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Abstract

Relational database systems have traditionally optimized for I/O performance and organized

records sequentially on disk pages using the N-ary Storage Model (NSM) (a.k.a., slotted pages).

Recent research, however, indicates that cache utilization and performance is becoming increas-

ingly important on modern platforms. In this paper, we first demonstrate that in-page data place-

ment is the key to high cache performance and that NSM exhibits low cache utilization on modern

platforms. Next, we propose a new data organization model called PAX (Partition Attributes

Across), that significantly improves cache performance by grouping together all values of each

attribute within each page. Because PAX only affects layout inside the pages, it incurs no storage

penalty and does not affect I/O behavior. According to our experimental results (which were

obtained without using any indices on the participating relations), when compared to NSM (a)

PAX exhibits superior cache and memory bandwidth utilization, saving at least 75% of NSM’s stall

time due to data cache accesses, (b) range selection queries and updates on memory-resident rela-

tions execute 17-25% faster, and (c) TPC-H queries involving I/O execute 11-48% faster. Finally,

we show that PAX performs well across different memory system designs.

1 Introduction

Although the major performance bottleneck in database systems has traditionally been I/O, modern

applications such as decision support systems and spatial applications are often bound by delays related to

the CPU and the memory subsystem [22][7][28]. This bottleneck shift is due to (a) the increase in main

memory sizes by three orders of magnitude in the past 20 years, (b) elaborate techniques that hide I/O

latencies such as data clustering and prefetching, and (c) complex algorithmic computation performed on

memory-resident data, that overlaps much of the I/O latency. When the processor submits a request, the

data is likely to be in main memory. Transferring the data from the memory to the caches, however, incurs

significant delays. Several workload characterization studies witness that DBMS performance suffers from
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cache misses more than other types of workloads, because they are memory-intensive. To address cache-

related delays, recently database researchers have become concerned with optimizing cache performance.

When running commercial database systems on a modern processor, a key memory bottleneck is data

requests that miss in the cache hierarchy, i.e., requests for data that are not found in any of the caches and

are transferred from main memory [1]. Careful analysis of basic query processing operators and data place-

ment schemes used in commercial DBMSs reveals a paradox: common workloads typically perform

sequential traversals through parts of the relation that are not referenced. The paradox occurs because (a)

the item that the query processing algorithm requests and the transfer unit between the memory and the

processor are not the same size, and (b) the data placement scheme used stores data in a different order

than the order in which they are accessed. Hence, only a fraction of the data transferred in the cache is use-

ful to the query.

The traditional page layout scheme used in database management systems is the N-ary Storage Model

(NSM, a.k.a., slotted pages). NSM stores records contiguously starting from the beginning of each disk

page, and uses an offset (slot) table at the end of the page to locate the beginning of each record [29]. Most

query operators, however, access only a small fraction of each record causing suboptimal cache behavior.

It is likely, for instance, that a sequential scan for a certain attribute will miss the cache and access main

memory once for every value accessed. Loading the cache with useless data (a) wastes bandwidth, (b) pol-

lutes the cache with useless data, and (c) possibly forces replacement of information that may be needed in

the future, incurring even more delays.

As an alternative, the decomposition storage model (DSM) (proposed in 1985 [12] in order to mini-

mize unnecessary I/O) partitions an n-attribute relation vertically into n sub-relations, each of which is

accessed only when the corresponding attribute is needed. Although DSM saves I/O and increases main

memory utilization, it is not used in today’s commercial products because in order to reconstruct a record,

the DBMS must join the participating sub-relations together. Except for Sybase-IQ [36], all of today’s

commercial database systems that we are aware of still use a variation of the traditional NSM algorithm for

general-purpose data placement [22][32][35]. The challenge is to repair NSM’s cache behavior, without

compromising its advantage over DSM.

This paper introduces and evaluates Partition Attributes Across (PAX), a new layout for data records

that combines the best of the two worlds and exhibits performance superior to both placement schemes by

eliminating unnecessary accesses to main memory. For a given relation, PAX stores the same data on each

page as NSM. Within each page, however, PAX groups all the values of a particular attribute together on a

minipage. During sequential scan (e.g., to apply a predicate on a fraction of the record), PAX fully utilizes

the cache resources, because on each miss a number of the same attribute’s values are loaded into the cache
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together. At the same time, all parts of the record are on the same page. To reconstruct a record one needs

to perform a mini-join among minipages, which incurs minimal cost because it does not have to look

beyond the page.

We evaluated PAX against NSM and DSM using (a) predicate selection queries on numeric data and

(b) a variety of queries on TPC-H1 datasets on top of the Shore storage manager [9]. The experimentation

suite uses microbenchmarks as well as decision-support queries, as DSS applications are typically bound

by the memory-processor latency [22][7][28]. All queries perform sequential scans and joins directly on

the participating relations, without using any indices. Query parameters varied include selectivity, projec-

tivity, number of predicates, distance between the projected attribute and the attribute in the predicate, and

degree of the relation. The experimental results show that, when compared to NSM, PAX (a) incurs 50-

75% fewer second-level cache misses due to data accesses when executing a main-memory workload, (b)

executes range selection queries in 17-25% less elapsed time, and (c) executes TPC-H queries involving I/

O in 11-48% less time than NSM. When compared to DSM, PAX (a) executes queries faster because it

minimizes the reconstruction cost, and (b) exhibits stable execution time as selectivity, projectivity, and the

number of attributes in predicate vary, whereas the execution time of DSM increases linearly to these

parameters.

PAX has several additional advantages. Implementing PAX on a DBMS that uses NSM requires only

changes on the page-level data manipulation code. PAX can be used as an alternative data layout, and the

storage manager can decide to use PAX or not when storing a relation, based solely on the number of

attributes. Furthermore, research [14] has shown that compression algorithms work better with vertically

partitioned relations and on a per-page basis, and PAX has both of these characteristics. Finally, PAX can

be used orthogonally to other storage decisions such as affinity graph based partitioning [13], because it

operates at the page level. 

The rest of this paper is organized as follows. Section 2 presents an overview of the related work, and

discusses the strengths and weaknesses of the traditional n-ary storage model (NSM) and decomposition

storage model (DSM). Section 3 explains the design of PAX in detail and analyzes its storage require-

ments, while Section 4 describes the implementation of basic query processing and data manipulation

algorithms. Section 5 discusses the evaluation methodology used to thoroughly understand the interaction

between data placement methods and cache performance. Sections 6, 7, and 8 analyze cache performance

of data placement schemes on a simple numeric workload, on a subset of the TPC-H decision-support

workload, and on multiple computer architecture platforms, respectively. Finally, Section 9 concludes with

a summary of the advantages of PAX and discusses possibilities for further improvement.

(1)  TPC-H is the decision-support benchmark suite that replaced TPC-D in 1999.
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2 Related work

Several recent workload characterization studies report that database systems suffer from high mem-

ory-related processor delays when running on modern platforms. All studies that we are aware of agree

that stall time due to data cache misses accounts for 50% (OLTP [20]) to 90% (DSS [1]) of the total mem-

ory-related stall time. Instruction cache miss rates2 are typically higher when executing OLTP workloads

on multi-threaded architectures [23], because multiple threads use the same set of caches and often cause

thrashing. Even on these architectures, however, 70% (OLTP) to 99% (DSS) of the total absolute number

of cache misses is due to data references [20][23].

Research in computer architecture, compilers, and database systems has focused on optimizing sec-

ondary storage data placement for cache performance. A compiler-directed approach for cache-conscious

data placement profiles a program and applies heuristic algorithms to find a placement solution that opti-

mizes cache utilization [8]. Clustering, compression, and coloring are the techniques that can be applied

manually by programmers to improve cache performance of pointer-based data structures [10]. For data-

base management systems, attribute clustering is proposed both for compression [14] and for improving

the performance of relational query processing [31].

The dominant data placement model in relational database systems is the N-ary storage model (NSM)

[29], that stores records sequentially in slotted disk pages. Alternatively, the Decomposition Storage Model

(DSM) [12] partitions each relation with n attributes in n separate relations. With the exception of ware-

housing products such as Sybase-IQ [36], all commercial database systems that we are aware of use NSM

for general-purpose data placement. This is mainly due to the high record-reconstruction cost that DSM

incurs when evaluating multi-attribute queries. A recent study demonstrates that DSM can improve cache

performance of main-memory database systems, assuming that the record reconstruction cost is low [6].

The remainder of this section describes the advantages and disadvantages of NSM and DSM, and briefly

outlines their variants.

(2) The cache miss rate is defined as the number of cache misses divided by the number of cache references.
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2.1 The N-ary Storage Model

Traditionally, the records of a relation are stored in slotted disk pages [29] obeying an n-ary storage

model (NSM). NSM stores records sequentially on data pages. Figure 1 depicts an example relation R

(left) and the corresponding NSM page after having inserted four records (middle). Each record has a

record header (RH) that contains a null bitmap, offsets to the variable-length values, and other implementa-

tion-specific information [22][32]. Each new record is typically inserted into the first available free space

starting at the beginning of the page. Records may have variable length, therefore a pointer (offset) to the

beginning of the new record is stored in the next available slot from the end of the page. The nth record in a

page is accessed by following the nth pointer from the end of the page.

During predicate evaluation, however, NSM exhibits poor cache performance. Consider the query:

select name
from R
where age < 40;

To evaluate the predicate, the query processor uses a scan operator [15] that retrieves the value of the

attribute age from each record in the relation. Assuming that the NSM page in the middle of Figure 1 is

already in main memory and that the cache block size is smaller than the record size, the scan operator will

incur one cache miss per record. If age is a 4-byte integer, it is smaller than the typical cache block size

(32-128 bytes). Therefore, along with the needed value, each cache miss will bring into the cache the other

values stored next to age (shown on the right in Figure 1), wasting useful cache space to store non-refer-

enced data, and incurring unnecessary accesses to main memory.

RID SSN Name Age

1 0962 Jane 30

2 7658 John 45

3 3859 Jim 20

4 5523 Susan 52

5 9743 Leon 43

6 0618 Dan 37

FIGURE 1: The N-ary Storage Model (NSM) and its cache behavior. Records in R (left) are stored contiguously
into disk pages (middle), with offsets to their starts stored in slots at the end of the page. While scanning age, NSM
typically incurs one cache miss per record and brings useless data into the cache (right).
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2.2 The Decomposition Storage Model

Vertical partitioning is the process of striping a relation into sub-relations, each containing the values

of a subset of the initial relation’s attributes. Vertical partitioning was initially proposed in order to reduce

I/O-related costs [26]. The fully decomposed form of vertical partitioning (one attribute per stripe) is called

the decomposition storage model (DSM) [12]. DSM partitions an n-attribute relation vertically into n sub-

relations, as shown in Figure 2. Each sub-relation contains two attributes, a logical record id (surrogate)

and an attribute value (essentially, it is a clustered index on the attribute). Sub-relations are stored as regu-

lar relations in slotted pages, enabling each attribute to be scanned independently. 

DSM offers a higher degree of spatial locality when sequentially accessing the values of one attribute.

During a single-attribute scan, DSM exhibits high I/O and cache performance. DSM performance is supe-

rior to NSM when queries access fewer than 10% of the attributes in each relation. Warehousing products

such as Sybase-IQ [36] successfully use DSM-style partitioning and further optimize data access using

variant indices [27]. When evaluating a multi-attribute query, however, the database system must join the

participating sub-relations on the surrogate in order to reconstruct the partitioned records. The time spent

joining sub-relations increases with the number of attributes in the result relation. In addition, DSM incurs

a significant space overhead because the record id of each record needs be replicated.

An alternative algorithm [13] partitions each relation based on an attribute affinity graph, which con-

nects pairs of attributes based on how often they appear together in queries. The attributes are grouped in

fragments, and each fragment is stored as a separate relation to maximize I/O performance and minimize

record reconstruction cost. When the set of attributes in a query is a subset of the attributes in the fragment,

FIGURE 2: The Decomposition Storage Model (DSM). The relation is partitioned vertically into one thin relation
per attribute. Each sub-relation is then stored in the traditional fashion.
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there is a significant gain in I/O performance [2]. The performance of affinity-based vertical partitioning

depends heavily on whether queries involve attributes within the same fragment.

3 PAX

In this section, we introduce a new strategy for placing records on a page called PAX (Partition

Attributes Across). PAX (a) maximizes inter-record spatial locality within each column and within each

page, thereby eliminating unnecessary requests to main memory without a space penalty, (b) incurs a min-

imal record reconstruction cost, and (c) is orthogonal to other design decisions, because it only affects the

layout of data stored on a single page (e.g., one may decide to store one relation using NSM and another

using PAX, or first use affinity-based vertical partitioning, and then use PAX for storing the ‘thick’ sub-

relations). This section presents the detailed design of PAX.

3.1 Overview

The motivation behind PAX is to keep the attribute values of each record on the same page as in NSM,

while using a cache-friendly algorithm for placing them inside the page. PAX vertically partitions the

records within each page, storing together the values of each attribute in minipages. Figure 3 depicts an

NSM page and the corresponding PAX page, with the records of the former stored in the latter in a column-

major fashion. When using PAX, each record resides on the same page as it would reside if NSM were

used; however, all SSN values, all name values, and all age values are grouped together on minipages. PAX

increases the inter-record spatial locality (because it groups values of the same attribute that belong to dif-

ferent records) with minimal impact on the intra-record spatial locality. Although PAX employs in-page

vertical partitioning, it incurs minimal record reconstruction costs, because it does not need to perform a

join to correlate the attribute values of a particular record. 

FIGURE 3: Partition Attributes Across (PAX), and its cache behavior. PAX partitions records into minipages
within each page. As we scan R to read attribute age,values are much more efficiently mapped onto cache blocks,
and the cache space is now fully utilized.
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3.2 Design

In order to store a relation with degree n

(i.e., with n attributes), PAX partitions each

page into n minipages. It then stores values of

the first attribute in the first minipage, values

of the second attribute in the second minipage,

and so on. At the beginning of each page there

is a page header that contains offsets to the

beginning of each minipage. The record header

information is distributed across the

minipages. The structure of each minipage is

determined as follows:

• Fixed-length attribute values are stored in

F-minipages. At the end of each F-

minipage there is a presence bit vector

with one entry per record that denotes null values for nullable attributes.

• Variable-length attribute values are stored in V-minipages. V-minipages are slotted, with pointers to the

end of each value. Null values are denoted by null pointers.

Each newly allocated page contains a page header and a number of minipages equal to the degree of

the relation. The page header contains the number of attributes, the attribute sizes (for fixed length

attributes), offsets to the beginning of the minipages, the current number of records on the page and the

total space still available. Figure 4 depicts an example PAX page in which two records have been inserted.

There are two F-minipages, one for the SSN attribute and one for the age attribute. The name attribute is a

variable-length string, therefore it is stored in a V-minipage. At the end of each V-minipage there are off-

sets to the end of each variable-length value.

Records on a page are accessed either sequentially or in random order (e.g., through a non-clustered

index). In order to sequentially access a subset of attributes, the algorithm sequentially accesses the values

in the appropriate minipages. Appendix A outlines the part of the sequential scan algorithm that reads all

values of a fixed-length attribute f or a variable-length attribute v from a newly accessed page, and the part

of the indexed scan that reads a value of an attribute a, given the record id.

To store a relation, PAX requires the same amount of space as NSM. NSM stores the attributes of each

record contiguously, therefore it requires one offset (slot) per record and one additional offset for each vari-

able-length attribute in each record. PAX, on the other hand, stores one offset for each variable-length

FIGURE 4: An example PAX page. In addition to the tradi-
tional information (page id, number of records in the page,
attribute sizes, free space, etc.) the page header maintains off-
sets to the beginning of each minipage.
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value, plus one offset for each of the n minipages. Therefore, regardless of whether a relation is stored

using NSM of PAX, it will occupy the same number of pages. As explained in Section 4.1, implementa-

tion-specific details may introduce slight differences which are insignificant to the overall performance.

3.3 Evaluation

The data placement scheme determines two factors that affect performance. First, the inter-record spa-

tial locality minimizes data cache-related delays when executing iterators over a subset of fields in the

record. DSM provides inter-record spatial locality, because it stores attributes contiguously, whereas NSM

does not. Second, the record reconstruction cost minimizes the delays associated with retrieving multiple

fields of the same record. 

Table 1 summarizes the characteristics of NSM, DSM, and PAX, demonstrating the trade-off between

inter-record spatial locality and record reconstruction cost. Commercial systems use NSM because DSM

requires costly joins that offset the benefit from the inter-record spatial locality. NSM, however, exhibits

suboptimal cache behavior; a better data placement scheme is needed that will offer spatial locality with

minimal record reconstruction cost. PAX offers the best of both worlds by combining the two critical char-

acteristics: inter-record spatial locality (so that the cache space is fully utilized), and minimal record recon-

struction overhead, by keeping all parts of each record in the same page. As an additional advantage,

implementing PAX on an existing DBMS requires only changes to the page-level data manipulation code.

4 System Implementation

NSM, PAX, and DSM were implemented as alternative data layouts in the Shore storage manager [9].

Normally Shore stores records as contiguous byte sequences, therefore the finest granularity for accessing

information is the record. To implement NSM, we added attribute-level functionality on top of the existing

Shore file manager (as explained later in this section). DSM was implemented on top of Shore, by decom-

posing the initial relation into n Shore files that are stored in slotted pages using NSM. Each sub-relation

includes two columns, one with a logical record id and one with the attribute value. Finally, PAX was

implemented as an alternative data page organization in Shore. All schemes use record-level locking and

the ARIES-style logging and recovery mechanism provided by Shore, with only minor modifications for

TABLE 1: Comparison of characteristics between NSM, DSM, and PAX.

Characteristic NSM DSM PAX

Inter-record spatial locality — ! !

Low record reconstruction cost ! — !
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the recovery system to handle PAX records. In the rest of this section, we discuss record implementation

and data manipulation and retrieval algorithms.

4.1 Record Implementation

Figure 5 illustrates how NSM records were implemented. The fixed-length attribute values are stored

first, followed by an array of offsets and a mini-heap containing the variable-length attribute values. In

front of each record, Shore adds a 12-byte tag with Shore-specific information such as serial number,

record type, header length, and record length. In addition, it uses 4-byte slots at the end of the page (two

bytes for the offset and another two for the amount of space allocated for each record). This adds up to a

16-byte overhead per record. 

In the current implementation, TPC-H tables stored using PAX need 8% less space than when stored

using NSM. 3-4% of this benefit is due to the fact that PAX does not need a slot table at the end of a page.

The rest is Shore-specific overhead resulting from the 12-byte Shore record tag. Commercial database

management systems store a header in front of each record, that keeps information such as the NULL bit-

map, space allocated for the record, true record size, fixed part size, and other flags. The record header’s

size varies with the number and type of columns in the table. For the TPC-H table Lineitem, the record

header would be about 8 bytes. Therefore, the Shore tag adds a space overhead of 4 bytes per record. Due

to this overhead, NSM takes 4% more storage than it would if the Shore tag were replaced by common

NSM header information.

4.2 Data Manipulation Algorithms

BULK-LOADING AND INSERTIONS. The algorithm to bulk-load records from a data file starts by allocating

each minipage on the page based on attribute value size. In the case of variable-length attributes, it uses a

hint (either from the user or the average length from the first few records) as an indication of the average

value size. PAX inserts records by copying each value into the appropriate minipage. When variable-length

values are present, minipage boundaries may need to be adjusted to accommodate records as they are

inserted in the page. If a record fits in the page but its individual attribute values do not, the algorithm

recalculates minipage sizes based on the average value sizes in the page so far and the new record size, and

FIGURE 5: An example NSM record structure in Shore. The data for fixed-length columns is stored first, fol-
lowed by a 2-byte offset array and the variable-length data.

SHORE TAG FIXED-LENGTH VARIABLE-LENGTH VALUES}

2*v bytes
2-byte offsets

} }}

12 bytes f*F bytes v*V bytes

VALUES
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reorganizes the page structure by moving minipage boundaries appropriately to accommodate new records.

When the page is full, it allocates a new page with the initial minipage sizes equal to the ones in the previ-

ously populated page (so the initial hints are quickly readjusted to the true per-page average value sizes). 

Shore supports insertion of a record into the first page that can accomodate it (i.e., not necessarily

appending them at the end of the relation). The NSM insertion algorithm concatenates the record values

into the byte sequence presented in Figure 5, to which Shore adds a tag and stores the record. The PAX

implementation calculates the position of each attribute value on the page, stores the value, and updates the

presence bitmaps and offset arrays accordingly.

UPDATES. NSM uses the underlying infrastructure provided by Shore, and updates attribute values within

the record. Updates on variable-length attributes may stretch or shrink the record; page reorganizations

may be needed to accomodate the change and the slot table must be updated. If the updated record grows

beyond the free space available in the page, the record is moved to another page. PAX updates an attribute

value by computing the offset of the attribute in the corresponding minipage. Variable-length attribute

updates require only V-minipage-level reorganizations, to move values of the updated attribute only. If the

new value is longer than the space available in the V-minipage, the V-minipage borrows space from a

neighboring minipage. If the neighboring minipages do not have sufficient space, the record is moved to a

different page.

DELETIONS. The NSM deletion algorithm uses the slot array to mark deleted records, and the free space

can be filled upon future insertions. PAX keeps track of deleted records using a bitmap at the beginning of

the page, and determines whether a record has been deleted using fast bitwise calculations. Upon record

deletion, PAX reorganizes minipage contents to fill the gaps to minimize fragmentation that could affect

PAX's optimal cache utilization. As discussed in Section 7.2, minipage reorganization does not affect

PAX’s performance because it incurs minimal overhead. Attribute value offsets are calculated by convert-

ing the record id to the record index within the page, which takes into account deleted records.

For deletion-intensive workloads, an alternative approach is to mark records as deleted but defer reor-

ganizations. This algorithm creates gaps in minipages, resulting in suboptimal cache utilization during file

scan because deleted record data are occasionally brought into the cache. To maintain cache performance

to acceptable levels, the system can schedule periodic file reorganizations. We plan to provide the option to

use on a per-file basis the one best suited for each application.

4.3 Query Operators

SCAN OPERATOR. A scan operator that supports sargable predicates [30] was implemented on top of

Shore. When running a query using NSM, one scan operator is invoked that reads each record and extracts



12

the attributes involved in the predicate from it. PAX invokes one scan operator for each attribute involved

in the query. Each operator sequentially reads values from the corresponding minipage. The projected

attribute values for qualifying records are retrieved from the corresponding minipages using computed off-

sets. With DSM, as many operators as there are attributes in the predicate are invoked, each on a sub-rela-

tion. The algorithm makes a list of the qualifying record ids, and retrieves the projected attribute values

from the corresponding sub-relations through a B-tree index on record id.

JOIN OPERATOR. The adaptive dynamic hash join algorithm [25], which is also used in DB2 [22], was

implemented on top of Shore. The algorithm partitions the left table into main-memory hash tables on the

join attribute. When all available main memory has been consumed, all buckets but one are stored on the

disk. Then it partitions the right table into hash tables in a similar fashion, probing dynamically the main-

memory portion of the left table with the right join attribute values. Using only those attributes required by

the query, it then builds hash tables with the resulting sub-records. The join operator receives its input from

two scan operators, each reading one relation. The output can be filtered through a function that is passed

as a parameter to the operator.

5 Evaluation Methodology

To evaluate PAX performance and compare it to NSM and DSM, it is necessary to first understand

cache behavior and its implications for all three schemes. We perform the evaluation studies in three

stages:

1. The first stage uses plain range selection queries on a memory-resident relation that consists of fixed-

length numeric attributes. This step is necessary to determine the algorithm sentitivity when varying

basic query parameters, and provide insight on the cache behavior of basic algorithms.

2. The second stage uses both range and complex decision-support queries on a TPC-H dataset to obtain

results on more complicated queries. This stage corroborates the hypothesis that, the more complex a

DSS query is, the more time the processor spends on in-memory data, and cache performance becomes

more important.

3. The third stage evaluates PAX across three fundamentally different processor and memory hierarchy

designs using the DSS workload. This stage completes the experiment cycle by ensuring that the per-

formance results do not depend on a specific processor and memory architecture.

The rest of this section describes the common experimental setup used across all three stages, and jus-

tifies the selection of Shore as our software experiment platform.
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5.1 Measurement methodology

The insights drawn in this paper are based on experiments that employ the hardware counters available

on most of today’s processors. These are registers strategically placed in the hardware, designed to count

occurrences of a specific event. Each processor provides a few (typically two) counters and a (typically

much higher) number of measurable events. For example, the Pentium II Xeon processor used throughout

this study has two counters and nearly a hundred measurable events.

While all processors studied provide hardware performance counters, reporting meaningful statistics

from the counter values is often not a straightforward task. Counter values obtained are often hard to inter-

pret, for two reasons. First, not all processor vendors have invested the same effort in designing the

counters and making their values available to user-level software. Second, execution follows several alter-

native hardware paths, and intercepting all the paths at the appropriate points to measure certain event

types is not always possible. Therefore, the occurrence counts for these events are either overestimated or

underestimated. A related problem is measuring stall time: a stall cycle may be attributed to a number of

reasons (memory, misprediction, functional unit unavailability, data dependency, etc.). In several cases it is

unclear which component is responsible.

We took several steps to maximize accuracy of the results reported in this study. First, we carefully

evaluated several (proprietary or public-domain) software packages for each platform, using microbench-

marks that exhibit predictable event counts. The software we chose for each platform combines the highest

level of correctness, robustness, stability, and support from its makers. Second, we took advantage of event

redundancy when applying formulae to raw numbers, and ensured correctness by calculating each result in

using multiple sets of correlated events. Finally, we stayed in contact with the processor vendors who

helped decipher the counter values and approved the accuracy of our methodology [17][21][33]. Section

8.1 describes the additional software and hardware used in the third experimentation stage.

The experiments for the first and second stages were conducted on a Dell 6400 PII Xeon/MT system

running Windows NT 4.0. This computer features a Pentium II Xeon processor at 400MHz, a 512-MB

main memory, and a 100MHz system bus. The processor has a split first-level (L1) cache (16KB instruc-

tion and 16KB data) and a unified 512 KB second-level (L2) cache. Caches at both levels are non-blocking

(they can service new requests while earlier ones are still pending) with 32-byte cache blocks. To obtain

measurements on this system we used emon, a tool provided by Intel. Emon can set the counters to zero,

assign event codes to them and read their values after a program has completed execution [1].

Before taking measurements for a query, the main memory and caches were warmed up with multiple

runs of this query. In order to distribute and minimize the effects of the client/server startup overhead, the

unit of execution consisted of 10 different queries on the same database, with the same selectivity. Each
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time emon executed one such unit, it measured a pair of events. In order to increase the confidence inter-

vals, the experiments were repeated several times and the final sets of numbers exhibit a standard deviation

of less than 5 percent. Finally, using a set of formulae, these numbers were transformed into meaningful

performance metrics.

All the experiments were conducted by running one query at a time on a dedicated computer, therefore

interference and race conditions with other queries and programs over a cache block has been factored out.

Cache placement and replacement is determined by the hardware and there is no obvious software way to

address this problem. Intuitively, interference should hurt NSM more than it hurts PAX, as PAX packs data

more efficiently into cache blocks, thereby reducing the cache data footprint. Research toward that direc-

tion is beyond the scope of this paper.

5.2 Eligibility of Shore as a Development and Evaluation Platform

The prototype software that we choose to implement the three data placement alternatives must pro-

vide state-of-the-art storage management techniques, representative of those used in commercial database

systems. In addition, its hardware behavior, especially with respect to memory hierarchy trends and bottle-

necks, must be similar to the behavior of commercial database systems, as studied in previous work [1].

The Shore storage manager [9] meets both requirements. First, it provides all the features of a modern

storage manager, namely B-trees and R-trees, ARIES-style recovery, hierarchical locking (record, page,

file), and clock-hand buffer management with hints. Second, as illustrated in Figure 6, Shore exhibits sim-

ilar behavior to commercial database systems. The leftmost graph compares the execution time breakdown

FIGURE 6: Hardware characterization of four commercial DBMSs and Shore. Comparison of elapsed time
(left) and memory stall time (right) breakdowns across four commercial database systems (A, B, C, and
D) and Shore when running a range selection with 10% selectivity.The diagonally striped part labeled
Memory on the left is analyzed on the right into cache stalls due to data and instructions.
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of four popular commercial database systems and Shore when running a range selection query on the TPC-

H dataset with 10% selectivity. The execution time is divided in computation time, memory stalls, branch

misprediction stalls, and other hardware-related stalls. The rightmost graph further divides memory stall

time into stalls due to first and second cache level data and instruction misses. Experiments with other

types of queries show comparable results. The graphs in Figure 6 illustrate that (a) there is a significant

time spent in data-related stalls in memory hierarchy, and (b) Shore exhibits similar behavior to that of

commercial database systems. Therefore, Shore is an eligible software platform to develop and evaluate

data placement schemes3.

6 The Impact of Data Placement on Cache Performance

To evaluate PAX performance and compare it to NSM and DSM, it is necessary to first understand

cache behavior and its implications for all three schemes. In this section we first describe the workload

used to analyze cache performance and execution time when running the simple queries on the system

described in Section 5.1. Then, we discuss the limitations of all three data placement schemes by contrast-

ing sensitivity analysis results when varying query parameters.

6.1 Workload

The workload consists of one relation and variations of the following range selection query:

select avg(ap)
from R
where aq > Lo and aq < Hi (1)

where ap, aq are attributes in R. This query is sufficient to examine the net effect of each data layout when

accessing records sequentially or randomly (given their record id). Unless otherwise stated, R contains

eight 8-byte numeric attributes, and is populated with 1.2 million records. For predictability and easy cor-

rectness verification of experimental results, we chose the attribute size so that exactly four values fit in the

32-byte cache line, and record sizes so that record boundaries coincide with cache line boundaries. We var-

ied the projectivity, the number of attributes in the selection predicate, their relative position, and the num-

ber of attributes in the record. The values of the attribute(s) used in the predicate are the same as in the

l_partkey attribute of the Lineitem table in the TPC decision-support benchmarks [16], with the same data

skew and uniform distribution. 

(3) To produce the graphs shown in Figure 6, we used microbenchmarks that successfully show trends and execution bottlenecks
during basic query execution loops, but are inappropriate to measure how fast DBMS are in absolute terms. The point made by
these graphs is that Shore exhibits behavior trends that are comparable to those of commercial DBMS; therefore, the percent-
age-based time breakdown is more relevant than the absolute query performance. 
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PAX is intended to optimize data cache behavior, and does not affect I/O performance in any way. In

workloads where I/O latency dominates execution time, the performance of PAX eventually converges to

the performance of NSM. PAX is designed to ensure high data cache performance once the data page is

available from the disk, and is orthogonal to any additional optimizations to enhance I/O performance. In

the rest of this section, we study the effects of the data placement scheme when running queries on main-

memory resident relations.

6.2 Results and Analysis

While the performance of the NSM and PAX schemes are relatively insensitive to the changes, DSM’s per-

formance is very sensitive to the number of attributes used in the query. When the query involves less than

10% of the attributes in the relation, DSM actually performs well because the record reconstruction cost is

low. As the number of attributes involved increases, however, DSM’s performance deteriorates rapidly

because it joins more sub-relations together. Dedicated warehousing products such as Sybase-IQ [36] and

variant indexing techniques [27] improve this behavior for decision-support applications. NSM and PAX,

on the other hand, maintain stable performance as the number of attributes in the query increases, because

all the attributes of each record reside on the same page, minimizing the record reconstruction cost. As

PAX improves NSM cache performance and is orthogonal to DSM (it can be applied on vertically parti-

tioned tables) we evaluate PAX against NSM on DSS-style workloads.

The rest of this section analyzes the significance of the data placement scheme to the query execution.

The first part discusses in detail the cache behavior of NSM and PAX, while the second part presents a sen-

sitivity analysis on NSM and PAX as the query projectivity, the number of attributes in the predicate, the

selectivity, and the number of attributes in the relation are varied.

6.2.1  Impact on Cache Behavior and Execution Time Breakdown

The cache behavior of PAX is significantly better when compared to NSM. As the predicate is applied

to aq, NSM suffers one cache miss for each record. Since PAX groups attribute values together on a page,

it incurs a miss every n records, where n is the cache block size divided by the attribute size. In our experi-

ments, PAX takes a miss every four records (32 bytes per cache block divided by 8 bytes per attribute).

Consequently, PAX saves at least 75% of the data misses NSM incurs in the second-level cache.
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Figure 7 illustrates that PAX reduces the delays related to the data cache, and therefore runs queries

faster. The graphs on the left and center show the processor stall time4 per record due to data misses at both

cache levels for NSM and PAX, respectively. Due to the higher spatial locality, PAX reduces the data-

related penalty at both cache levels. The L1 data cache penalty does not affect the overall execution time

significantly, because the penalty associated with one L1 data cache miss is small (10 processor cycles).

Each L2 cache miss, however, costs 70-80 cycles.5 PAX reduces the overall L2 cache data miss penalty by

70%. Therefore, as shown in the graph on the right of Figure 7, the overall processor stall time is 75% less

when using PAX, because it does not need to wait as long for data to arrive from main memory. The mem-

ory-related penalty contributes 22% to the execution time when using NSM, and only 10% when using

PAX.

Reducing the data cache misses at both cache levels and minimizing data stall time also reduces the

number of instruction misses on the second-level cache, and minimizes the associated delays. The second-

level cache is unified, i.e., contains both data and instructions that replace each other as needed to accomo-

date new requests. To evaluate the predicate, NSM loads the cache with non-referenced data, which are

likely to replace potentially needed instructions and incur extra instruction misses in the future. PAX only

brings useful data into the cache, occupying less space and minimizing the probability to replace an

instruction that will be needed in the future.

Although PAX and NSM have comparable instruction footprints, the rightmost graph of Figure 7

shows that PAX incurs less computation time. This is a side effect from reducing memory-related delays.

(4) Processing time is 100% during all of the experiments, therefore processor cycles are directly analogous to elapsed time.
(5) Due to the increasing processor-memory speed gap, memory access costs are even higher in recent processors.

FIGURE 7: PAX impact on memory stalls. Cache miss penalty per record processed due to data misses at the sec-
ond and first level cache for NSM (left) and PAX(center) as a function of the selectivity. For selectivity 1%, the graph
on the right shows CPU time breakdown in clock cycles per record processed into useful computation (Comp), stall
time due to memory delays (Mem) and stall time due to other reasons (Misc).
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Modern processors can retire6 multiple instructions per cycle; the Xeon processor can retire up to three.

When there are memory-related delays, the processor cannot operate at its maximum capacity and retires

less than three instructions per cycle. With NSM, only 30% of the total cycles retire three instructions, with

60% retiring either zero or one instruction. As reported by previous studies [1][20], database systems suf-

fer high data dependencies and the majority of their computation cycles commit significantly fewer

instructions than the actual capacity of the processor. PAX partially alleviates this problem by reducing the

stall time, and the queries execute faster because they exploit better the processor’s superscalar ability.

6.2.2  Sensitivity Analysis

As the number of attributes involved in the query increases, the elapsed execution times of NSM and

PAX converge. In the leftmost graph of Figure 8, the projectivity of the query is varied from 1 to 7

attributes, and the predicate is applied to the eighth attribute. In the experiments shown, PAX is faster even

when the result relation includes all the attributes. The reason is that the selectivity is maintained at 50%,

and PAX exploits spatial locality on the predicates as well as on the projected attributes, whereas NSM

brings into the cache useless information 50% of the time. Likewise, the rightmost graph of Figure 8 dis-

plays the elapsed time as the number of attributes in the selection predicate is varied from 1 to 7, with the

projection on the eighth attribute. PAX is again faster for locality reasons. In these experiments, DSM’s

performance is about a factor of 9 slower than NSM and PAX. As the number of attributes involved in the

query increases, DSM must join the corresponding number of sub-relations.

(6) During a given cycle, the processor pipeline is capable of simultaneously issuing (reading) i instructions, executing x instruc-
tions (that were issued in previous cycles) and retiring (writing results onto registers and cache) c instructions (that were issued
and executed in previous cycles). For the Xeon processor, i = 3, x = 5, and c = 3.

FIGURE 8: Elapsed time comparison as a function of projectivity (left) and number of predicates (right).
NSM and PAX elapsed times for range selections with 50% selectivity (controlled by the first predicate).
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When compared to NSM, PAX is insensitive to

changes in query selectivity. The graph in Figure 9

shows the stall time per record due to second-level

cache data misses as a function of the selectivity, when

running a range selection with one projected attribute

and one predicate. In the NSM record, the distance

between the projected attribute and the predicate is more

than a cache block (32 bytes). This means that for each

qualified record, NSM will have one additional cache

miss to fetch the projected attribute’s value. The higher

the selectivity, the more the qualifies records, hence the

increase in NSM’s data stalls. PAX must access a differ-

ent minipage for each qualified record to fetch the pro-

jected attribute; higher selectivity, however, means that the cache block from the projected attribute’s

minipage is likely to contain more projected values. Consequently, as the selectivity increases extra cache

misses will occur at a decreasing rate .

Using PAX to increase the inter-record spatial local-

ity in a page and reduce the number of data cache misses

is meaningful as long as the ratio of the record size to

the page size is low enough that a large number of

records fit on the page (which is a reasonable assump-

tion in most workloads). All of the above measurements

were taken with R consisting of eight, 8-byte attributes.

For this relation, PAX divides the page into 8 minipages,

(one per attribute), resulting in about 125 records in

each 8K page. Therefore, in a system with 32-byte cache

block, PAX incurs about four times fewer data cache

misses than NSM when scanning records to apply a

predicate to an attribute. As the number of attributes in a

record increases, fewer records fit on one page. With 64 8-byte values per record, the number of records

per page is reduced to 15.

Figure 10 shows the elapsed time PAX and NSM need to process each record, as a function of the

number of attributes in the record. To keep the relation main-memory resident, doubling the record size

FIGURE 9: PAX/NSM sensitivity to selectivity of
the query. PAX is insensitive to selectivity; NSM
incurs more data stalls as more records qualify.
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implies halving R’s cardinality; therefore, we divided execution time by the cardinality of R. The graph

illustrates that, while PAX still suffers fewer misses than NSM, the execution time is dominated by factors

such as the buffer manager overhead associated with getting the next page in the relation after completing

the scan of the current page. Therefore, as the degree of the relation increases, the time PAX needs to pro-

cess a record converges to that of NSM.

7 Evaluation Using DSS Workloads

This section compares PAX and NSM when running a TPC-H decision-support workload on the sys-

tem described in Section 5.1. Decision-support applications are typically memory and computation inten-

sive [22]. The relations are not generally main-memory resident, and the queries execute projections,

selections, aggregates, and joins. The results show that PAX outperforms NSM on all TPC-H queries when

using this workload. At the end of this section we discuss the performance implications when performing

updates and random access queries.

7.1 Workload

. The workload consists of the TPC-H database and a variety of queries. The database and the TPC-H

queries were generated using the dbgen and qgen software distributed by the TPC. The database includes

attributes of type integer, floating point, date, fixed-length string, and variable-length string. We ran exper-

iments with bulk-loading, range selections, four TPC-H queries, and updates:

Bulk-loading. When populating tables from data files, NSM performs one memory-to-memory copy

per record inserted, and stores records sequentially. PAX inserts records by performing as many copy oper-

ations as the number of values in the tuple, as explained in Section 3.2. DSM creates and populates as

many relations as the number of attributes. We compare the elapsed time to store a full TPC-H dataset

when using each of the three schemes and for variable database sizes. Full recovery was turned on for all

three implementations.

Range selections. This query group consists of queries similar to those presented in Section 6.1, but

without the aggregate function. Instead, the projected attribute value(s) were written to an output relation.

To stress the system to the maximum possible extent, the range selections are on Lineitem, the largest table

in the database. Lineitem contains 16 attributes having a variety of types, including three variable-length

attributes. There are no indexes on any of the tables, as most implementations of TPC-H in commercial

systems include mostly clustered indices, which have a similar access behavior to sequential scan [2]. As

in Section 6, we varied the projectivity and the number of attributes involved in the predicate.
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TPC-H queries. Four TPC-H queries, Q1, Q6, Q12, and Q14, were implemented on top of Shore. The

rest of this section describes the queries and their implementation, while the SQL code is presented in

Appendix B.

Query #1 is a range selection with one predicate (98% selectivity) and computes eight aggregates on six

attributes of the Lineitem table. The implementation pushes the predicates into Shore, computes

the aggregates on the qualifying records, groups and orders the results.

Query #6 is a range selection with four predicates on three attributes (2% selectivity), and computes a sum

aggregate on Lineitem. The implementation is similar to Query #1.

Query #12 is an equijoin between Orders and Lineitem with five additional predicates on six attributes,

and computes two conditional aggregates on Lineitem.

Query #14 is an equijoin between Part and Lineitem with two additional predicates, and computes the

product of two aggregates (one conditional) on Lineitem.

Queries 12 and 14 use the adaptive dynamic hash join operator described in Section 4. The experi-

ments presented in this section use a 128-MB buffer pool and a 64-MB hash join heap. With large TPC-H

datasets the queries involve I/O, because the resulting database sizes used are larger than the memory

available and the equijoins store hash table buckets on the disk.

Updates. We implemented update transactions on Lineitem’s attributes. Each transaction implements

the following statement:

update R
set ap=ap + b
where aq > Lo and aq < Hi (2)

where ap, aq, and b are numeric attributes in Lineitem. We varied the number of updated fields, the number

of fields in the predicate, and the selectivity. For each query, we measured the transaction execution time

(i.e., including flushing the updated pages to the disk), and the actual main-memory update times, to deter-

mine the memory-hierarchy impact of the update algorithm.

7.2 Bulk-loading

Figure 11 compares the elapsed time required to load a 100-MB, 200-MB, and 500-MB TPC-H data-

base with each of the three storage organizations. DSM load times are much higher than those of NSM and

PAX, because DSM creates one relation per attribute and stores one NSM-like record per value, along with

the value’s record id. In Section 6.2 we demonstrated that, when executing queries that involve multiple

attributes, DSM never outperforms either of the other two schemes. Therefore, the rest of Section 7 will

focus on comparing NSM and PAX. 
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Although the two schemes copy the same total amount of data to the page, NSM merely appends

records. PAX, on the other hand, may need to perform additional page reorganizations if the relation con-

tains variable-length attributes. PAX allocates V-minipage space in a new page based on average attribute

sizes, and may occasionally over- or underestimate the expected minipage size. As a consequence, a record

that would fit in an NSM page does not fit into the corresponding PAX page unless the current minipage

boundaries are moved. In similar cases, PAX needs additional page reorganizations to move minipage

boundaries and accommodate new records. 

The bulk-loading algorithm for PAX estimates ini-

tial minipage sizes on a page to be equal to the average

attribute value sizes on the previously populated page.

With the TPC-H database, this technique allows PAX

to use about 80% of the page without any reorganiza-

tion. Attempting to fill the rest of the 20% of each page

results in an average of 2.5 reorganizations per page,

half of which only occur in order to accommodate one

last record on the current page before allocating the

next one. Figure 11 shows this worst case scenario:

when using the exhaustive algorithm that attempts to

fill each page to 100% of capacity, PAX incurs a maxi-

mum of 10% performance penalty when compared to

NSM.

As an alternative, we implemented a smarter algo-

rithm that reorganizes minipages only if the free space on the page is more than 5%. As was expected, the

number of reorganizations per page dropped to half the number incurred by the exhaustive algorithm. A

more conservative algorithm with a 10% “reorganization-worthy” free-space threshold dropped the aver-

age number of reorganizations to 0.8 per page. Table 2 shows that, as the average number of reorganiza-

tions falls, the performance penalty of PAX versus NSM during bulk-loading becomes minimal (and is

independent of the database size), even though PAX accesses a higher number of under-full pages.

TABLE 2: Effect of the “reorganization worthy” threshold on PAX bulk-loading performance

“Reorganization-worthy” threshold Avg. # reorganizations / page Penalty wrt. NSM

0% (if record fits, always reorganize - exhaustive) 2.25 10.1%

5% (reorganize if page less than 95% full) 1.14 4.9%

10% (reorganize if page less than 90% full) 0.85 0.8%

FIGURE 11: Elapsed bulk-loading times. Elapsed
times to load a 100-MB, 200-MB and 500-MB TPC-H
dataset using NSM, PAX, and DSM page layouts with
exhaustive page usage (i.e., pages are 100% full).
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7.3 Queries

In Section 6.2 we explained why the performance

improvement provided by PAX is reduced as the pro-

jectivity increases and the query accesses a larger por-

tion of the record. As shown in Figure 8 in Section 6,

PAX performance is superior to NSM when running

range selections, especially when the query uses only a

fraction of the record. The leftmost bar group (labeled

‘RS’) in Figure 12 shows the average speedup7

obtained by a variety of range selection queries on

Lineitem (described in Section 7.1). When using a 100-

MB, a 200-MB, and a 500-MB dataset the speedup is

14%, 13%, and 10%, respectively. 

Figure 12 also depicts PAX/NSM speedups when

running four TPC-H queries against a 100, 200, and

500-MB TPC-H database. PAX outperforms NSM for

all these experiments. The speedups obtained, however, are not constant across the experiments due to a

combination of differing amounts of I/O and interactions between the hardware and the algorithms being

used. 

Queries 1 and 6 are essentially range queries that access roughly one third of each record in Lineitem

and calculate aggregates, as shown in Appendix B. The difference between these TPC-H queries and the

plain range selections (RS) discussed in the previous paragraph is that TPC-H queries exploit further the

spatial locality, because they access projected data multiple times in order to calculate aggregate values.

Therefore, PAX speedup is higher due to the increased cache utilization and varies from 15% (in the 500-

MB database) to 42% (in the smaller databases).

Queries 12 and 14 are more complicated and involve two joined tables, as well as range predicates.

The join is performed by the adaptive dynamic hash join algorithm, as was explained in Section 4.

Although both the NSM and the PAX implementation of the hash-join algorithm only copy the useful por-

tion of the records, PAX still outperforms NSM because (a) with PAX, the useful attribute values are natu-

rally isolated, and (b) the PAX buckets are stored on disk using the PAX format, maintaining the locality

advantage as they are accessed for the second phase of the join. When running query 12, PAX speeds exe-

(7) Definition of speedup [18]: 

FIGURE 12: PAX/NSM speedup. Speedup is shown
for a 100-MB, 200-MB, and 500-MB TPC-H dataset
when running range selections (RS) and four TPC-H
queries (Q1, Q6, Q12, and Q14).
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cution up by 37-48%. Since query 14 accesses fewer attributes and requires less computation than query

12, PAX outperforms NSM by only 6-32% when running this query.

7.4 Updates

The update algorithms implemented for NSM and

PAX (discussed in Section 4.2) are based on the same

philosophy: update attribute values in place, and per-

form reorganizations as needed. The difference lies in

updating variable-length attributes. When replacing a

variable-length attribute value with a larger one, PAX

only needs to shift half the data of the V-minipage on

average to accomodate the new requirements. NSM, on

average, must move half the data of the page (because it

moves records that include “innocent” non-referenced

attributes). Less frequently, variable-length updates will

result in a page reorganization for both schemes. Over-

all, massive updates on variable-length fields are rare;

TPC-C’s only update query is on the client credit history

in the Payment transaction, and only affects one record (plus, the history field has a maximum length of

500 bytes).

When executing updates PAX is always faster than NSM, providing a speedup of 10-16%. The

speedup is a function of the fraction of the record accessed as well as the selectivity. As discussed in Sec-

tion 6.2, the execution times of NSM and PAX converge as we increase the projectivity. Similarly, the

PAX/NSM speedup decreases as we increase the number of updated attributes. Figure 13 illustrates the

speedup as a function of the number of updated attributes, when running updates on fixed-length attributes

in a 100-MB database for various selectivities. For low selectivities, PAX provides a speedup of 10-16%,

and its execution is dominated by read requests. As the selectivity increases, the probability that the

updated attributes are in the cache is higher. However, increasing the selectivity also increases the proba-

bility that every data request will cause replacement of “dirty” cache blocks, which must be written back to

memory. For this reason, as the selectivity increases from 20%-100%, the speedup is dominated by the

write-back requests and becomes oblivious to the change in the number of updated attributes.

FIGURE 13: PAX/NSM speedup on updates.
Speedups are shown as a function of the number of
updated attributes, for various selectivities and a
100-MB database.
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7.5 Random Access using Point and Low-Selectivity Queries

All of the results presented in this section were obtained using sequential scans and joins with no indi-

ces on the participating relations. PAX delivers superior performance in these queries, because the sequen-

tial access patterns take advantage of the spatial locality in the minipages. In real applications, however,

queries often access a single record or a very small number of records in the relation using a non-clustered

index. To answer such queries the query engine traverses the appropriate index nodes to find the qualifying

record id (page and location within page). Then, it fetches the appropriate page from the disk, if it is not

already in memory, and returns the projected attributes’ values to the application. When using NSM, the

algorithm looks in the record to find the projected values, whereas when using PAX it visits exactly as

many minipages as the number of the projected attributes. Consequently, one would expect that, when the

entire record is projected, NSM should outperform PAX. Indeed, in this case PAX naturally incurs as many

cache misses as the attributes in the record, whereas NSM exhibits maximum spatial locality and only

incurs as many misses as needed.

Our experiments, however, proved that PAX performs similarly to NSM when executing single-record

and low-selectivity queries. We measured the average time required for PAX and NSM to answer point

queries of varying projectivity, and found the execution times to be the same when using either scheme.

Indeed, the higher the number of attributes participating in the query, the more cache misses PAX suffers;

however, the delay incurred is insignificant when compared to the time needed to traverse the index, pin

the page in the buffer manager, read the page header, lock the record, and copy the data. In other words, the

performance bottleneck when randomly accessing records shifts towards cache misses on instructions and

private data, such as buffer pool data structures, rather than the actual record data. As the number of

records accessed per page decreases, the bottleneck shifts to buffer pool operations, causing PAX’s over-

head to disappear.

8 Impact of Memory System Design on Data Placement Performance

So far we have demonstrated the importance of choosing the right data placement scheme to achieve

high cache performance, and the superiority of PAX when executing queries on deep memory hierarchies.

Processor and memory system design, however, varies wildly across vendors, and it would be interesting

to discover whether the results depend on the architectural characteristics. This section evaluates the two

competing data placement schemes on top of three different hardware platforms, and discusses the insights

drawn from this comparison.
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8.1 Experimental Setup and Methodology

As in the previous two experimental stages, we use Shore in order to compare database workload

behavior across three different computers. For comparability of results, all experiments in this Section run

on top of the Unix operating system. The architecture design philosophies used are:

• Intel P6: The Dell system we used to conduct the experiments features a Pentium II Xeon [19] proces-

sor, running Linux 2.2. This is an out-of-order processor with a 2-level cache hierarchy. In the rest of

this section, we refer to this processor as “the Xeon.” To access the counters from Linux, we used the

Performance Data Standard and API (PAPI) [24], a public-domain library that offers access to counters

via a common programming interface.

• Sun UltraSparc: The system features the UltraSparc-IIi (US-IIi) [34] processor running Solaris 2.7.

This is an in-order processor with a 2-level cache hierarchy. In the rest of this section, we refer to this

processor as “the UltraSparc.” To access the counters, we used a slightly modified version of the inter-

procedural instrumentation library written by Glenn Ammons and used in previous work [4].

• Alpha 21164: Although it is an in-order machine, the A21164 [11] is the only machine in this set that

features a three-level cache hierarchy. The system runs OSF1, a 64-bit Unix-based operating system.

In the rest of this section, we refer to this processor as “the Alpha.” To access the counters, we used a

sampling tool from Compaq, called “DIGITAL Continuous Profiling Infrastructure” (DCPI) [5].

8.2 Results

Use of PAX instead of NSM improves the spatial data locality during sequential scan, especially when

the query accesses a fraction of the record in order to evaluate a predicate. When accessing a value, we

bring into the cache a block containing the neighboring values as well; therefore, the larger the cache block

size, the less often an algorithm that uses PAX will incur cache misses. In other words, the data miss rate

improvement from using PAX (defined as the number of data misses divided by the number of data

accesses) is expected to increase as a function of the block size.

The systems compared here have different cache configurations, and offer an excellent testbed for

experimentation. In particular, the Xeon’s caches use 32-byte blocks, whereas the Alpha and the UltraS-

parc use 64-byte blocks in their largest caches. Therefore, we expect that PAX improvement on L2 (L3)

data miss rates on the UltraSparc (Alpha) will be higher than on the Xeon. As shown in the leftmost graph
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of Figure 14, in all sequential scan queries cases the above conjecture is true. When running the join que-

ries (Q12 and Q14), however, we observed variations. For example, when using NSM, Q12 exhibits an

unusually low miss rate for the Xeon (9% versus 88% for Q1 and Q6 and 45% for Q14) and that is almost

completely eliminated when using PAX. The positive effect of the 64-byte block is lower when running

Q14 on the UltraSparc because its largest cache is only 512KB (vs. 4MB in the Alpha). Although the

Xeon’s largest cache is also 512KB, its cache blocks are only 32 bytes and potentially more favorable for

Q14’s non-sequential access patterns. A comparison of the memory hierarchies and the impact of the dif-

ferent cache architectures on performance is located in a detailed study [3].

The rightmost graph in Figure 14 shows the relative improvement in elapsed execution time when

using PAX across the four platforms. The improvement is low (3-15%) for the range selection that per-

forms sequential scan and hardly uses the data read from the relation. Q1 and Q6 make heavier usage of the

data extracted during the sequential scan in order to compute aggregates, group, and sort. Therefore, PAX

improvements are higher (8-40%) for these queries as well as for the more complex join queries. The

results corroborate the conclusions from the previous experimentation stages that (a) PAX is a promising

cache-conscious data placement technique that minimizes data stall time, and (b) reducing data-related

stalls significantly improves query execution time.

FIGURE 14: PAX and NSM on three platforms. PAX improvement over NSM on L2 data miss rate (left) and
elapsed execution time (right) when running the range selections (RS), the TPC-H queries on three platforms.
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9 Summary

The performance of today’s decision-support systems is strongly affected by the increasing processor-

memory speed gap. Previous research has shown that database systems do not exploit the capabilities of

today’s microprocessors to the extent that other workloads do [20]. A major performance bottleneck for

database workloads is the memory hierarchy, and especially data accesses on the second-level cache [1].

The data cache performance is directly related to how the contents of the disk pages map to cache memo-

ries, i.e., to the disk page data layout. The traditional N-ary storage model (NSM) stores records contigu-

ously on slotted disk pages. However, NSM's poor spatial locality has a negative impact on L2 data cache

performance. Alternatively, the decomposition storage model (DSM) partitions relations vertically, creat-

ing one sub-relation per attribute. DSM exhibits better cache locality, but incurs a high record reconstruc-

tion cost. For this reason, most commercial DBMSs use NSM to store relations on the disk.

This paper introduces PAX (Partition Attributes Across), a new layout for data records on pages that

combines the advantages of NSM and DSM. For a given relation, PAX stores the same data on each page

as NSM. The difference is that within each page, PAX groups values for the same attribute together in

minipages, combining inter-record spatial locality and high data cache performance with minimal record

reconstruction cost at no extra storage overhead. 

Using PAX to arrange data on disk pages is beneficial when compared to both NSM and DSM:

• When compared to NSM, PAX incurs 50-75% less L2 cache data misses and stall time, while range

selection queries and updates on main-memory tables execute in 17-25% less elapsed time. When run-

ning TPC-H queries that perform calculations on the data retrieved and require I/O, PAX incurs a 11-

48% speedup over NSM.

• When compared to DSM, PAX cache performance is better and queries execute consistently faster

because PAX does not require a join to reconstruct the records. As a consequence, the execution time

of PAX remains relatively stable as query parameters vary, whereas the execution time of DSM

increases linearly to these parameters.

PAX incurs no storage penalty when compared with either NSM or DSM. PAX reorganizes the records

within each page, therefore can be used orthogonally to other storage schemes (such as NSM or affinity-

based vertical partitioning) and transparently to the rest of the DBMS. Finally, we expect that compression

algorithms will (a) operate more efficiently on vertically partitioned data, because of type uniformity and

(b) achieve higher compression rates on a per-page basis, because the value domain is smaller. PAX com-

bines these two characteristics, and favors page-level compression schemes.
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APPENDIX A: PAX ALGORITHMS
Get the next value of a fixed-length attribute

fscan.next() {
if (NOT nullable(a)  OR  is_set(f, presence_bit)) {// non-null value

attribute_ptr = position; // set attribute value pointer
position = position + attribute_size;// advance position for next attribute

}
else attribute_ptr = NULL; // null value

}

Get the next value of a variable-length attribute

vscan.next() {
attribute_size = value_offset(v) - value_offset(v-1);// set variable attribute size
if (attribute_size > 0) { // non-null value
attribute_ptr = position; // set attribute value pointer
position = position + attribute_size;// advance position for next attribute
}
else  attribute_ptr = NULL; // null value

}

Get the value of an attribute based on record id

attribute.get_value(a, idx) {
locate_page(idx); // locate page of record
minipage_start = page + page_header.offset (a);// find start of minipage
if (is_fixed_size(a)) {

if (NOT nullable (a)) // non-nullable
attribute_ptr = minipage_start + idx*sizeof(a);// locate value

else if (is_set(a, presence_bit))// nullable but not null
attribute_ptr = minipage_start + #non_null_values_before_idx * attribute_size;

else  attribute_ptr = NULL; // null value
}
else { // variable size value

attribute_size = value_offset(a) != value_offset(a-1);
if (attribute_size >  0 ) // non-null value

attribute_ptr = minipage_start + value_offset(a-1);// variable size value
else attribute_ptr = NULL; // attribute value is null

}
}
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APPENDIX B: SQL CODE OF TPC-H QUERIES

TPC-H Query #1:

select  l_returnflag,  l_linestatus, sum(l_quantity) as sum_qty,  sum(l_extendedprice) as sum_base_price,
 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,  avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,  count(*) as count_order

from lineitem
where l_shipdate <= “1998-12-01” - 116 day
group by l_returnflag, l_linestatus
order by l_returnflag, l_linestatus

TPC-H Query #6:

select sum(l_extendedprice *  l_discount) as revenue
from lineitem
where  l_shipdate >= “1997-01-01”

and l_shipdate < “1997-01-01” + 1 year
and l_discount between 0.05 - 0.01 and 0.05 + 0.01
and l_quantity < 24

TPC-H Query #12:

select  l_shipmode,
sum (case when o_orderpriority = “1-URGENT”   or o_orderpriority = “2-HIGH”

then 1 else 0 end) as high_line_count,
sum (case when o_orderpriority <> “1-URGENT”  and o_orderpriority <> “2-HIGH”

then 1 else 0 end) as low_line_count
from orders, lineitem
where  o_orderkey = l_orderkey

and l_shipmode in (“SHIP”, “RAIL”)
and l_commitdate < l_receiptdate
and l_shipdate < l_commitdate
and l_receiptdate >= “1994-01-01”
 and l_receiptdate < “1994-01-01” + 1 year

group by l_shipmode
order by l_shipmode

TPC-H Query #14:

select  100.00 * sum (case when p_type like “PROMO%”
then l_extendedprice * (1 - l_discount)
else 0  end) / sum(l_extendedprice * (1 - l_discount)) 

as promo_revenue
from lineitem, part
where l_partkey = p_partkey

and l_shipdate >= “1997-09-01”
and l_shipdate < “1997-09-01” + 1 month




