time anc 60 F ' .

: . O Minimal-Update
average user response time when eight processes are c¢ o User-Writes
currently reconstructing a single replacement Yigkor 401 v Redirect
workloads of 105 and 210 user accesses per second, recc o |- A Redirect+Piggyback

struction time is reduced by a factor of four to six relative to
Figure 8-1. This gives reconstruction times between 10 ant

0
00 01 02 03 04 05 06 07 08 09 10

40 minutes. However, response times suffer increases c a
35% to 75%. Still, even the worst of these average respons Figure 8-4: Eight-way parallel average user
times is less than 200 ms, so a simple transaction such as t response time: 50% reads, 50% writes.

one used in the TPC-A benchmark, which should require o)
less than three disk accesses per transaction, should haveS Intended to reduce reconstruction time without penalty to

good chance of meeting its required transaction respons2Verage user response time. With the user loads we employ,
time of two seconds. piggybacking of writes yields performance that differs very

little from redirection of reads alone. We will not pursue

gi:'gg A=210 piggybacking of writes further in this section.
g 2000 - : B",lg‘r'_r{}(;"r}%’date Figures 8-1 and 8-2 also show that the two “more opti-
= v Redirect mized” reconstruction algorithms do not consistently
51800 4 Redirect+Piggyback decrease reconstruction time relative to the simpler algo-
S 1600 |- rithms. In particular, under single-threaded reconstruction,
B 1400 the user-writes algorithm yields faster reconstruction times
g 1200 F than all others for all values afless than 0.5. Similarly, the
@ 1000 - eight-way parallel minimal-update and user-writes algo-
| rithms yields faster reconstruction times than the other two
800 for all values ofx less than 0.5. These are surprising results.
600 [~ O Minimal-Update We had expected the more optimized algorithms to experi-
400 [g gg;\écvtrltes ence improved reconstruction time due to the off-loading of
200 - A Redirect+Piggyback work from the over-utilized surviving disks to the under-uti-
0 ! ! ! ! ! ! ! ! ! \ lized replacement disk, and also because in the piggyback-
00 01 02 03 04 05 06 07 08 09 10 ing case, they reduce the number of units that need to get
a reconstructed. The reason for this reversal is that loading
Figure 8-3: Eight-way parallel reconstruction the replacement disk with random work penalizes the recon-
time: 50% reads, 50% writes. struction writes to this disk more than off-loading benefits
the surviving disks unless the surviving disks are highly uti-
8.2 Comparing reconstruction algorithms lized. A more complete explanation follows.

The response time curves of Figures 8-2 and 8-4 shov For clarity, consider single-threaded reconstruction.
that Muntz and Lui’s redirection of reads optimization has Because reconstruction time is the time taken to reconstruct
little benefit in lightly-loaded arrays with a low declustering all parity stripes associated with the failed disk’s data, one
ratio, but can benefit heavily-loaded RAIDS arrays with at a time, our unexpected effect can be understood by exam-
10% to 15% reductions in response time. The addition olining the number of and time taken by reconstructions of a
piggybacking of writes to the redirection of reads algorithm single unit as shown in Figure 8-5. We call this single stripe
unit reconstruction period r@construction cyclelt is com-

8. For comparison, RAID products available today specify on-lineposed of a read phase and a write phase. The length of the

reconstruction time to be in the range of one to four hours [Mea- : .
dor89, Rudeseal9?]. read phase, the time needed to collect and exclusive-or the

9. Each reconstruction process acquires the identifier of the nexSUrviving stripe units, is approximately the maximum of

stripe to be reconstructed off of a synchronized list, reconstructsG-1 reads of disks that are also supporting a moderate load
that stripe, and then repeats the process.

of random user requests. Since these disks are not saturate
off-loading a small amount of work from them will not sig-

nificantly reduce this maximum access time. But, even ¢
small amount of random load imposed on the replacemen
disk may greatly increase its average access times becau
reconstruction writes are sequential and do not require lon
seeks. This effect, suggesting a preference for algorithm
that minimize non-reconstruction activity in the replace-
ment disk, must be contrasted with the reduction in numbe
of reconstruction cycles that occurs when user activity
causes writes to the portion of the replacement disk’s dati

MU = Minimal-Update

UW = User-Writes

R =Redirect

RP = Redirect +Piggyback

[] Read Time (ms)
B Write Time (ms)

(a) Single Thread Reconstruction

Dinlling

that has not yet been reconstructed. MU UW R RP MU LW Rg RP MUUW R RP
Simple Algorithms “Optimizations" (b) Eight-Way Parallel Reconstruction
R Read %‘2‘8
ead Survivi 200
Surviving urviving 180
Disks Disks %?18
120
Write Write %0
Replacement Replacement by
Time 20

T MU UW R RP

MUUW R RP MU UW R RP
o =0.15 = =

a =0.45 a=1.0

Figure 8-6: Reconstruction cycle time (ms) at 210 user
accesses per second.

Figure 8-5: The effect of redirection and
piggybacking on the reconstruction cycle.

Figure 8-6 presents a sample of the durations of the
intervals illustrated in Figure 8-5. These numbers are aver
aged over the reconstruction of the last 300 stripe units on
replacement disk. For these final reconstruction cycles, th:

parity [Muntz90]. Figure 8-7 shows our best attempt to rec-
oncile their model with our simulations. Because their
model takes as input the fault-free arrival rate and read-frac-
X i L . - 'tion of accesses to the disk rather than of user requests, we
plgg_ybacklng of writes Is not likely to oceur, but the redi- apply the following conversions, required because each user
re}:t|on of reads _N'" be ‘fit Its greatgst L_‘t'“ty' We SeleCtedwrite induces two disk reads and two disk writes. Letting
this operating point to give the redirection of reads algo-ine fraction of user accesses that are readd Mantz and
riFhm its maximum advantage. The figure shows _that in the yi's rate of arrival of disk accesses is ®}3imes larger
eight-way parallel case, the more complex algorithms tencnan our user request arrival rate, and the fraction of their

to yield lower read phase times and higher write phasegisk accesses that are reads iR(24-3R).
times. These numbers suggest that with a low declusterin

ratio the minimal-update algorithm has an advantage ove "8000: M&L Model
the user-writes algorithm and both are faster than the othe;;(?gg | v User-Writes
two algorithms. E | ® Redirect

= 6500 a Redirect+Piggyback

The single-thread case of Figure 8-6 and Figures 8-1 § 6000 [_ ,

and 8-3 do not entirely bear out this suggestion because tF '§ 5500 _M
minimal-update algorithm gets none of its reconstruction ’g‘ 2(5)88: 5 {\Jﬂgrl_r{w/s\lﬁ%)date
work done for it by user requests, as is the case for the othe § a0k © Redirect
algorithms. In the single-threaded case, reconstruction is s & o001 4 Redirect+Piggyback
slow that the loss of this “free reconstruction” benefit domi- 3909 -
nates and the minimal-update algorithm reconstructs morc 2500
slowly than the others for all but the smallest declustering 2000 -
ratio. However, in the eight-way parallel case, reconstruc- 1500
tion is fast enough that free reconstruction does not com 1288 i

pensate for longer services times experienced by the L

replacement disk because free reconstruction moves th
heads around randomly.

8.3 Comparison to analytic model

Muntz and Lui also proposed an analytic expression
for reconstruction time in an array employing declustered

0
00 01 02 03 04 05 06 07 08 09 10
a

Figure 8-7: Comparing reconstruction time model
to simulation: 210 user accesses/second.

Their model also requires as input the maximum rate

at which each disk executes its accesses. It is this parametstruction, although this additional load can degrade user
that causes most of the disagreement between their modresponse time substantially. Our most surprising result is
and our simulations. In Figure 8-7 we use the maximum ratehat in an array with a low declustering ratio and parallel

at which one disk services entirely random accesses (4reconstruction processes, the simplest reconstruction algo-
accesses per second) in their model. This is consistent witrithm produces the fastest reconstruction time because it
the way Muntz and Lui’s designed their model, but it doesbest avoids disk seeks.

not account for the fact that real disks execute sequentic
accesses much faster than random accesses. For examg
with these disks and random accesses the minimum tim
required to read or write an entire disk is over 1700 seconds
which is more than three times longer than our fastest simu
lated reconstruction time.

We feel that parity declustering and related perfor-
mance/reliability tradeoffs is an area rich in research prob-
lems, a sample of which we give here. Reconstruction time
could be further improved by making the parity unit size
larger than the data unit size. This amounts to striping the
data on a finer grain than the parity, and would allow recon-

The other manifestation of the problem of using a sin-struction to proceed in larger units. We also have not spent
gle disk service rate is their predictions for the benefits oimuch time on the data mapping in our declustered parity
the redirection of reads and piggybacking of writes optimi-arrays; we think many of our layouts may be amenable to
zations. Because redirecting work to the replacement disk ilboth our large write optimization and maximal parallelism
their model does not increase this disk's average accescriteria. With an eye to our performance modeling, we
time, their predictions for the user-writes algorithm are would like to see an analytical model of a disk array, or
more pessimistic than for their other algorithms. even of a single drive, that incorporates more of the com-
plexity of disk accesses. We view analytical modeling as
very useful for generating performance predictions in short

In this paper we have demonstrated that parity declusperiods of time, but this paper has demonstrated that care
tering, a strategy for allocating parity in a single-failure-cor- must be taken in their formulation. To broaden our results,
recting redundant disk array that trades increased paritwe intend to explore disk arrays with different stripe unit
overhead for reduced user-performance degradation durinsizes and user workload characteristics. One important con-
on-line failure recovery, can be effectively implemented in cern that neither our nor Muntz and Lui's work considers is
array-controlling software. We have exploited the specialthe impact of CPU overhead and architectural bottlenecks in
characteristics of balanced incomplete and complete bloclthe reconstructing system [Chervenak91]. For greater con-
designs to provide array configuration flexibility while trol of the reconstruction process we intend to implement
meeting most of our proposed criteria for the “goodness” ofthrottling of reconstruction and/or user workload as well as
a parity allocation. In particular, using block designs to mapa flexible prioritization scheme that reduces user response
parity stripes onto a disk array insures that both the paritttime degradation without starving reconstruction. Finally,
update load and the on-line reconstruction load is balancewe hope to install our software implementation of parity
over all (surviving) disks in the array. This is achieved with- declustering on an experimental, high-performance redun-
out performance penalty in a normal (non-recovering) useidant disk array and measure its performance directly.
workload dominated by small (4 KB) disk accesses.

9. Conclusions and future work

Acknowledgments

Previous work proposing declustered parity mappings .
for redundant disk arrays has suggested, without implemen _ WWe're indebted to Ed Lee and the Berkeley RAID

tation, the use of block designs, has proposed two optimizaP0Ject for supplying us with the raidSim simulator, and to
tions to a simple sweep reconstruction algorithm, and ha’€t€r Chen, Art Rudeseal, Dan Siewiorek, Dan Stodolsky,
analytically modeled the resultant expected reconstructior €' Watson, and John Wilkes for their insightful reviews
time [Muntz90]. In addition to extending their proposal to °f €arly drafts of the paper. Bob Barker, Karl Brace, Derek
an implementation, our work evaluates their optimizationsF€!tham, Anurag Gupta, John Hagerman, Augustine Kuo,
and reconstruction time models in the context of our soft-Jason Lee, Kevin Lucas, Tom Marchok, Lily Mummert,
ware implementation running on a disk-accurate simulatorfoward Read, Roland Schaefer, and Terri Watson gra-

Our findings are strongly in agreement with theirs about theciously supplied compute cycles on their workstations when
overall utility of parity declustering, but we disagree with ime was short, and we would never have met our deadlines

their projections for expected reconstruction time and theWithout them.

value of theirloptinlwized relcok?struction zfalgorithms. Our dis- References

agreements largely result because of our more accural

mgodels of ma r?et?::—disk accesses. We find that their esti[Bittonsg] D. Bitton and J. Gray, "Disk Shadowingtoceedings
9) of the 14th Conference on Very Large Data Ba%688, pp. 331-

mates for reconstruction time are significantly pessimistic338
and that their optimizations actually slow reconstruction |n[Chen90a] P. Chen, et. al., “An Evaluation of Redundant Arrays

some cases. We also find that in practice, multiple, paralle ¢ p;qy using an Amdahl 5890Proceedings of the ACM SIG-
reconstruction processes are necessary to attain fast recoyeTRriCS Conferencd 990, pp. 74-85.

[Chen90b] P. Chen and D. Patterson, “Maximizing Performance Very Large Data Base4990, pp. 162-173.

in a Striped Disk Array"Proceedings of ACM SIGARCH Confer- [Ousterhout88] J. Ousterhout, et. al., “The Sprite Network Oper-
ence 1990, pp. 322-331. ating System,1EEE ComputerFebruary 1988, pp. 23-36.
[Chervenak91] A. Chervenak and R. Katz, “Performance of a [patterson88] D. Patterson, G. Gibson, and R. Katz, “A Case for
RAID Prototype,"Proceedings of the ACM SIGMETRICS Confer- Redundant Arrays of Inexpensive Disks (RAIDPfoceedings of
ence 1991, pp. 188-197. the ACM SIGMOD Conferenc&988, pp. 109-116.

[Copeland89] G. Copeland and T. Keller, “A Comparison of [Ramakrishnan92] K. Ramakrishnan, P. Biswas, and R. Karedla,
High-Availability Media Recovery TechniquesProceedings of “Analysis of File I/O Traces in Commercial Computing Environ-

the ACM SIGMOD Conferenc#989, pp. 98-109. ments,”Proceedings of the ACM SIGMETRICS Conferen682,
[Dibble90] P. Dibble, “A Parallel Interleaved File System,” Uni- pp. 78-90.
versity of Rochester, Technical Report 334, 1990. [Reddy91] A. Reddy and P. Bannerjee, “Gracefully Degradable

[Geist87] R. Geist and S. Daniel, “A Continuum of Disk Schedul- Disk Arrays,”Proceedings of FTCS-21991, pp. 401-408.

ing Algorithms,” ACM Transactions on Computer Systeivisl. [Rosenblum91] M. Rosenblum and J. Ousterhout, “The Design
5(1), 1987, pp. 77-92. and Implementation of a Log-Structured File SysteRrgceed-
[Gibson91] G. Gibson, “Redundant Disk Arrays: Reliable, Paral- ings of the 13th ACM Symposium on Operating System Principles
lel Secondary Storage,” Ph.D. Dissertation, University of Califor- 1991, pp. 1-15.

nia, UCB/CSD 91/613, 1991. Also to be pUb'lShed by MIT Press. [Rudesea|92] A. Rudeseal, private communication, 1992.

[Gibson93] G. Gibson and D. Patterson, “Designing Disk Arrays [Salem86] K. Salem, H. Garcia-Molina, “Disk StripingPro-
for High Data Reliability,”Journal of Parallel and Distributed ceedings of the 2nd IEEE Conference on Data EngineelBgp.

Computing to appear in January, 1993. [Schulze89] M. Schulze, G. Gibson, R. Katz, and D. Patterson,

[Gray90] G. Gray, B. Horst, and M. Walker, “Parity Striping of “How Reliable is a RAID?" Proceedings of COMPCON,989,
Disc Arrays: Low-Cost Reliable Storage with Acceptable pp 118-123.

Throughput,”Proceedings of the 16th Conference on Very Large [TPCA89] The TPC-A Benchmark: A Standard Specification

Data Bases1990, pp. 148-160. Transaction Processing Performance Council, 1989.
[Hallg6] M. Hall, Combinatorial Theory (2nd EditionWiley-

Interscience, 1986.

[Holland92] M. Holland and G. Gibson, “Parity Declustering for
Continuous Operation in Redundant Disk Arrays”, Carnegie Mel-
lon University School of Computer Science Technical Report
CMU-CS-92-130, 1992.

[Hsiao90] H.-I. Hsiao and D. DeWitt, “Chained Declustering: A
New Availability Strategy for MultiProcessor Database
Machines, Proceedings of the 6th International Data Engineering
Conference1990, pp. 18-28.

[IBM0661] IBM Corporation, IBM 0661 Disk Drive Product
Description, Model 370, First Edition, Low End Storage Products,
504/114-2, 1989.

[Katz89] R. Katz, et. al., “A Project on High Performance I/O
Subsystems,”ACM Computer Architecture New$/l. 17(5),
1989, pp. 24-31.

[Kim86] M. Kim, “Synchronized Disk Interleaving,"|EEE
Transactions on Computergol. 35 (11), 1986, pp. 978-988.
[Lee90] E. Lee, “Software and Performance Issues in the Imple-
mentation of a RAID Prototype,” University of California, Techni-
cal Report UCB/CSD 90/573, 1990.

[Lee91] E. Lee and R. Katz, “Performance Consequences of Par
ity Placement in Disk Arrays,Proceedings of ASPLOS;I¥991,
pp. 190-199.

[Livny87] M. Livny, S. Khoshafian, and H. Boral, “Multi-Disk
Management AlgorithmsProceedings of the ACM SIGMETRICS
Conference1987, pp. 69-77.

[Meador89] W. Meador, “Disk Array SystemsProceedings of
COMPCON 1989, pp. 143-146.

[Menon92] J. Menon and J. Kasson, “Methods for Improved
Update Performance of Disk Array$toceedings of the Hawaii
International Conference on System Scient@92, pp. 74-83.
[Muntz90] R. Muntz and J. Lui, “Performance Analysis of Disk
Arrays Under Failure,’Proceedings of the 16th Conference on

