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Abstract
Database systems work hard to tune I/O performance, but do
not always achieve the full performance potential of mod-
ern disk systems. Their abstracted view of storage compo-
nents hides useful device-specific characteristics, such as disk
track boundaries and advanced built-in firmware algorithms.
This paper presents a new storage manager architecture, called
Lachesis, that exploits and adapts to observable device-specific
characteristics in order to achieve and sustain high perfor-
mance. For DSS queries, Lachesis achieves I/O efficiency
nearly equivalent to sequential streaming even in the presence
of competing random I/O traffic. In addition, Lachesis sim-
plifies manual configuration and restores the optimizer’s as-
sumptions about the relative costs of different access patterns
expressed in query plans. Experiments using IBM DB2 I/O
traces as well as a prototype implementation show that Lach-
esis improves standalone DSS performance by 10% on average.
More importantly, when running concurrently with an on-line
transaction processing (OLTP) workload, Lachesis improves
DSS performance by up to 3 � , while OLTP also exhibits a 7%
speedup.

1 Introduction

The task of ensuring optimal query execution in database
management systems is indeed daunting. The query op-
timizer uses a variety of metrics, cost estimators, and
run-time statistics to devise a query plan with the low-
est cost. The storage manager orchestrates the execution
of queries, including I/O generation and caching. To do
so, it uses hand-tuned parameters that describe various
characteristics of the underlying resources to balance the
resource requirements encapsulated in each query plan.
To manage complexity, the optimizer makes decisions
without runtime details about other queries and modules,
trusting that its cost estimates are accurate. Similarly,
the storage manager trusts that the plan for each query is
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Figure 1: TPC-H query 12 execution (DB2) The graph on the left
shows the amount of time spent in I/O operations as a function of in-
creasing competing OLTP workload, simulated by random 8 KB I/Os
with arrival rate λ. The I/O inefficiency in the original DB2 case is
due to extraneous rotational delays and disk head switches when run-
ning the compound workload. The two bars illustrate the robustness of
Lachesis; at each point, both the TPC-H and OLTP traffic achieve their
best-case efficiency. The Mixed workload bar in the right graph corre-
sponds to the λ � 150 Lachesis-DB2 datapoint of the left graph. The
Separate bar shows the total I/O time for the TPC-H and the OLTP-like
workloads when run separately.

indeed well-chosen and that the database administrator
(DBA) has tuned the knobs correctly.

To minimize I/O costs, query optimizers and storage
managers have traditionally focused on achieving effi-
cient storage access patterns. Unfortunately, two issues
complicate this task. First, the multiple layers of abstrac-
tion between the query execution engine and the storage
devices complicate the evaluation of access pattern effi-
ciency. Second, when there is contention for data or re-
sources, efficient sequential patterns are broken up. The
resulting access pattern is less efficient because the orig-
inally sequential accesses are now interleaved with other
requests, introducing unplanned-for seek and rotational
delays. These two factors lead to significant degradation
of I/O performance and longer execution times.

This paper proposes a new storage manager architecture,
called Lachesis, which automatically detects and trans-
parently exploits device characteristics. By utilizing a
few automatically-measurable performance characteris-
tics, a storage manager can specialize to its devices and
provide more robust performance in the presence of con-
current query execution. In particular, it can support
high I/O concurrency without disrupting planned sequen-



tial I/O performance. Lachesis eliminates the need for
several (previously DBA-specified) parameters, thereby
simplifying DBMS configuration and performance tun-
ing. Most importantly, it restores the validity of the as-
sumptions made by the query optimizer about the relative
costs of different storage access patterns.

Figure 1 demonstrates the effect of Lachesis on the
performance of a decision-support (DSS) workload as
a function of competing on-line transaction processing
(OLTP) I/O traffic. As shown in the graph, Lachesis
guarantees that TPC-H [10] query 12 (dominated by se-
quential table scans) enjoys streaming I/O performance
as anticipated by the optimizer, regardless of the rate of
concurrent OLTP traffic.

We have implemented the Lachesis architecture within
the Shore storage manager [5]. The implementation in-
volves three parts: extraction of device characteristics,
modifications to data placement algorithms, and mod-
ifications to prefetch and buffer management policies.
The extraction, which runs once before loading a new
device, uses test patterns [35] to identify track bound-
aries [31]. The placement routines are modified to avoid
putting pages across these boundaries. The read/write
routines are modified to utilize aligned, full-track ac-
cesses where possible. With fewer than 800 lines of C++
code changed, and no modifications to existing interfaces
and abstractions, Lachesis prevents query concurrency
from interfering with I/O efficiency.

Experiments with the prototype implementation, as well
as with DB2 trace simulations, show modest perfor-
mance improvements for standalone workloads. DSS
workloads exhibit a 10% average performance improve-
ment (with a maximum of 33%), whereas OLTP work-
loads (dominated by random I/O) remain unaffected.
When running compound workloads, however, Lach-
esis exhibits up to a three-fold performance improvement
on DSS queries, while simultaneously improving OLTP
throughput by 7%. Similar benefits are shown for a disk
array with stripe unit sizes matching track sizes.

The rest of this paper is organized as follows. Section 2
discusses background and related work. Section 3 de-
scribes the Lachesis architecture. Section 4 describes our
implementation inside Shore storage manager. Section 5
evaluates Lachesis. Section 6 summarizes the paper’s re-
sults.

2 Background and Related Work

Modern database management systems typically consist
of several cooperating modules; the query optimizer, the
query execution engine, and the storage manager are rel-
evant to the topic of this paper. As illustrated in Figure 2,
for each query the optimizer evaluates the cost of each
alternative execution plan and selects the one with the
lowest cost. The execution engine allocates resources for
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Figure 2: Query optimization and execution in a typical DBMS.

the execution of the selected query plan, while the stor-
age manager communicates with the storage devices as
needed.

2.1 Optimizing for I/O

Query optimizers use numerous techniques to minimize
the cost of I/O operations. Early optimizers used static
cost estimators and run-time statistics [33] collected by
the storage manager to estimate the number of I/O op-
erations executed by each algorithm [16] (e.g., loading a
page from a storage device into the buffer pool or writing
a page back to the device). Due to the physical charac-
teristics of disk drives, random I/O is significantly slower
than sequential scan. To reflect the performance differ-
ence, today’s commercial DBMS optimizers distinguish
between random and sequential I/O using cost models
that take into account the data access pattern dictated by
each query operator. Despite capturing this important
disk performance feature, however, each query is opti-
mized separately. In addition, the optimizer has limited
knowledge of the characteristics of the underlying disk
subsystem. The calculated access pattern costs are there-
fore not likely to be observed during execution. To main-
tain robust performance, the execution engine must up-
hold the assumed performance across disk system types
and concurrent query execution.

2.2 Ensuring Efficient I/O Execution

During query execution, the execution engine asks the
storage manager for data from the disks. The storage
manager considers factors such as resource availability
and contention across concurrent queries and decides
each request’s size, location, and the temporal relation-
ship to other requests. Request-related decisions are also
influenced by DBA-specified parameters. For instance,
IBM DB2’s EXTENTSIZE and PREFETCHSIZE pa-
rameters determine the maximal size of a single I/O op-
eration [17], and the DB2 STRIPED CONTAINERS pa-



Head Avg. Sectors No. of
Disk Year RPM Switch Seek Per Track Tracks Heads Capacity

HP C2247 1992 5400 1.0 ms 10 ms 96–56 25649 13 1 GB
Quantum Atlas III 1997 7200 1.0 ms 8.5 ms 256–168 80570 10 9 GB
IBM Ultrastar 18LZX 1999 10000 0.8 ms 5.9 ms 382–195 116340 10 18 GB
Quantum Atlas 10K 1999 10000 0.8 ms 5.0 ms 334–224 60126 6 9 GB
Seagate Cheetah X15 2000 15000 0.8 ms 3.9 ms 386–286 103750 6 18 GB
Maxtor Atlas 10K III 2002 10000 0.6 ms 4.5 ms 686–396 124088 4 36 GB

Table 1: Representative SCSI disk characteristics. Although there exist versions of the Seagate and Maxtor drives with higher capacities, the
lower capacity drives are typically installed in disk arrays to maximize the number of available spindles. Note the small change in head switch time
relative to other characteristics.

rameter instructs the storage manager to align I/Os on
stripe boundaries.

In order for the queries to be executed as planned, the
storage manager must balance the competing resource
requirements of the queries being executed while main-
taining the access cost assumptions the query optimizer
used when selecting a query plan. This balance is quite
sensitive and prone to human errors. In particular, high-
level generic parameters make it difficult for the storage
manager to adapt to device-specific characteristics and
dynamic query mixes. This results in inefficiency and
performance degradation.

Recent efforts address the problem for a subset of disk
workloads by proposing storage mechanisms that exploit
freedom to reorder storage accesses. Storage latency es-
timation descriptors [24] estimate the latency for access-
ing the first byte of data and the expected bandwidth for
subsequent transfer. Steere [34] proposed a construct,
called a set iterator, that exploits asynchrony and non-
determinism in data accesses to reduce aggregate I/O
latency. The River project [3] uses efficient streaming
from distributed heterogenous nodes to maximize I/O
performance for data-intensive applications. Other re-
search [8, 13, 19] exploited similar ideas at the file sys-
tem level to achieve higher I/O throughput from the un-
derlying, inherently parallel, hardware. Our goal is to
achieve maximum storage efficiency without changing
the existing DBMS structure and policies.

2.3 Exploiting Observed Storage Characteristics

To achieve robust performance, storage managers need
to exploit observed storage system performance charac-
teristics. DBA-specified parameters are too high level
to provide sufficient information to the storage man-
ager, therefore DBAs cannot finely tune all performance
knobs. Current storage managers complement DBA
knob settings with methods that dynamically determine
the I/O efficiency of differently-sized requests by issu-
ing I/Os of different sizes and measuring their response
time. Unfortunately, such methods are unreliable and
error-prone.

The approach proposed in this paper provides the stor-
age manager with a better understanding of the un-
derlying storage characteristics. If the storage device
is capable of directly exporting its performance char-
acteristics, the storage manager can automatically ad-
just its access patterns to generate I/Os that are most
efficient for the device. If the storage device cannot
directly export characteristics, existing experimentation
tools can still acquire sufficient information before load-
ing the device with data. For example, Worthington et
al. describe algorithms for online extraction of param-
eters from SCSI disk drives [35]. An automated tool
called DIXtrac [30] extends these algorithms to extract
detailed disk characteristics in a few minutes, includ-
ing complete logical-to-physical mappings, mechanical
overheads, and caching/prefetching algorithms.

Several research efforts have proposed exploiting low-
level disk characteristics to improve performance.
Ganger [14] and Denehy et al. [11] promote two similar
approaches for doing so, which Lachesis shares, wherein
host software knows more about key device characteris-
tics; those authors also survey prior disk system research
and how it fits into the general approach. The most rele-
vant example [31] evaluates the use of track-aligned ex-
tents in file systems, showing up to 50% performance
increase due to avoidance of rotational latency and head
switch costs. Our work builds on this previous work with
a clean architecture for including the ideas into DBMS
storage managers to automate storage performance tun-
ing and achieve robust storage performance.

The database community exploited disk characteristics
many years ago. The Gamma Database Machine [12],
for instance, accessed data in track-sized I/Os simply by
knowing the number of sectors per track. Unfortunately,
due to high-level device interfaces and built-in firmware
functions, straightforward mechanisms like the one used
in Gamma are no longer possible. As indicated in Ta-
ble 1, zoned geometries and advanced defect manage-
ment in modern disks result in cylinders being composed
of tracks with varied numbers of sectors. Consequently,
there exists no single value for the number of sectors per
track across the entire device.



2.4 Exploiting Memory Hierarchy Characteristics

In the past five years, memory latency has been recog-
nized as an increasingly important performance bottle-
neck for several compute and memory-intensive database
applications [2, 4]. To address the problem, recent
research improves utilization of processor caches by
in-page data partitioning [1] and cache-friendly index-
ing structures [7, 27]. Another approach [22] factors
processor cache access parameters into the optimiza-
tion process by incorporating data access pattern and
cache characteristics into the query operator cost func-
tions. These approaches, however, cannot be used to
tune and estimate disk access costs, because I/O access
times are functions of spatial and temporal request inter-
relationships. Proposed techniques optimized for cache
and memory performance are therefore orthogonal to the
work described in this paper.

3 Robust Storage Management

This section describes the Lachesis storage manager ar-
chitecture, which bridges the information gap between
database systems and underlying storage devices. This
allows a DBMS to exploit device characteristics to
achieve robust performance for queries even with com-
peting traffic. At the same time, Lachesis retains clean
high-level abstractions between the storage manager and
the underlying storage devices and leaves unchanged the
interface between storage manager and query optimizer.

3.1 Lachesis Overview

The cornerstone of the Lachesis architecture is to have a
storage device (or automated extraction tool) convey to
the storage manager explicit information about efficient
access patterns. While the efficiency may vary for dif-
ferent workloads (i.e., small random I/Os are inherently
less efficient than large sequential ones), this information
allows a storage manager to always achieve the best pos-
sible performance regardless of the workload mix. Most
importantly, this information provides guarantees to the
query optimizer that access patterns are as efficient as
originally assumed when the query plan was composed.

Ideally, the storage manager learns about efficient de-
vice accesses directly from the storage device, which en-
capsulates its performance characteristics in a few well-
defined and device-independent attributes. Section 3.3
describes these attributes and how to obtain them in more
detail. During query execution, the storage manager uses
these hints to orchestrate I/O patterns appropriately. No
run-time performance measurements are needed to deter-
mine efficient I/O size.

With explicit information about access pattern efficiency,
the storage manager can focus solely on data allocation
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Figure 3: Disk access efficiency. This graph plots disk efficiency
as a function of I/O size for track-unaligned and track-aligned random
requests within disk’s first zone. Disk efficiency is the fraction of total
access time (which includes seek and rotational latency) spent moving
data to or from the media. The maximum streaming efficiency (i.e.,
sequential access without seeks and rotational latencies) is due to head
switches between accesses to adjacent tracks. The peaks in the track-
aligned curve correspond to multiples of the track size.

and access. It groups pages together such that they can
be accessed with efficient I/Os prescribed by the storage
device characteristics. Such grouping meshes well with
existing storage manager structures, which call these
groups segments or extents [17, 20]. Hence, implement-
ing Lachesis requires only minimal changes, as discussed
in Section 4.

3.2 Efficient I/O Accesses

Because of disk drive characteristics, random small ac-
cesses to data are much less efficient than larger ones.
As shown in Figure 3 by the line labeled Unaligned I/O,
disk efficiency increases as a function of the I/O size by
amortizing the positioning cost over more data transfer.
To take advantage of this trend, storage managers buffer
data and issue large I/O requests [18, 29]; this, however,
creates a tension between increased efficiency and higher
demand for buffer space.

As observed before [31], track-aligned access for the
same set of random requests, which include seeks and
rotational latency, can be much more efficient as shown
in Figure 3 by the line labeled Track-aligned I/O. Point A
illustrates that the efficiency of a track-aligned random
access (0.73, or 82% of the maximum) is higher than
that of an unaligned access for a track-sized request. The
difference between maximum streaming efficiency and
track-aligned access is due to an average seek of 2.2 ms.
At point B, the unaligned I/O efficiency catches up to the
track-aligned efficiency at point A. Thus, a track-aligned
I/O 4 � smaller than conventional (track-unaligned) I/O,
can achieve the same disk efficiency as illustrated by
points A and B in Figure 3. This alleviates the tension
between request size and buffer space.



Moreover, track-based access consistently provides this
level of efficiency across disks developed over at least
the past 10 years. As shown in Table 1, head switch
times have decreased by a factor of less than two, while,
in the same time span, rotational speeds have increased
by 3 � . Because of this trend, the head switch time be-
comes increasingly significant in normal disk accesses,
which are not track-aligned. Faster seeks and higher bit
densities make this even worse; they make the head con-
trol mechanism, which must position heads over smaller
areas, more difficult. Therefore, track-aligned and track-
sized access continues to be a robust choice for automat-
ically determining efficient disk accesses.

The increased efficiency of track-aligned requests comes
from a combination of three factors. First, a track-
aligned I/O whose size is one track or less does not suf-
fer a head switch, which, for modern disks, is equiva-
lent to a 1–5 cylinder seek [26]. Second, a disk firmware
technology known as zero-latency access eliminates ro-
tational latency by reading data off the track out-of-order
as soon as the head is positioned. The on-board disk
cache buffers the data and sends it to the host in ascend-
ing order. Third, with several requests in the disk queue,
seeking to the next request’s location can overlap with a
previous request’s data transfer to the host.

A database storage manager exercises several types of
access patterns. Small sequential writes are used for syn-
chronous updates to the log. Small, single-page, random
I/Os are prevalent in OLTP workloads. Large, mostly
sequential I/Os occur in DSS queries. When running
compound workloads, there is contention for data or re-
sources, and this sequentiality is broken. In such cases,
it is important that the storage manager achieve near-
streaming bandwidth when possible without unduly pe-
nalizing any of the ongoing queries.

The Lachesis architecture exploits the efficiency of track-
aligned accesses. Even with significant interleaving, it
can achieve efficiency close to that of purely sequential
I/O. Furthermore, it does so without using exception-
ally large requests, which would require the use of more
buffer space and interfere more with competing traffic.

Despite the inherent inefficiency of an OLTP workload
(where disk efficiency is typically 3–5% [28]), Lachesis
can indirectly improve its performance when OLTP re-
quests are interleaved with larger I/O activity. First, with
the large I/Os being more efficient, the small random
I/Os experience lower queueing times. Second, with ex-
plicit information about track boundaries, pages are al-
ways aligned. Thus, a single-page access never suffers
a head switch (caused by accessing data on two adja-
cent tracks). Eliminating head switch (0.8 ms for the At-
las 10K disk in Table 1), however, provides only a limited
improvement, because the small-random OLTP accesses
are dominated by seek and rotational latency (averages
of 5 and 3 ms respectively), as shown in Section 5.3.3.

3.3 Storage Performance Attributes

To maintain a clean system architecture while benefiting
from Lachesis, a storage device’s performance charac-
teristics must be captured in a few well-defined device-
independent attributes. This section describes two spe-
cific storage attributes, called ACCESS PARALLELISM

and ACCESS DELAY BOUNDARIES that are relevant to
DBMS.

ACCESS PARALLELISM exposes the inherent parallelism
inside a storage device. It describes how many I/Os is-
sued to a specific device can be serviced in parallel. For
example, a disk drive can only service one request at a
time, while a RAID-1 mirrored logical volume can ser-
vice two reads in parallel. Thousands of read/write tips
in a MEMS-based storage device, combined with ex-
posed parallelism information, offer substantial perfor-
mance improvements to table scans that require only sub-
sets of attributes [32, 36]. Explicitly providing the (cor-
rect) level of parallelism to a storage manager is impor-
tant for parallel sort and join algorithms [16] and proper
data placement in parallel database systems [23].

ACCESS DELAY BOUNDARIES captures the track-
alignment performance characteristic described in Sec-
tion 2.3. Allocating and accessing data within these
boundaries allows the storage device to offer the most
efficient access. These units are also the natural choice
for prefetch requests. For disk drives, the boundaries cor-
respond to the sizes of each track. For RAID configura-
tions, they correspond to stripe unit sizes. These bound-
aries teach the storage manager about the sizes and align-
ments that can be used to achieve near-streaming band-
width even with interleaved I/O.

Ideally, a storage device would provide these attributes
directly. Even though current storage interfaces do not
provide them, they can usually be extracted by existing
algorithms [31, 35] and tools [30]. Importantly, these
boundaries cannot be approximated. If the values are in-
correct, their use will provide little benefit and may even
hurt performance. Therefore, a Lachesis storage man-
ager pays a one-time cost of obtaining storage character-
istics out-of-band (for instance, during volume initializa-
tion) rather than having a DBA set the values manually.

Our implementation, described in Section 4, focuses on
utilization of the second attribute, which is crucial to dy-
namic changes to workloads with different query mixes.
The ACCESS PARALLELISM attribute, on the other hand,
is more important for data layout. A combination of
these two attributes will result in additional performance
improvements. We describe the details (as well as an im-
plementation) of selective table scans utilizing the AC-
CESS PARALLELISM attribute elsewhere [32].



3.4 Lachesis Benefits

Lachesis has several advantages over current database
storage manager mechanisms.

Simplified performance tuning. Since a Lachesis stor-
age manager automatically obtains performance char-
acteristics directly from storage devices, some diffi-
cult and error-prone manual configuration is eliminated.
In particular, there is no need for hand-tuning such
DB2 parameters as EXTENTSIZE, PPREFETCHSIZE,
DB2 STRIPED CONTAINERS or their equivalents in
other DBMSes.

Minimal changes to existing structures. Lachesis re-
quires very few changes to current storage manager
structures. Most notably, the extent size must be made
variable and modified according to the performance at-
tribute values. However, decisions that affect other
DBMS components, such as page size or pre-allocation
for future appends of related data, are not affected; the
DBMS or the DBA are free to set them as desired.

Preserving access costs across abstraction layers.
Lachesis does not modify the optimizer’s cost estima-
tion functions that determine access pattern efficiency.
In fact, one of its major contributions is ensuring that
the optimizer-expected efficiency is preserved across the
DBMS abstraction layers and materialized at the lowest
level by the storage device.

Reduced buffer space pressure. With explicit delay
boundaries, Lachesis can use smaller request sizes to
achieve more efficient access. Figure 4 illustrates that
smaller I/O requests allow for smaller buffers, freeing
memory for other tasks. Despite sometimes requiring
more smaller I/Os to finish the same job, the much in-
creased efficiency of these smaller requests reduces the
overall run time [31].

Lower inter-query interference. Lachesis consistently
provides nearly streaming bandwidth for table scans even
in the face of competing traffic. It can do so with smaller
I/Os and still maintain high access efficiency. When
there are several request streams going to the same de-
vice, the smaller size results in shorter response times
for each individual request and provides better through-
put for all streams (queries).

4 Lachesis Implementation

This section describes the key elements of a Lachesis
prototype in the latest supported release (interim-release-
2) of the Shore storage manager [5]. Shore consists of
several key components, including a volume manager for
storing individual pages, a buffer pool manager, lock and
transaction managers, and an ARIES-style recovery sub-
system [25]. Shore’s basic allocation unit is called an ex-
tent and each extent’s metadata, located at the beginning
of the volume, identifies which of its pages are used.

buffer/prefetch size

Conventional access

Device-optimized access

ACCESS DELAY BOUNDARIESLBN/pid space

time

I/O #3I/O #2

I/O #3 I/O #4I/O #2

I/O #1

I/O #1

inefficient
access

efficient
access

Figure 4: Buffer space allocation with performance attributes.

On-disk data placement. Shore’s implementation as-
sumes a fixed number of pages per extent (8 by default)
and allocates extents contiguously in a device’s logical
block space. Therefore, the LBN (logical block number)
and the extnum (extent number) for a given page, iden-
tified by a pid (page identifier), can be easily computed.
To match allocation and accesses to the values of the AC-
CESS DELAY BOUNDARIES attribute, we modified Shore
to support variable-sized extents. A single extent now
consists of a number of pages and an additional unallo-
cated amount of space, the size of which is less than one
page.

Although page sizes are typically in powers of two, disk
tracks are rarely sized this way (see Table 1). Thus, the
amount of internal fragmentation (i.e., the amount of un-
allocated space at the end of each extent) can result in
loss of some disk capacity. Fortunately, with an 8 KB
page, internal fragmentation amounts to less than 2% and
this trend gets more favorable as media bit density, and
hence the number of sectors per track, increases.

We lookup the extnum and LBN values in a new meta-
data structure. This new structure contains information
about how many LBNs correspond to each extent and
is small compared to the disk capacity (for example,
990 KB for a 36 GB disk). Lookups do not represent
significant overhead, as shown in Section 5.3.4.

Acquiring attribute values. To populate this new meta-
data structure, we added a system call to Shore that takes
values for extent sizes during volume initialization and
formatting. Currently, we determine the ACCESS DELAY

BOUNDARIES attribute values out-of-band with the DIX-
trac tool [30] and link a system call stub containing the
attribute values with Shore. Conceptually, this is equiv-
alent to a storage interface providing the information di-
rectly via a system call.

The DIXtrac tool supports two automatic approaches to
detecting track boundaries: a general approach applica-
ble to any disk interface supporting a READ command,
and a specialized approach for SCSI disks. The general
approach detects each track boundary by measuring re-
sponse times of differently sized requests and detects the



discontinuities illustrated in Figure 3, requiring about 4
hours for a 9 GB disk. The SCSI-specific approach uses
query operations (e.g., TRANSLATE ADDRESS of the RE-
CEIVE DIAGNOSTIC command) and expertise to deter-
mine complete mappings in under a minute regardless of
disk size. A recent study [31] contains a detailed descrip-
tion of both algorithms.

I/O request generation. Shore’s base implementation
issues one I/O system call for each page read, relying
on prefetching and buffering inside the underlying OS.
We modified Shore to issue SCSI commands directly to
the device driver to avoid double buffering inside the
OS. We also implemented a prefetch buffer inside Shore.
The new prefetch buffer mechanism detects sequential
page accesses, and issues extent-sized I/Os. Thus, pages
trickle from this prefetch buffer into the main buffer pool
as they are requested by each page I/O request. For
writes, a background thread in the base implementation
collects dirty pages and arranges them into contiguous
extent-sized runs. The runs, however, do not match ex-
tent boundaries; therefore, we increased the run size and
divided each run into extent-sized I/Os aligned on proper
extent boundaries.

Our modifications to Shore total less than 800 lines of
C++ code, including 120 lines for the prefetch buffer.
Another 400 lines of code implement direct SCSI access
via the Linux /dev/sg interface.

5 Experiments

This section evaluates Lachesis using two sets of exper-
iments. The first set of experiments replays modified
I/O traces to simulate the performance benefits of Lach-
esis inside a commercial database system. The original
traces were captured while running the TPC-C and TPC-
H benchmarks on an IBM DB2 relational database sys-
tem. The second set of experiments evaluates the Lach-
esis implementation inside Shore using TPC-C and (a
subset of) TPC-H.

TPC-H [10], the decision-support benchmark, consists
of 22 different queries, and two batch update statements.
We ran all the queries in sequence, one at a time. Each
query processes a large portion of the data. The TPC-
C benchmark [9] emulates OLTP activity, measuring the
number of committed transactions per minute. Each
transaction involves a few read-modify-write operations
to a small number of records.

For each of the two sets of experiments, we first show the
performance of the TPC-H and TPC-C benchmarks run
in isolation. We then look at the performance benefits
Lachesis offers when both benchmarks run concurrently.
In particular, we consider three scenarios:

No traffic simulates a dedicated DSS setup that runs
only single-user TPC-H queries.

Light traffic simulates an environment with occa-
sional background traffic introduced while execut-
ing the primary TPC-H workload. This represents
a more realistic DSS setup with updates to data and
other occasional system activity.

Heavy traffic simulates an environment with DSS
queries running concurrently with a heavy OLTP
workload. This represents a scenario when decision
DSS queries are run on a live production system.

Finally, we contrast the results of the experiments with
simulated Lachesis-DB2 and our implementation. The
same trends in both cases provide strong evidence that
other DBMS implementations using Lachesis are likely
to obtain similar benefits.

5.1 Experimental Setup

We conducted all experiments on a system with a single
2 GHz Intel Pentium 4 Xeon processor, 1 GB of RAM,
and a 36 GB Maxtor Atlas 10K III disk attached to a ded-
icated Adaptec 29160 SCSI card with 160 MB/s trans-
fer rate. The basic parameters for this disk are summa-
rized in Table 1. The system also included a separate
SCSI host bus adapter with two additional disks; one
with the OS and executables and the other for database
logs. We ran our experiments on RedHat 7.3 distribu-
tion under Linux kernel v. 2.4.19, modified to include an
I/O trace collection facility. For DB2 runs, we used IBM
DB2 v. 7.2.

5.2 DB2 Trace Replay

We do not have access to the DB2 source code. To eval-
uate the benefits of Lachesis for DB2, we simulated its
effect by modifying traces obtained from our DB2 setup.
We ran all 22 queries of the TPC-H benchmark and cap-
tured their device-level I/O traces. We then wrote a trace-
replay tool and used it to replay the original captured
traces. Finally, we compared the trace replay time with
the DB2 query execution time. The trace-replay method
is quite accurate; the measured and replayed execution
times differed by at most 1.5%.

The sum of all the periods between the completion time
of the last outstanding request at the device and the issue
time of the next request determined the pure CPU time
from the original captured traces. This time expresses the
periods when the CPU is busy, while the storage device
is idling with no requests outstanding. As our goal is to
improve I/O efficiency, we subtracted the pure CPU time
from the traces.

Having verified that the original captured TPC-H traces
never had more than two outstanding requests at the disk,
we replayed the no-CPU-time traces in a closed loop
by always keeping two requests outstanding at the disk.
This ensures that the disk head is always busy (see Sec-
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Figure 5: TPC-H I/O times with competing traffic (DB2).

tion 3.2) and preserves the order of request issues and
completions [21]. Because of our trace replay method,
the numbers reported in this section represent the query
I/O time, which is the portion of the total query execution
time spent on I/O operations.

To simulate Lachesis behavior inside DB2, we modified
the DB2 captured traces by compressing back-to-back
sequential accesses to the same table or index into one
large I/O. We then split this large I/O into individual I/Os
according to the values of the ACCESS DELAY BOUND-
ARIES attribute. Thus, the I/O sizes are an integral num-
ber of pages that fit within two adjacent boundaries.

The resulting modified traces preserve the sequence of
blocks returned by the I/Os (i.e., no out-of-order issue
and completion). Allowing requests to complete out
of order might provide additional performance improve-
ments due to request scheduling. However, we did not
want to violate any unknown (to us) assumptions inside
DB2 that require data on a single device to return in
strictly ascending order.

The modified traces also preserve the DB2 buffer pool
usage. The original DB2 execution requires buffers for
I/Os of 768 blocks (determined by the PREFETCHSIZE
parameter) whereas DB2 with Lachesis would generate
I/Os of at most 672 blocks (i.e., a single track of the At-
las 10K III outermost zone accomodates 42 8 KB-pages).

5.2.1 TPC-H

We hand-tuned our DB2 configuration to give it the best
possible performance on our hardware setup. We set the
PREFETCHSIZE to 384 KB (48 pages � 8 KB page,
or 768 blocks), which is comparable to the I/O sizes that
would be generated by Lachesis inside DB2 running on
the disk we used for our experiments1. We also turned on
DB2 STRIPED CONTAINERS to ensure proper ramp-
up and prefetching behavior of sequential I/Os. We con-
figured the DB2 TPC-H kit with the following parame-
ters: scaling factor 10 (10 GB total table space), 8 KB

1PREFETCHSIZE setting of 512 KB triggers a Linux kernel “fea-
ture”: a single PREFETCHSIZE-d I/O to the raw device generated by
DB2 was broken into two I/Os of 1023 and 1 block. Naturally, this
results in highly inefficient accesses. Therefore, we chose 768 instead.

pages, and a 768 MB buffer pool. We put the TPC-H ta-
blespace on a raw device (a partition of the Atlas 10K III
disk) to avoid double buffering inside Linux kernel.

The results of the DB2 TPC-H experiments are shown
in Figure 5 with bars labeled No traffic. For each TPC-
H query, the bar shows the resulting I/O time of the
Lachesis-simulated trace normalized to the I/O time of
the original trace (thus, shorter bars represent better per-
formance).

With the exception of queries 4 and 10, whose run
times were respectively 4% and 1% longer, all queries
benefited. Queries that are simple scans of data (e.g.,
queries 1, 4, 15) in general do not benefit; the original
DB2 access pattern already uses highly efficient large se-
quential disk accesses thanks to our manual performance
tuning of the DB2 setup. The minor I/O size adjust-
ments of these sequential accesses cause small changes
in performance (e.g., 1% improvement for queries 1 and
15 and 4% slowdown for query 4). On the other hand,
queries that include multiple nested joins, such as query
9, benefited much more (i.e., 33% shorter execution time
or 1.5 � speedup) because of inherently interleaved ac-
cess patterns. Interestingly, such queries are also the
most expensive ones. On average, the 22 queries in the
workload experienced an 11% speedup.

The access pattern of query 10 is dominated by runs
of 2–4 sequential I/O accesses (sized at EXTENTSIZE
of 768 blocks). At the end of each run, the disk head
seeks to another nearby location a few cylinders away
and performs another short sequential run. The Lach-
esis-simulated trace, however, transforms the sequential
runs into 3–5 I/Os (the track size is at most 686 blocks)
with the last being less than full-track in size.

Because of data dependencies in queries with several
nested joins (e.g., queries 9 or 21), the I/O accesses were
not purely sequential. Instead, they contained several in-
terleaved data and index scans. Even when executing
such queries one at a time, these interleaved sequential
accesses in effect interfered with each other and caused
additional seek and rotational delays. Lachesis mitigated
this adverse effect, resulting in significant performance
improvements.



The plans for queries 17 and 20 include two nested-
loop joins and index scans. Hence, most I/Os are small
random requests of 1–2 pages; the limited performance
improvement of Lachesis comes from the elimination
of head-switches with delay boundary-aligned accesses,
just like in the OLTP experiments described below.

5.2.2 TPC-C

Since Lachesis targets track-sized I/Os, we do not ex-
pect any benefit to small random I/Os stemming from an
OLTP workload. To ensure that Lachesis does not hurt
TPC-C performance we captured I/O traces on our DB2
system running the TPC-C benchmark, applied the same
transformations as for the TPC-H workload, and mea-
sured the trace replay time. Eliminating CPU time was
not necessary because there were no storage device idle
periods in the trace.

The DB2 configuration for the TPC-C benchmark is
identical to the one described in Section 5.2.1 (8 KB
pages, a 768 MB buffer pool, a raw device partition of
the Atlas 10K III disk holding the TPC-C data and in-
dexes). We used the following parameters for the TPC-
C benchmark: 10 warehouses (approximately 1 GB of
initial data), 10 clients per warehouse, zero keying/think
time. As expected, the experiments showed that Lachesis
does not affect TPC-C performance.

5.2.3 Compound Workload

To demonstrate Lachesis’ ability to increase I/O effi-
ciency under competing traffic, we simulated the effects
of running TPC-C simultaneously with TPC-H queries
by injecting small 8 KB random I/Os (a reasonable ap-
proximation of TPC-C traffic) into the disk traffic dur-
ing the TPC-H trace replay. We used a Poisson arrival
process for the small-random I/O traffic and varied the
arrival rate between 0 and MAX arrivals per second. Us-
ing our hardware setup, we determined MAX to be 150
by measuring the maximal throughput of 8 KB random
I/Os issued one-at-a-time.

The results are shown in Figure 5. As in the No traffic
scenario, we normalize the Lachesis runs to the base case
of replaying the no-CPU-time original traces. However,
since there is additional traffic at the device, the absolute
run times increase (see Section 5.4 for details). For the
Light traffic scenario, the arrival rate λ was 25 arrivals
per second, and for the Heavy traffic scenario λ was 150.
Under Heavy traffic, the original query I/O times varied
between 19.0 and 1166.2 s, yielding an average 2.6 � in-
crease in I/O time compared to No traffic.

The Lachesis-modified traces exhibit substantial im-
provement in the face of competing traffic. Further, the
relative value grows as the amount of competing traffic
increases, indicating the Lachesis’ robustness to com-
peting traffic. On average, the improvement for the
Light traffic and Heavy traffic scenarios was 21% (or
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Figure 6: TPC-H trace replay on RAID5 configuration (DB2).

1.3 � speedup) and 33% (1.5 � speedup) respectively.
Query 16 experienced the highest improvement, running
3 times faster in the Heavy traffic scenario. With the ex-
ception of queries 6, 11, 14, and 17, which benefit little or
none, all other queries benefit the most under the Heavy
traffic scenario.

5.2.4 TPC-H on Disk Arrays

To evaluate the benefit of having explicit performance at-
tributes from disk arrays, we replayed the captured DB2
traces against a disk array simulated by a detailed storage
subsystem simulator, called DiskSim [15]. We created a
logical volume on a RAID5 group with 4 disks config-
ured with validated Atlas 10K III characteristics [30].

In the base case scenario, called Base-RAID5, we set
the stripe unit size to 256 KB (or 512 disk blocks) and
fixed the I/O size to match the stripe unit size. This
value approximates the 584 sectors per track in one of
the disk’s zones and, as suggested by Chen [6], provides
the best performance in the absence of exact workload
information. In the second scenario, called Lachesis-
RAID5, both the RAID controller and the database stor-
age manager can explicitly utilize the precise track-size,
and therefore both the stripe unit and I/O sizes are equal
to 584 blocks.

The resulting I/O times of the 22 TPC-H queries, run
in isolation without any competing traffic, are shown in
Figure 6. The graph shows the Lachesis-RAID5 time
normalized to the Base-RAID5. Comparing this with the
TPC-H runs on a single disk, we immediately notice a
similar trend. Queries 17 and 20 do not get much im-
provement. However, most queries enjoy more signif-
icant improvement (on average 25%, or 1.3 � speedup)
than in the single disk experiments.

The performance benefits in the RAID experiments are
larger because the parity stripe, which rotates among the
four disks, causes a break in sequential access to each in-
dividual’s disk in the Base-RAID5. This is not a problem,
however, in the Lachesis-RAID5 case, which achieves ef-
ficiency close to streaming bandwidth with track-sized
stripe units. Even larger benefits are achieved for com-
pound workloads.
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Figure 7: TPC-H queries with competing traffic (Shore).

Basic Shore Lachesis Shore
Clients TpmC CPU TpmC CPU

1 844 34% 842 33%
3 1147 46% 1165 45%
5 1235 50% 1243 49%
8 1237 53% 1246 51%

10 1218 55% 1235 53%

Table 2: TpmC (transactions-per-minute) and CPU utilization.
The slightly better throughput for the Lachesis-Shore implementation
is due to proper alignment of pages to track boundaries.

5.3 Lachesis Implementation Experiments

We compared the performance of our implementation,
called Lachesis-Shore and described in Section 4, to that
of baseline Shore. For fair comparison, we added (one-
extent) prefetching and direct SCSI to the Shore interim-
release 2 and call it Basic-Shore. Unless stated other-
wise, the numbers reported in the following section rep-
resent an average of 5 measured runs of each experiment.

5.3.1 TPC-H

Our Shore TPC-H kit (obtained from earlier work [1])
implements queries 1, 6, 12, and 14. We used a scal-
ing factor of 1 (1 GB database) with data generated by
the dbgen program [10]. We used an 8 KB page size,
a 64 MB buffer pool, and the default 8 pages per ex-
tent in Basic-Shore. The Lachesis-Shore implementa-
tion matches an extent size to the device characteris-
tics, which, given the location of the volume on the At-
las 10K III disk, varied between 26 and 24 pages per ex-
tent (418 and 396 disk blocks). Figure 7 shows the nor-
malized total run time for all four TPC-H queries imple-
mented by the TPC-H kit. Lachesis improved run times
between 6% and 15% in the No traffic scenario.

5.3.2 TPC-C

To ensure that Lachesis does not hurt the performance
of small random I/Os in OLTP workloads, we compared
the TPC-C random transaction mix on our Basic- and
Lachesis-Shore implementations configured as described
in Section 5.3.1. We used 1 warehouse (approximately
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Figure 8: TPC-H query 12 execution time as a function of TPC-C
competing traffic (Shore).

100 MB of initial data) and varied the number of clients
per warehouse. We set the client keying/think time to
zero and measured the throughput of 3000 transactions.
As shown in Table 2, our implementation had mini-
mal effect on the performance of the standalone TPC-C
benchmark.

5.3.3 Compound Workload

We modeled competing device traffic for DSS queries
of the TPC-H benchmark by running a TPC-C random
transaction mix. Due to the limitations of the Shore TPC-
H and TPC-C kit implementations, we could not run the
TPC-H and TPC-C benchmarks in the same instance.
Thus, we ran two instances whose volumes were located
next to each other on the same disk. Because the vol-
umes occupied a small part of the disk, this experiment
approximates the scenario of OLTP and DSS workloads
accessing the same database.

The TPC-H instance was configured as described in
Section 5.3.1 while the TPC-C instance was configured
with 1 warehouse and 1 client per warehouse, which
ensured that no transactions were aborted due to re-
source contention or deadlock. We varied the amount of
background OLTP traffic by changing the keying/think
time of the TPC-C benchmark to achieve a rate of 0 to
TpmCMAX (maximum transactions per minute).

Figure 7 shows the performance results for Lachesis-
Shore, normalized to the Basic-Shore execution time. As
with the DB2 trace replay experiments, Lachesis pro-
vides higher speedups in the face of competing traf-
fic, than under the No traffic scenario. Additional ex-
periments show that Lachesis’ relative improvement in-
creases as a function of the amount of competing traffic.
The average improvement for the four TPC-H queries
under the Light traffic and Heavy traffic scenarios was
14% (or 1.2 � speedup) and 32% (1.5 � speedup) respec-
tively.

An important result of this experiment is shown in Fig-
ure 8. This figure compares the absolute run times
for each query as a function of increasing transactional
throughput. The two Shore implementations achieve dif-



ferent TpmCMAX . While for the Basic-Shore implemen-
tation TpmCMAX was 426.1, Lachesis-Shore achieved
7% higher maximal throughput (456.7 transactions per
minute). Thus, Lachesis not only improves the per-
formance of the TPC-H queries alone, but also offers
higher peak performance to the TPC-C workload under
the Heavy traffic scenario.

5.3.4 Extent Lookup Overhead

Since a Lachesis implementation uses variable size ex-
tents, we also wanted to evaluate the potential overhead
of extnum and LBN lookup. Accordingly, we config-
ured our Lachesis-Shore implementation with extents of
uniform size of 128 blocks to match the default 8-page
extent size in the Basic-Shore implementation and ran
the four TPC-H queries. In all cases, the difference was
less than 1% of the total runtimes. Thus, explicit lookup,
instead of a simple computation from the page pid in
Basic-Shore, does not result in a noticeable slowdown.

5.4 Comparing DB2 and Shore

The results for compound workloads with the Lachesis-
Shore implementation and the Lachesis-modified DB2
traces show similar trends. For example, as the com-
peting traffic to queries 1 and 12 increases, the relative
performance benefit of Lachesis increases as well. Simi-
larly, the relative improvement for query 6 remained sta-
ble (around 20%) under the three scenarios for both DB2
and Shore.

Two important differences between the DB2 and Shore
experiments warrant a closer look. First, under the
No traffic scenario, Lachesis-Shore experienced bigger
speedup. This is because the Basic-Shore accesses are
less efficient than the accesses in the original DB2 setup.
Basic-Shore uses 8-page extents, spanning 128 blocks,
compared to Lachesis’ variable-sized extents of 418 and
396 blocks (track size sizes of the two inner-most zones).
DB2, on the other hand, prefetched 768 disk blocks in a
single I/O, while Lachesis-modified traces used at most
672 blocks (the outer-most zone has 686 sectors). Con-
sequently, the base case for DB2 issues more efficient
I/Os relative to its Shore counterpart, hence the relative
improvement for Lachesis-Shore is higher.

Second, TPC-H query 14 with DB2 trace replay did not
improve much, whereas Lachesis-Shore’s improvement
grew with increasing traffic. The reason lies in the dif-
ferent access patterns resulting from different join algo-
rithms. While DB2 used a nested-loop join with an index
scan and intermediate sort of one of its inputs, Lachesis-
Shore used hash-join. Hence, we see a higher improve-
ment in Lachesis-Shore, whereas in DB2 trace replay, the
improvement does not change.

Finally, we compared the run times for TPC-H query 12
in Figure 8 against Figure 1, whose access patterns are

relatively straightforward. This query first scans through
the LINEITEM table applying all predicates, and then
performs a join against the ORDERS table data. Al-
though the x-axes use different units, and hence the
shapes of the curves are different, the trends in those two
figures are the same. With small amounts of compet-
ing traffic, the relative improvement of Lachesis is small.
However, as the amount of competing traffic increases,
the speedup grows to 1.5 � for Shore and 2 � for DB2
under the Heavy traffic scenario.

6 Summary

This paper describes a design and a prototype implemen-
tation of a database storage manager that provides ro-
bust performance in the face of competing traffic. By
automatically extracting and utilizing high-level device-
specific characteristics, Lachesis ensures efficient I/O ex-
ecution despite competing traffic. For compound work-
loads and complex DSS queries, the result is a substantial
(up to 3 � ) performance improvement.
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