
Managed Communication and Consistency
for Fast Data-Parallel Iterative Analytics

Jinliang Wei Wei Dai Aurick Qiao Qirong Ho? Henggang Cui
Gregory R. Ganger Phillip B. Gibbons† Garth A. Gibson Eric P. Xing

Carnegie Mellon University, ?Institute for Infocomm Research, A*STAR, †Intel Labs

Abstract
At the core of Machine Learning (ML) analytics is often
an expert-suggested model, whose parameters are refined by
iteratively processing a training dataset until convergence.
The completion time (i.e. convergence time) and quality of
the learned model not only depends on the rate at which
the refinements are generated but also the quality of each
refinement. While data-parallel ML applications often em-
ploy a loose consistency model when updating shared model
parameters to maximize parallelism, the accumulated error
may seriously impact the quality of refinements and thus de-
lay completion time, a problem that usually gets worse with
scale. Although more immediate propagation of updates re-
duces the accumulated error, this strategy is limited by phys-
ical network bandwidth. Additionally, the performance of
the widely used stochastic gradient descent (SGD) algorithm
is sensitive to step size. Simply increasing communication
often fails to bring improvement without tuning step size
accordingly and tedious hand tuning is usually needed to
achieve optimal performance.

This paper presents Bösen, a system that maximizes
the network communication efficiency under a given inter-
machine network bandwidth budget to minimize parallel
error, while ensuring theoretical convergence guarantees
for large-scale data-parallel ML applications. Furthermore,
Bösen prioritizes messages most significant to algorithm
convergence, further enhancing algorithm convergence. Fi-
nally, Bösen is the first distributed implementation of the
recently presented adaptive revision algorithm, which pro-
vides orders of magnitude improvement over a carefully
tuned fixed schedule of step size refinements for some SGD

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
owner/author(s).
SoCC ’15, August 27 - 29, 2015, Kohala Coast, HI, USA
ACM 978-1-4503-3651-2/15/08.
http://dx.doi.org/10.1145/2806777.2806778

algorithms. Experiments on two clusters with up to 1024
cores show that our mechanism significantly improves upon
static communication schedules.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Client/server, Distributed applications, Distributed
databases; D.4.4 [Communications Management]: Net-
work communication; D.4.7 [Organization and Design]:
Batch processing systems, Distributed systems; G.1.6 [Op-
timization]: Gradient methods

1. Introduction
Machine learning (ML) analytics are an increasingly impor-
tant cloud workload. At the core of many important ML ana-
lytics is an expert-suggested model, whose parameters must
be refined starting from an initial guess. For example, deep
learning applications refine their inter-layer weight matrices
to achieve higher prediction accuracy for classification and
regression problems; topic models refine the word composi-
tion and weights in each global topic to better summarize
a text corpus; sparse coding or matrix factorization mod-
els refine their factor matrices to better de-noise or recon-
struct the original input matrix. The parameter refinement is
performed by algorithms that repeatedly/iteratively compute
updates from many data samples, and push the model pa-
rameters towards an optimum value. When the parameters
are close enough to an optimum, the algorithm is stopped
and is said to have converged—therefore such algorithms are
called iterative-convergent.

Some of these iterative-convergent algorithms are well-
known, because they have been applied to a wide variety of
ML models. Examples include stochastic gradient descent
(SGD) with applications in deep learning [15, 36], coor-
dinate descent with applications in regression [7, 14], and
Markov chain Monte Carlo sampling with applications in
topic modeling [18, 20]. Even when the size of the data
or model is not in the terabytes, the computational cost of
these applications can still be significant enough to inspire
programmers to parallelize the application over a cluster of
machines (e.g., in the cloud). Data-parallelism is one com-
mon parallelization scheme, where the data samples are par-

titioned across machines, which all have shared access to the
model parameters. In each data-parallel iteration, every ma-
chine computes a “sub-update” on its data subset (in parallel
with other machines), following which the sub-updates are
aggregated and applied to the parameters.

In the ML literature, it is often the case that a data-parallel
algorithm is executed in a Bulk Synchronous Parallel (BSP)
fashion, where computation uses local model copies that are
synchronized only at the end of each iteration and the next it-
eration may not start until all machines have received up-to-
date model parameters. However, BSP-style execution suf-
fers from overheads due to the synchronization barriers sep-
arating iterations [10, 21]; therefore, asynchronous systems
have been proposed, in which machines can enter the next
iteration before receiving the fully-updated model parame-
ters [3, 8, 13]. Sometimes these systems show faster conver-
gence times than BSP-style implementations, though they
no longer enjoy the assurance of formal convergence guar-
antees.

One exception is systems that satisfy the Bounded Stal-
eness consistency model, also called Bounded Delay [24]
or Stale Synchronous [21], which allows computations to
use stale model parameters (to reduce synchronization over-
heads), but strictly upper-bounds the number of missing iter-
ations, restoring formal convergence guarantees [21]. While
using (possibly stale) local model parameters improves com-
putation throughput (number of data samples processed per
second), it degrades algorithm throughput (convergence per
data sample processed) due to accumulated parallel errors
(from missing updates). There is theoretical and empirical
evidence showing that fresher parameters lead to higher al-
gorithm throughput [12].

Another challenge in applying ML algorithms, originally
designed for sequential settings, to distributed systems is
tuning the parameters in the algorithm itself (distinct from
model parameters tuning). For example, stochastic gradient
descent (SGD), which has been applied to a wide range
of large-scale data-parallel ML applications such as ads
click through rate (CTR) prediction [29], deep neural net-
works [13], and collaborative filtering [22], is highly sen-
sitive to the step size that modulates the gradient magni-
tude. Many existing distributed ML systems require manual
tuning of step size by the users [26], while some provides
heuristic tuning mechanism [15]. An effective large-scale
ML system would need to address these important algorith-
mic challenges.

This paper presents Bösen, a system designed to achieve
maximal network communication efficiency by incorporat-
ing knowledge of network bandwidth. Through bandwidth
management, Bösen fully utilizes, but never exceeds, a pre-
specified amount of network bandwidth when communi-
cating ML sub-updates and up-to-date model parameters.
Bösen also satisfies bounded staleness model’s requirements
and thus inherits its formal convergence guarantees. More-

over, our solution maximizes communication efficiency by
prioritizing network bandwidth for messages most signifi-
cant for algorithm progress, which further enhances algo-
rithm throughput for a fixed network bandwidth budget. We
demonstrate the effectiveness of managed communication
on three applications: Matrix Factorization with SGD, Topic
Modeling (LDA) with Gibbs sampling, and Multiclass Lo-
gistic Regression with SGD on an up to 1024 core compute
cluster.

To our knowledge, Bösen is the first distributed imple-
mentation of Adaptive Revision [28], a principled step-size
tuning algorithm tolerant of delays in distributed systems.
Adaptive Revision achieves theoretical convergence guaran-
tees by adaptively adjusting the step size to account for er-
rors caused by delayed updates. Our experiments on Ma-
trix Factorization show orders of magnitude of improve-
ments in the number of iterations needed to achieve conver-
gence, compared to the best hand-tuned fixed-schedule step
size. Even with a delay-tolerant algorithm, Bösen’s managed
communication still improves the performance of SGD with
Adaptive Revision.

2. Background
2.1 Data Parallelism
Although ML programs come in many forms, such as topic
models, deep neural networks, and sparse coding (to name
just a few), almost all seek a set of parameters (typically a
vector or matrix) to a global model A that best summarizes
or explains the input data D as measured by an explicit ob-
jective function such as likelihood or reconstruction loss [6].
Such problems are usually solved by iterative-convergent al-
gorithms, many of which can be abstracted as the following
additive form:

A(t) = A(t�1) +D(A(t�1),D), (1)

where, A(t) is the state of the model parameters at iteration t,
and D is all input data, and the update function D() computes
the model updates from data, which are added to form the
model state of the next iteration. This operation repeats itself
until A stops changing, i.e., converges — known as the fixed-
point (or attraction) property in optimization.

Furthermore, ML programs often assume that the data
D are independent and identically distributed (i.i.d); that
is to say, the contribution of each datum Di to the esti-
mate of model parameter A is independent of other data
D j

1. This in turn implies the validity of a data-parallel
scheme within each iteration of the iterative convergent pro-
gram that computes A(t), where data D is split over different
threads and worker machines, in order to compute the update
D(A(t�1),D) based on the globally-shared model state from
the previous iteration, A(t�1). Because D() depends on the

1 More precisely, each D is conditionally independent of other D j given
knowledge of the true A.

latest value of A, workers must communicate updates D() to
each other.

It is well-established that fresher model parameters (A or
D) improves the per-iteration progress of ML algorithms,
i.e. each round of update equations makes more progress
towards the final solution [36].

Mathematically, when an ML program is executed in a
perfectly synchronized data-parallel fashion on P workers,
the iterative-convergent Eq. 1 becomes

A(t) = A(t�1) +ÂP
p=1 D(A(t�1),Dp), (2)

where Dp is the data partition allocated to worker p (distinct
from Di, which means the i-th single data point).

In each iteration, a subset of data Dp is used for comput-
ing D() on worker p; Dp is often called a “mini-batch” in the
ML literature, and can be as small as one data sample Di.
D may include a “step size” common in gradient descent al-
gorithms which requires manual or automatic tuning for the
algorithm to work well.

2.2 Parameter Server and Synchronization Schemes
A Parameter Server (PS) is essentially a distributed shared
memory system that enables clients to easily share access
to the global model parameters via a key-value interface,
in a logically bipartite server-client architecture for storing
model parameter A and data D . Physically, multiple server
machines, or co-location of server/client machines can be
used to facilitate greater memory and network bandwidth.
Typically, a large number of clients (i.e., workers) are de-
ployed, each storing a subset of the big data. A data parallel
ML program can be easily implemented on the PS architec-
ture, by letting the execution of the update D() take place
only on each worker over data subsets therein, and the ap-
plication of the updates to model parameters (e.g. addition)
take place on the server. This strategy has been widely used
in a variety of specialized applications ([3, 8, 13]) as well as
general-purpose systems ([10, 24, 31]).

A major utility of the PS system is to provide a vehicle
to run data-parallel programs using stale parameters Ãp ⇡ A
that reside in each client p, thereby trading off expensive
network communication (between client-server) with cheap
CPU-memory communication (of cached parameters within
a client) via different synchronization mechanisms. For ex-
ample, under bulk synchronous parallelization (BSP), Ãp
is made precisely equal to A(t�1), so that Eq. 2 is faith-
fully executed and hence yields high-quality results. How-
ever, BSP suffers from the well-studied stragglers prob-
lem [4, 5, 9, 10], in which the synchronization barrier be-
tween iterations means that the computation proceeds only
at the rate of the slowest worker in each iteration. Another
example is total asynchronous parallelization (TAP) where
Ãp is whatever instantaneous state in the server results from
the aggregation of out-of-sync (hence inconsistent) updates
from different workers. Although highly efficient and some-

times accurate, TAP does not enjoy a theoretical guarantee
and can diverge.

In this paper, we explore a recently proposed middle
ground between BSP and TAP, namely bounded staleness
parallelization [21, 24], in which each worker maintains a
possibly stale local copy of A, where the degree of staleness
is bounded by a target staleness threshold S, i.e., no worker
is allowed to be more than S clock units ahead of the slowest
worker. This idea has been shown experimentally to dramat-
ically improve times to convergence [10, 24], and theoretical
analysis on convergence rates and error bounds is beginning
to be reported for some cases [12, 21].

Although ML algorithms may tolerate bounded staleness
and still achieve correct convergence, the algorithm perfor-
mance (i.e., convergence per data sample processed) may
suffer from staleness, resulting in suboptimal performance.
Previous implementations of bounded staleness often bun-
dled communication with the staleness threshold and syn-
chronization barriers or relied on explicit application con-
trol of communication. Our goal is to implement a system
that supports sophisticated yet effective consistency models
and resource-driven communication, while providing a PS
API that abstracts these mechanisms away from the user.
For ease of reference in the rest of the paper, we call this
system “Bösen”, in honor of one author’s favorite musical
instrument.

3. The Bösen PS Architecture
Bösen is a parameter server with a ML-consistent, bounded-
staleness parallel scheme and bandwidth-managed commu-
nication mechanisms. It realizes bounded staleness consis-
tency, which offers theoretical guarantees for iterative con-
vergent ML programs (unlike TAP), while enjoying high it-
eration throughput that is better than BSP and close to TAP
systems. Additionally, Bösen transmits model updates and
up-to-date model parameters proactively without exceeding
a bandwidth limit, while making better use of the bandwidth
by scheduling the bandwidth budget based on the contribu-
tion of the messages to algorithm progress — thus improving
per-data-sample convergence compared to an agnostic com-
munication strategy.

3.1 API and Bounded Staleness Consistency
Bösen PS consists of a client library and parameter server
partitions (Figure 1); the former provides the Application
Programming Interface (API) for reading/updating model
parameters, and the latter stores and maintains the model
A. In terms of usage, Bösen closely follows other key-value
stores: once a ML program process is linked against the
client library, any thread in that process may read/update
model parameters concurrently. The user runs a Bösen ML
program by invoking as many server partitions and ML ap-
plication compute processes (which use the client library)
as needed, across multiple machines.

Figure 1: Parameter Server Architecture

Get(key)

Read a parameter indexed by key.
GetRow(row key)

Read a row of parameters indexed by row key.
A row consists of a static group of parameters.
Inc(key, delta)

Increment the parameter key by delta.
IncRow(row key, deltas)

Increment the row row key by deltas.
Clock()

Signal end of iteration.

Table 1: Bösen Client API

3.1.1 Bösen Client API
Bösen’s API abstracts consistency management and net-
working operations away from application, and presents a
simple key-value interface (Table 1). Get() is used to read
parameters and Inc() is used to increment the parameter
by some delta. To maintain consistency, the client appli-
cation signals the end of a unit of work via Clock(). In
order to exploit locality in ML applications and thus amor-
tize the overhead of operating on concurrent data structures
and network messaging, Bösen allows applications to stat-
ically partition the parameters into batches called rows – a
row is a set of parameters that are usually accessed together.
A row can also be the unit of communication between client
and server: RowGet() is provided to read a row by its key,
and RowInc() applies a set of deltas to multiple elements
in a row. Bösen supports user-defined “stored procedures”
to be executed on each server—these can be used to alter the
default increment behavior of Inc() and RowInc() (see
Sec 3.4).

3.1.2 Bounded Staleness Consistency
The Bösen client library and server partitions have a con-
sistency manager, which is responsible for enforcing con-

clock0 1 2 3 4 5

staleness threshold S = 3

worker 2

worker 1

worker 3

worker 4

current clock tick

guaranteed visible;
bounded staleness

worker 2 blocked until
worker 1 reaches clock 2

worker 5

visible; updating local
cache
likely visible; end of
clock communication
not visible; not yet
communicated

Figure 2: Exemplar execution under bounded staleness (without
communication management). The system consists of 5 workers,
with staleness threshold S = 3; “iteration t” refers to iteration start-
ing from t. Worker 2 is currently running in iteration 4 and thus
according to bounded staleness, it is guaranteed to observe all up-
dates generated before (exclusively) iteration 4� 3 = 1 (black). It
may also observe local updates (green) as updates can be option-
ally applied to local parameter cache. Updates that are generated in
completed iterations (i.e. clock ticks) by other workers (blue) are
highly likely visible as they are propagated at the end of each clock.
Updates generated in incomplete iterations (white) are not visible
as they are not yet communicated. Such updates could be made vis-
ible under managed communication depending on the bandwidth
budget.

sistency requirements on the local parameter image Ã, thus
ensuring correct ML program execution even under worst-
case delays (whether computation or communication). The
ML program’s tolerance to stale parameters is specified as
the staleness threshold, a non-negative integer supplied by
user.

The consistency manager works by blocking client pro-
cess worker threads when reading parameters, until the local
model image Ã has been updated to meet the consistency
requirements. Bounded staleness puts constraints on param-
eter age; Bösen will block if Ã is older than the worker’s cur-
rent iteration by S or more (i.e., CurrentIteration(worker)�
Age(Ã)� S), where S is the user-defined staleness threshold.
Ã’s age is defined as the oldest iteration such that some up-
dates generated within that iteration are missing from Ã.

The bounded staleness model enjoys BSP-like ML exe-
cution guarantees, theoretically explored in [12, 21], which
are absent from total asynchronous parallelization (TAP).
Bösen’s bounded staleness consistency is closest to ESSP [12].
Similar to ESSP, Bösen propagates updates upon comple-
tion of each iteration even though they are not required yet.
With eager end-of-clock communication, parameters read
typically have staleness 1 regardless of the staleness thresh-
old as the end-of-clock communication typically completes
within 1 iteration. Managed communication allows updates
to be propagated even earlier, before completing an itera-
tion. Our experiments used a staleness threshold of 2 unless
otherwise mentioned, which has been proved to be effective
in [10]. An exemplar execution of 5 workers under Bounded
Staleness is depicted in Fig 2.

Bulk Synchronous Parallel (BSP). When the staleness
threshold is set to 0, bounded staleness consistency reduces
to the classic BSP model. The BSP model is a gold standard
for correct ML program execution; it requires all updates
computed in previous iterations to be made visible before
the current iteration starts. A conventional BSP implemen-
tation may use a global synchronization barrier; Bösen’s
consistency manager achieves the same result by requiring
calls to PS.Get() and PS.GetRow() at iteration t to re-
flect all updates, made by any thread, before its (t � 1)-th
call to PS.Clock() — otherwise, the call to PS.Get()
or PS.GetRow() blocks until the required updates are re-
ceived.

3.2 System Architecture
This section describes Bösen’s system architecture and fo-
cuses on its realization of the bounded staleness consistency.
The system described in this section sufficiently ensures
the consistency guarantees without communication manage-
ment. Bounded staleness consistency without communica-
tion management serves as our baseline in evaluation and is
referred to as “Bounded Staleness” in Section 5.

3.2.1 Client Library
The client library provides access to the model parameters
A on the server partitions, and also caches elements of the
model A for faster access, while cooperating with server
processes in order to maintain consistency guarantees and
manage bandwidth. This is done through three components:
(1) a parameter cache that caches a partial or complete im-
age of the model, Ã, at the client, in order to serve read re-
quests made by compute threads; (2) an update buffer that
buffers updates applied by compute threads via PS.Inc()
and PS.RowInc(); (3) a group of client communication
threads (distinct from compute threads) that perform syn-
chronization of the local model cache and buffered updates
with the servers’ master copies, while the compute threads
executes the application algorithm.

The parameters cached at a client are hash partitioned
among the client communication threads. Each client com-
munication thread needs to access only its own parameter
partition when reading the computed updates and applying
up-to-date parameter values to minimize lock contention.
The client parameter cache and update buffer allow concur-
rent reads and writes from worker threads, and similar to
[11], the cache and buffer use static data structures, and pre-
allocate memory for repeatedly accessed parameters to min-
imize the overhead of maintaining a concurrent hash table.

In each compute process, locks are needed for shared
access to parameters and buffered update entries. In order to
amortize the runtime cost of concurrency control, we allow
applications to define parameter key ranges we call rows (as
noted above). Parameters in the same row share one lock for
accesses to their parameter caches, and one lock for accesses
to their update buffers.

When serving read requests (Get() and RowGet())
from worker threads, the client parameter cache is searched
first, and a read request is sent to the server processes only
if either the requested parameter is not in the cache or
the cached parameter’s staleness is not within the staleness
threshold. The reading compute thread blocks until the pa-
rameter’s staleness is within the threshold. When writes are
invoked, updates are inserted into the update buffer, and,
optionally, the client’s own parameter cache is also updated.

Once all compute threads in a client process have called
PS.Clock() to signal the end of a unit of work (e.g. an
iteration), the client communication threads release buffered
model updates to servers. Note that buffered updates may be
released sooner under managed communication if the system
detects spare network bandwidth to use.

3.2.2 Server Partitions
The master copy of the model’s parameters, A, is hash par-
titioned, and each partition is assigned to one server thread.
The server threads may be distributed across multiple server
processes and physical machines. As model updates are re-
ceived from client processes, the addressed server thread up-
dates the master copy of its model partition. When a client
read request is received, the corresponding server thread reg-
isters a callback for that request; once a server thread has
applied all updates from all clients for a given unit of work,
it walks through its callbacks and sends up-to-date model
parameter values.

3.2.3 Ensuring Bounded Staleness
Bounded staleness is ensured by coordination of clients and
server partitions using clock messages. On an individual
client, as soon as all updates generated before and in itera-
tion t are sent to server partitions and no more updates before
or in that iteration can be generated (because all compute
threads have advanced beyond that iteration), the client’s
communication threads send an client clock message to each
server partition, indicating “all updates generated before and
in iteration t by this client have been made visible to this
server partition” (assuming reliable ordered message deliv-
ery).

After a server partition sends out all dirty parameters
modified in iteration t, it sends an server clock message to
each client communication thread, indicating ‘all updates
generated before and in iteration t in the parameter partition
have been made visible to this client”. Upon receiving such a
clock message, the client communication thread updates the
age of the corresponding parameters and permits the relevant
blocked compute threads to proceed on reads if any.

3.2.4 Fault Tolerance
Bösen provides fault tolerance by checkpointing the server
model partitions; in the event of failure, the entire system
is restarted from the last checkpoint. A valid checkpoint
contains the model state strictly right after iteration t —

the model state includes all model updates generated before
and during iteration t, and excludes all updates after the t-
th PS.Clock() call by any worker thread. With bounded
staleness, clients may asynchronously enter new iterations
and begin sending updates; thus, whenever a checkpoint-
ing clock event is reached, each server model partition will
copy-on-write protect the checkpoint’s parameter values un-
til that checkpoint has been successfully copied externally.
Since taking a checkpoint can be slow, a checkpoint will
not be made every iteration, or even every few iterations. A
good estimate of the amount of time between taking check-
points is

p
2TsTf /N [34], where Ts is the mean time to save

a checkpoint, there are N machines involved and Tf is the
mean time to failure (MTTF) of a machine, typically esti-
mated as the inverse of the average fraction of machines that
fail each year.

As Bösen targets offline batch training, restarting the sys-
tem (disrupting its availability) is not critical. With tens or
hundreds of machines, such training tasks typically complete
in hours or tens of hours. Considering the MTTF of modern
hardware, it is not necessary to create many checkpoints and
the probability of restarting is low. In contrast, a replication-
based fault tolerance mechanism inevitably costs 2⇥ or even
more memory on storing the replicas and additional network
bandwidth for synchronizing them.

3.3 Managed Communication
Bösen’s client library and server partitions feature a commu-
nication manager whose purpose is to improve ML progress
per iteration through careful use of network bandwidth in
communicating model updates/parameters. Communication
management is complementary to consistency management,
the latter prevents worst-case behavior from breaking ML
consistency (correctness), while the former improves con-
vergence time (speed).

The communication manager has two objectives: (1)
communicate as many updates per second as possible (full
utilization of the bandwidth budget) without overusing the
network (which could delay update delivery and increase
message processing computation overhead); and (2) priori-
tize more important model updates to improve ML progress
per iteration. The first objective is achieved via bandwidth-
driven communication with rate limiting, while the second
is achieved by choosing a proper prioritization strategy.

3.3.1 Bandwidth-Driven Communication
Similar to the leaky bucket model, the Bösen communica-
tion manager models the network as a bucket that leaks bytes
at certain rate and the leaky rate corresponds to the node’s
bandwidth consumption. Thus the leaky rate is set to the
given bandwidth budget to constrain the average bandwidth
consumption. In order to fully utilize the given bandwidth
budget, the communication manager permits communica-
tion of updates or updated parameters whenever the bucket
becomes empty (and thus communication may happen be-

fore the completion of an iteration). The communication
manager keeps track of the number of bytes sent last time
to monitor the state of the bucket. In our prototype imple-
mentation, the communication threads periodically query the
communication manager for opportunities to communicate.
The size of each send is limited by the size of the bucket
(referred to as “queue size”) to control its burstiness.
Coping with network fluctuations: In real cloud data cen-
ters with multiple users, the available network bandwidth
may fluctuate and fail to live up to the bandwidth budget B.
Hence, the Bösen communication manager regularly checks
to see if the network is overused by monitoring how many
messages were sent without acknowledgement in a recent
time window (i.e. message non-delivery). If too many mes-
sages fail to be acknowledged, the communication manager
assumes that the network is overused, and waits until the
window becomes clear before permitting new messages to
be sent.
Update quantization: Since ML applications are error tol-
erant, Bösen applications have the option to use 16-bit float-
ing point numbers for communication, reducing bandwidth
consumption in half compared to 32-bit floats. The lost infor-
mation often has negligible impact on progress per iteration.

3.3.2 Update Prioritization
Bösen spends available bandwidth on communicating infor-
mation that contributes the most to convergence. For ex-
ample, gradient-based algorithms (including Logistic Re-
gression) are iterative-convergent procedures in which the
fastest-changing parameters are often the largest contribu-
tors to solution quality — in this case, we prioritize com-
munication of fast-changing parameters, with the largest-
magnitude changes going out first. When there is opportu-
nity for communication due to spare bandwidth, the server
or client communication threads pick a subset of parameter
values or updates to send. The prioritization strategy deter-
mines which subset is picked at each communication event.
By picking the right subset to send, the prioritization strat-
egy alters the communication frequency of different parame-
ters, effectively allocating more network bandwidth to more
important updates. It should be noted that the end-of-clock
communication needs to send all up-to-date parameters or
updates older than a certain clock number to ensure the con-
sistency guarantees.

Bösen’s bandwidth manager supports multiple prioriti-
zation strategies. The simplest possible strategies are Ran-
domized, where communications threads send out randomly-
chosen rows and Round-Robin, where communication
threads repeatedly walk through the rows following a fixed
order, and sends out all non-zero updates or updated pa-
rameters encountered. These strategies are baselines; better
strategies prioritize according to significance to convergence
progress. We study the following two better strategies.
Absolute Magnitude prioritization: Updates/parameters
are sorted by their accumulated change in the buffer, |d |.

Relative Magnitude prioritization: Same as absolute mag-
nitude, but the sorting criteria is |d/a|, i.e. the accumulated
change normalized by the current parameter value, a. For
some ML problems, relative change |d/a| may be a better in-
dicator of progress than absolute change |d |. In cases where
a = 0 or is not in the client parameter cache, we fall back to
absolute magnitude prioritization.

3.4 Adaptive Step Size Tuning
Many data-parallel ML applications use the stochastic gra-
dient descent (SGD) algorithm, whose updates are gradients
multiplied by a scaling factor, referred to as “step size” and
typically denoted as h . The update equation is thus:

A(t) = A(t�1) +ÂP
p=1 h(t�1)

p —(A(t�1),Dp). (3)

The SGD algorithm performance is very sensitive to the
step size used. Existing distributed SGD applications (i.e.,
GraphLab’s SGD MF, MLlib’s SGD LR, etc.) apply the
same step size for all dimensions and decay the step size
each iteration according to a fixed schedule. Achieving ideal
algorithm performance requires a great amount of tuning to
find an optimal initial step size. There exist principled strate-
gies for adaptively adjusting the stochastic gradient step size,
reducing sensitivity to the initial step size h(1) and achieving
good algorithm performance using any initial step size from
a reasonable range. The current state of the art is Adaptive
Revision (i.e. AdaRevision) [28], which computes the step
size for each model dimension and takes into account both
timeliness and magnitude of the update.

AdaRevision differs from regular SGD in that it main-
tains an accumulated sum of historical gradients for each
parameter; a gradient atomically updates the parameter and
the accumulated sum. When a parameter is read out of the
parameter store for computation, a snapshot of the accumu-
lated sum is taken and returned along with the parameter
value. A client will compute a gradient using that parameter,
and then apply it back to the parameter store — when this
happens, the snapshot associated with that parameter is also
supplied. The difference between the snapshot value and the
latest parameter value indicates the timeliness of the update,
and is used to adjust the step size: the longer the updates
are delayed, the smaller the step size, so that long-delayed
gradients do not jeopardize model quality. Our implemen-
tation stores the accumulated sum of historical gradients on
the server partitions, and thus the updates are only applied
on the server, while the client parameter cache is made read-
only to the compute threads.

Whereas a naive implementation of AdaRevision might
let clients fetch the accumulated sum (which is generally
not needed for computing gradients) along with the param-
eters from the server (and send the sum back along with
the computed gradients), B̈osen instead supports parame-
ter versioning to reduce the communication overhead. The
server maintains a version number for each parameter row,

 1
e+

08
 1

e+
09

 1
e+

10

 0 10 20 30 40 50 60

tr
ai

ni
ng

 lo
ss

iterations

BStale, AdaRev, Eta=0.08
BStale, AdaRev, Eta=0.1
BStale, AdaRev, Eta=0.4

BStale, MultiDecay, Eta=6e-5
BStale, MultiDecay, Eta=1.2e-5

GraphLab, Sync, Eta=1e-5

Figure 3: Compare Bösen’s SGD MF w/ and w/o adaptive revision
with GraphLab SGD MF. Eta denotes the initial step size. Multi-
plicative decay (MultiDecay) used its optimal initial step size.

which is incremented every time the row is updated. The ver-
sion number is sent to clients along with the corresponding
parameters, to be stored in the client’s parameter cache. The
update computed (by a worker) for parameter i is tagged with
the version number of parameter i in the parameter cache.
The updates tagged with the same version number are ag-
gregated via addition as usual, but updates with different ver-
sion numbers are stored separately. The use of version num-
ber to indicate timeliness of writes is similar to optimistic
concurrency control.

The AdaRevision algorithm is implemented as a user-
defined stored procedure (UDF) on the server. The user-
defined stored procedure contains a set of user-implemented
functions that are invoked at various events to control the
server’s behavior. Most notably, the UDF takes snapshots
of the accumulated sum of the historical gradients and in-
crements the version number upon sending parameters to
clients and computes the step size when applying gradients.
In order to bound the overall memory usage, the UDF im-
poses an upper limit on the number of snapshots that can be
kept. Bandwidth-triggered communication is canceled upon
exceeding this limit. The snapshots are freed when no client
cache still contains this version of the parameter

We demonstrate the importance of step size tuning and
effectiveness of adaptive revision using the SGD MF ap-
plication on the Netflix dataset, with rank = 50, using one
node in the PRObE Susitna cluster (see Sec 5). As shown in
Fig. 3, we compared adaptive revision (AdaRev) with Multi-
plicative Decay (MultiDecay) using various initial step sizes.
We also ran GraphLab’s SGD MF using its synchronous en-
gine (the asynchronous engine converges slower per itera-
tion) with a range of initial step sizes from 1e� 4 to 1e� 6
and showed its best convergence result.

Firstly, we observed that multiplicative decay is sensitive
to the initial step size. Changing the initial step size from
6e�5 to 1.2e�5 reduces the number of iterations needed to
reach training loss of 1e8 by more than 3⇥. However, con-
vergence with adaptive revision is much more robust and the

difference between initial step size of 0.08 and 0.4 is negli-
gible. Secondly, we observed that SGD MF under adaptive
revision converges 2⇥ faster than using multiplicative decay
with the optimal initial step size that our manual parameter
tuning could find. Even though GraphLab also applies mul-
tiplicative decay to its step size, it does not converge well.

The adaptive revision algorithm becomes more effective
when scaling the SGD application as it adapts the step size
to tolerate the communication delay. An experiment (not
shown) using 8 Susitna nodes shows that adaptive revision
reduces the number of iterations to convergence by 10⇥.

4. ML program instances
We study how bandwidth management improves the conver-
gence time and final solution quality for three commonly-
used data-parallel ML programs: matrix factorization, multi-
class logistic regression, and topic modeling.

Matrix Factorization (MF) MF is commonly used in rec-
ommender systems, such as recommending movies to users
on Netflix. Given a matrix D2RM⇥N which is partially filled
with observed ratings from M users on N movies, MF fac-
torizes D into two factor matrices L and R such that their
product approximate the ratings: D ⇡ LRT . Matrix L is M-
by-r and matrix R is N-by-r where r << min(M,N) is the
rank which determines the model size (along with M and N).
We partition observations D to P worker threads and solve
MF via stochastic gradient descent (SGD) using adaptive re-
vision. All MF experiments in Section 5 used adaptive re-
vision, and thus the updates (i.e. gradients) are not directly
added to the parameters. Instead they are scaled on servers
by the step size computed from AdaRevision UDFs.

Multiclass Logistic Regression (MLR) Logistic Regres-
sion is a classical method used in large-scale classifica-
tion [35], natural language processing [16], and ad click-
through-rate prediction [29] among others. Multiclass Lo-
gistic Regression generalizes LR to multi-way classification,
seen in large-scale text classification [25], and the ImageNet
challenge involving 1000 image categories (i.e. each labeled
images comes from 1 out of 1000 classes) where MLR is
employed as the final classification layer [23]. For each ob-
servation, MLR produces a categorical distribution over the
label classes. The model size is J ⇥ d where d is the input
dimension and J is the number of output labels. We solve
MLR using regular stochastic gradient descent (SGD). In
our experiments, MLR with regular SGD converges within
50 iterations.

Topic Modeling (LDA) Topic Modeling (Latent Dirichlet
Allocation) is an unsupervised method to uncover hidden
semantics (“topics”) from a group of documents, each rep-
resented as a multi-set of tokens (bag-of-words). In LDA
each token wi j (j-th token in the i-th document) is assigned
with a latent topic zi j from totally K topics. We use Gibbs

sampling to infer the topic assignments zi j. 2 The sampling
step involves three sets of parameters, known as “sufficient
statistics”: (1) document-topic vector qi 2 RK where qik the
number of topic assignments within document i to topic
k = 1...K; (2) word-topic vector fw 2 RK where fwk is the
number of topic assignments to topic k = 1, ...,K for word
(vocabulary) w across all documents; (3) f̃ 2 RK where
f̃k =ÂW

w=1 fwk is the number of tokens in the corpus assigned
to topic k. The corpus (wi j,zi j) is partitioned to worker nodes
(i.e each node has a set of documents), and qi is computed
on-the-fly before sampling tokens in document i. fw and f̃
are stored as rows in PS.

5. Evaluation
We evaluated Bösen using the above ML applications.
Cluster setup: Most of our experiments were conducted on
PRObE Nome [17] consisting of 200 high-end computers
running Ubuntu 14.04. Our experiments used different num-
ber of computers, varying from 8 to 64. Each machine con-
tains 4 ⇥ quad-core AMD Opteron 8354 CPUs (16 physi-
cal cores per machine) and 32GB of RAM. The machines
are distributed over multiple racks and connected via a 1
Gb Ethernet and 20 Gb Infiniband. A few experiments were
conducted on PRObE Susitna [17]. Each machine contains
4 ⇥ 16-core AMD Opteron 6272 CPUs (64 physical cores
per machine) and 128GB of RAM. The machines are dis-
tributed over two racks and connected to two networks: 1
GbE and 40 GbE. In both clusters, every machine is used
to host Bösen server, client library, and worker threads (i.e.
servers and clients are collocated and evenly distributed).
ML algorithm setup: In all ML applications, we partition
the data samples evenly across the workers. Unless other-
wise noted, we adopted the typical BSP configuration and
configured 1 logical clock tick (i.e. iteration) to be 1 pass
through the worker’s local data partition3. The ML models
and datasets are described in Table 2 and the system and ap-
plication configurations are described in Table 3.
Performance metrics: Our evaluation measures perfor-
mance as the absolute convergence rate on the training ob-
jective value; that is, our goal is to reach convergence to an
estimate of the model parameter A that best represents the
training data (as measured by the training objective value) in
the shortest time.

Bösen is executed under different modes in this section:
Single Node: The ML application is run on one shared-
memory machine linked against one Bösen client library in-
stance with only consistency management. The parameter
cache is updated upon write operations. Thus updates be-

2 Specifically, we use the SparseLDA variant in [33] which is also used in
YahooLDA [3] that we compare with.
3 In one iteration we compute parameter updates using each of the N data
samples in the dataset exactly once, regardless of the number of parallel
workers. With more workers, each worker will touch fewer data samples
per iteration.

Application Dataset Workload Description # Rows Row Size Data Size
SGD MF Netflix 100M ratings 480K users, 18K movies, rank=400 480K 1.6KB 1.3GB

LDA NYTimes 99.5M tokens 300K documents, 100K words 1K topics 100K dynamic 0.5GB
LDA ClueWeb10% 10B tokens 50M webpages, 160K words, 1K topics 160K dynamic 80GB
MLR ImageNet5% 65K samples 1000 classes, 21K of feature dimensions 1K 84KB 5.1GB

Table 2: Descriptions of ML models and datasets. Data size refers to the input data size. Workload refers to the total number of
data samples in the input data set. The overall model size is thus # Rows multiplied by row size.

Application & Dataset Cluster # Machines Per-node Bandwidth Budgets Queue Size Initial Step Size Figures
SGD MF, Netflix Nome 8 200Mbps, 800Mbps 100, 100 0.08 4a, 6a, 7a
LDA, NYTimes Nome 16 320Mbps, 640Mbps, 1280Mbps 5000, 500 N/A 4b, 5, 6b, 8

LDA, ClueWeb10% Nome 64 800Mbps 5000, 500 N/A not shown
MLR, ImageNet5% Susistna 4 100Mbps, 200Mbps, 1600Mbps 1000, 500 1 7b

Table 3: Bösen system and application configurations. The queue size (in number of rows) upper bounds the send size to
control burstiness; the first number denotes that for client and the second for server. LDA experiments used hyper-parameters
a = b = 0.1. Most of our experiments used the 1GbE network on both clusters and only experiments whose bandwidth budget
exceeds 1Gbps used 20Gb infiniband or 40Gb Ethernet.

come immediately visible to compute threads. It represents
a gold standard when applicable. It is denoted as “SN”.
Linear Scalability: It represents an ideal scenario where the
single-node application is scaled out and linear scalability is
achieved. It is denoted as “LS”.
Bounded Staleness: Bösen is executed with only consis-
tency management enabled, communication management is
disabled. It is denoted as “BS”.
Bounded Staleness + Managed Communication: Bösen is
executed with both consistency and communication manage-
ment enabled. It is denoted as “MC-X-P”, where X denotes
the per-node bandwidth budget (in Mbps) and P denotes the
the prioritization strategy: “R” for Randomized, “RR” for
Round-Robin, and “RM” for Relative-Magnitude.
Bounded Staleness + Fine-Grained Clock Tick Size:
Bösen is executed with only consistency management en-
abled, communication management is disabled. In order
to communicate updates and model parameters more fre-
quently, a full pass over data is divided into multiple clock
ticks. It is denoted as “BS-X”, where X is the number of
clock ticks that constitute a data pass.

Unless otherwise mentioned, we used a staleness thresh-
old of 2 and we found that although bounded staleness con-
verges faster than BSP, changing the staleness threshold does
not affect average-case performance as the actual staleness is
usually 1 due to the eager end-of-clock communication (Sec-
tion 3.1). The network waiting time is small enough that a
staleness threshold of 2 ensures no blocking. The bounded
staleness consistency model allows computation to proceed
during synchronization. As long as the workload is balanced
and synchronization completes within one iteration of com-
putation (which is typically the case), the network waiting
time can be completely hidden.

5.1 Communication Management
In this section, we show that the algorithm performance im-
proves with more immediate communication of updates and
model parameters. Moreover, proper bandwidth allocation
based on the importance of the messages may achieve bet-
ter algorithm performance with less bandwidth consump-
tion. To this end, we compared managed communication
with non-managed communication (i.e. only the consis-
tency manager is enabled). The communication management
mechanism was tested with different per-node bandwidth
budgets (see Table 3) and different prioritization strategies
(Section 3.3.2). Each node runs the same number of client
and server communication threads and the bandwidth budget
is evenly divided among them.
Effect of increasing bandwidth budget. Under Bösen’s
communication management, increasing bandwidth budget
permits more immediate communication of model updates
and parameters and thus improves algorithm performance
(higher convergence per iteration) given a fixed prioriti-
zation policy. We demonstrate this effect via the MF and
LDA experiments (Fig. 4). First of all, we observed that
enabling communication management significantly reduces
the number of iterations needed to reach convergence (ob-
jective value of 2e7 for MF and �1.022e9 for LDA). In
MF, communication management with bandwidth budget of
200Mbps reduces the number of iterations needed to reach
2e7 from 64 (BS) to 24 (MC-200-R). In LDA, a bandwidth
budget of 320Mbps reduces the number of iterations to con-
vergence from 740 (BS) to 195 (MC-320-R). Secondly, in-
creasing the bandwidth budget further reduces the number
of iterations needed. For example, in LDA, increasing the
bandwidth budget from 320Mbps (MC-320-R) to 640Mbps
(MC-640-R) reduces the number iterations needed from 195
to 120.

 1
e+

07
 1

e+
08

 1
e+

09

 0 10 20 30 40 50 60

tr
ai

ni
ng

 lo
ss

iterations

BS
MC-200-R

MC-200-RM
MC-800-R

MC-800-RM
MC-800-RR

(a) SGD Matrix Factorization

 0
 100
 200
 300
 400
 500
 600
 700
 800

SN BS
MC-320-R

MC-320-RM
MC-640-R

MC-640-RM
MC-1280-R

ite
ra

tio
ns

(b) Topic Modeling (LDA), number of iterations to convergence

Figure 4: Algorithm performance under managed communication

(a) Model Parameter Communication Frequency CDF
-1.

55
e+

09
-1.

5e
+09

-1.
45

e+
09

-1.
4e

+09

-1.
35

e+
09

-1.
3e

+09

-1.
25

e+
09

-1.
2e

+09

-1.
15

e+
09

-1.
1e

+09

-1.
05

e+
09-1e

+09

 0 500 1000 1500 2000

lo
g-

lik
lih

oo
d

seconds

Bosen, BS
Bosen, MC-640-RM

Yahoo!LDA

(b) Compare Bösen LDA with Yahoo!LDA on NYTimes Data

Figure 5: Topic Modeling with Latent Dirichlet Allocation

Effect of prioritization. As shown Fig. 4b, in the case
of LDA, prioritization by Relative-Magnitude (RM) consis-
tently improves upon Randomization (R) when using the
same amount of bandwidth. For example, with 320Mbps of
per-node bandwidth budget MC-320-RM reduces the num-
ber of iterations needed to reach �1.022e9 from 195 (MC-
320-R) to 145.

Relative-Magnitude prioritization improves upon Ran-
domized prioritization as it differentiates updates and model
parameters based on their significance to algorithm per-
formance. It allocates network bandwidth accordingly and
communicates different updates and model parameters at
different frequencies. Fig. 5a shows the CDFs of com-
munication frequency of LDA’s model parameters, under
different policies. For the NYTimes dataset, we observed
that Relative-Magnitude and Absolute-Magnitude prioritiza-
tion achieve similar effect, where a small subset of keys are
communicated much more frequently. Random and Round-
Robin achieve similar effect where all keys are communi-
cated at roughly the same frequency.4

4 On a skewed dataset, it’s possible to observe a skewed communication
frequency distribution even with Randomized or Round-Robin policy when
some words appear much more frequently than others. Even then the pri-

Prioritization appears to be less effective for MF. The
server UDF computes the step size which scales the gradient,
altering the gradient by up to orders of magnitude. Since the
adaptive revision algorithm tends to [28] apply a larger scal-
ing factor for smaller gradients, the raw gradient magnitude
is a less effective indicator of significance.
Overhead of communication management and absolute
convergence rate. Under managed communication, the in-
creased volume of messages incurs noticeable CPU over-
heads due to sending and receiving the messages and se-
rializing and deserializing the content. Computing impor-
tance also costs CPU cycles. Fig. 6 presents the per-iteration
runtime and network bandwidth consumption corresponding
to Fig. 4. For example, enabling communication manage-
ment with a 200Mbps bandwidth budget (MC-200-R) incurs
a 12% per-iteration runtime overhead.

However, the improved algorithm performance signifi-
cantly outweighs such overheads and results in much higher
absolute convergence rate in wall clock time, as shown in
Fig. 7 (MF and MLR) and Fig. 8a. For example, for MF, we
observed a 2.5⇥ speedup in absolute convergence rate us-

oritization scheme can still alter the communication frequency to prioritize
the most important updates.

 0
 5

 10
 15
 20
 25
 30
 35
 40

BS

MC-200-R

MC-200-RM

MC-800-R

MC-800-RM BS

MC-200-R

MC-200-RM

MC-800-R

MC-800-RM
 0
 100
 200
 300
 400
 500
 600
 700
 800

se
co

nd
s

M
bp

s

compute
wait

bw

(a) SGD Matrix Factorization

 0
 1
 2
 3
 4
 5
 6
 7

BS

MC-320-R

MC-640-R

MC-1280R

MC-320-RM

MC-640-RM BS

MC-320-R

MC-640-R

MC-1280R

MC-320-RM

MC-640-RM
 0

 100

 200

 300

 400

 500

 600

se
co

nd
s

M
bp

s

compute
wait

bw

(b) Topic Modeling (LDA)

Figure 6: Overhead of communication management: average per-iteration time and bandwidth consumption

 1
e+

07
 1

e+
08

 1
e+

09

 0 500 1000 1500 2000 2500

tr
ai

ni
ng

 lo
ss

seconds

BS
MC-200-R

MC-200-RM
MC-800-R

MC-800-RM
MC-800-RR

(a) SGD Matrix Factorization

 0
 2

 4
 6

 8
 1

0
12

 1
4

16

 0 1000 2000 3000 4000 5000 6000 7000 8000

tr
ai

ni
ng

 lo
ss

seconds

LS
BS

MC-100-R
MC-200-R

MC-200-RM
MC-1600-R

(b) Multi-class Logistic Regression

Figure 7: Absolute convergence rate under managed communication

ing bandwidth budget of 800Mbps and Relative-Magnitude
prioritization compared the bounded staleness baseline.
Comparison with Yahoo!LDA. We compare Bösen LDA
with the popular Yahoo!LDA using the NYTimes and 10%
of the ClueWeb data set, using 1GbE and 20 Gb Inifiniband
respectively. The former is plotted in Fig. 5b. Yahoo!LDA
employs a parameter server architecture that’s similar to
Bösen’s, but uses total asynchronous parallelization. The
compute threads of Yahoo!LDA process roughly the same
number of data points as Bösens. Each Yahoo!LDA worker
(node) runs one synchronizing thread that iterates over and
synchronizes all cached parameter in a predefined order. We
observed that Bösen significantly outperformed Yahoo!LDA
on the NYTimes dataset, but converged at similar rate on the
ClueWeb10% data set.

In summary, by making full use of the 800Mbps and
640Mbps bandwidth budget, communication management
with Randomized prioritization improved the time to con-
vergence of the MF and LDA application by 2.5⇥ and 2.8⇥
in wall clock time and 5.3⇥ and 6.1⇥ in number of itera-
tions, compared to a bounded staleness execution. Relative-
Magnitude prioritization further improves the convergence
time of LDA by 25%. Communication management with

bandwidth budget of 200Mbps and Relative-Magnitude pri-
oritization improved the convergence time of MLR by 2.5⇥.

5.2 Comparison with Clock Tick Size Tuning
Another way of reducing parallel error on a BSP or bounded
staleness system is to divide a full data pass into multi-
ple clock ticks to achieve more frequent synchronization,
while properly adjusting the staleness threshold to ensure
the same staleness bound. This approach is similar to mini-
batch size tuning in ML literature. In this section, we com-
pare Bösen’s communication management with application-
level clock tick size tuning via the LDA application and the
result is plotted in Fig 8. For each number of clock ticks per
data pass, we adjust the staleness threshold so all runs share
the same staleness bound of 2 data passes.

Firstly, from Fig. 8b we observe that as the clock tick size
halves, the average bandwidth usage over the first 280 it-
erations doubles but the average time per iteration doesn’t
change significantly. From Fig. 8a, we observe that the
increased communication improves the algorithm perfor-
mance. Although simply tuning clock tick size also improves
algorithm behavior, it doesn’t enjoy the benefit of prioriti-
zation. For example, MC-640-RM used only 63% of the

 0

 500

 1000

 1500

 2000

 2500

 3000

BS BS-2 BS-4 BS-8
MC-320-R

MC-320-RM
MC-640-R

MC-640-RM

se
co

nd
s

(a) time to convergence

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

BS
BS-2BS-4BS-8

MC-320-R

MC-320-RM

MC-640-RM BS
BS-2BS-4BS-8

MC-320-R

MC-320-RM

MC-640-RM
 0

 100

 200

 300

 400

 500

 600

se
co

nd
s

M
bp

s

compute
wait

bw

(b) average per-iteration time and bandwidth consumption

Figure 8: Comparing Bosen with simply tuning clock tick size

bandwidth compared to BS-8 but converged 28% faster. The
difference is due to careful optimization which cannot be
achieved via application-level tuning.

6. Related Work
Existing distributed systems for machine learning can be
broadly divided into two categories: a. special-purpose
solvers for particular categories of ML algorithms, and b.
general-purpose, programmable frameworks and ML li-
braries that encompasses a broad range of ML problems.
Examples of special-purpose systems are Yahoo!LDA [3],
DistBelief [13], ProjectAdam [8]. General-purpose sys-
tems include MLlib [2], Mahout [1], various parameter
server systems [10, 21, 24, 31], graph computation frame-
works [26, 27] and data flow engines [30]. Bösen is an in-
stance of the parameter server family, although the managed
communication mechanism is general and could be applied
to other distributed ML solutions.

In terms of consistency, many distributed ML frame-
works adopt the Bulk Synchronous Parallel (BSP) model
originally developed for parallel simulation [32], such as
MapReduce, Hadoop, Spark, and Pregel. At the other ex-
treme there are fully asynchronous systems, including Ya-
hoo!LDA [3], Project Adam [8], and DistBlief [13]. Dis-
tributed GraphLab [26] supports serializability using two-
phase locking which incurs high overhead. Recently the
bounded staleness consistency model has aroused from the-
oretical results in the ML community and has been exploited
in several parameter-server-based systems [10, 21, 24].

The systems discussed above tie communication to com-
putation. For example, BSP systems communicate at and
only at clock boundaries. Even fully asynchronous systems
like ProjectAdam [8] communicates once for each mini-
batch. PowerGraph [19] communicates upon invocation of
the vertex APIs. Our work decouples communication and
computation and autonomously manages communication
based on available network bandwidth and consistency re-

quirements to take maximal advantage of the network while
reducing application developers’ and users’ burden.

7. Conclusion
While tolerance to bounded staleness reduces communica-
tion and synchronization overheads for distributed machine
learning algorithms and thus improves system throughput,
the accumulated error may, sometimes heavily, harm algo-
rithm performance and result in slower convergence rate.
More frequent communication reduces staleness and parallel
error and thus improves algorithm performance but it is ul-
timately bound by the physical network capacity. This paper
presents a communication management technique to maxi-
mize the communication efficiency of bounded amount of
network bandwidth to improve algorithm performance. Ex-
periments with several ML applications on over 1000 cores
show that our technique significantly improves upon static
communication schedules and demonstrate 2� 3⇥ speedup
relative to a well implemented bounded staleness system.

Our prototype implementation has certain limitations.
While a production system should address these limita-
tions, our evaluation nevertheless demonstrates the impor-
tance of managing network bandwidth. Our implementa-
tion assumes all nodes have the same inbound and outbound
bandwidth and each nodes inbound/outbound bandwidth is
evenly shared among all nodes that it communicates with.
Such assumption is broken in a hierarchical network topol-
ogy typically seen in today’s data centers, leading to under-
utilized network bandwidth. Although update magnitude
serves as a good indicator of update importance for some
applications, there are cases, such as when stored proce-
dures are used, where it may be insufficient. Future research
should look into exploiting more application-level knowl-
edge and actively incorporating server feedbacks to clients.

Acknowledgments
This research is supported in part by Intel as part of the
Intel Science and Technology Center for Cloud Comput-

ing (ISTC-CC), the National Science Foundation under
awards CNS-1042537, CNS-1042543 (PRObE, www.nmc-
probe.org), IIS-1447676 (Big Data), the National Institute of
Health under contract GWAS R01GM087694, and DARPA
under contracts FA87501220324 and FA87501220324 (XDATA).
We also thank the members companies of the PDL Consor-
tium (including Actifio, Avago, EMC, Facebook, Google,
Hewlett-Packard, Hitachi, Huawei, Intel, Microsoft, Ne-
tApp, Oracle, Samsung, Seagate, Symantec, Western Dig-
ital) for their interest, insights, feedback, and support. We
thank Mu Li, Jin Kyu Kim, Aaron Harlap, Xun Zheng and
Zhiting Hu for their suggestions and help with setting up
other third-party systems for comparison. We thank our
shepherd Jinyang Li and the anonymous SoCC reviewers.

References
[1] Apache Mahout. http://mahout.apache.org/.
[2] Apache Spark MLLib. https://spark.apache.org/

mllib/.
[3] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J.

Smola. Scalable inference in latent variable models. In WSDM
’12: Proceedings of the fifth ACM international conference on
Web search and data mining, pages 123–132, New York, NY,
USA, 2012. ACM.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
map-reduce clusters using mantri. In Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–16, Berkeley, CA, USA,
2010. USENIX Association.

[5] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.
Effective straggler mitigation: Attack of the clones. In Pre-
sented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 185–
198, Lombard, IL, 2013. USENIX.

[6] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[7] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel
coordinate descent for l1-regularized loss minimization. In
International Conference on Machine Learning (ICML 2011),
Bellevue, Washington, June 2011.

[8] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep learning
training system. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 571–
582, Broomfield, CO, Oct. 2014. USENIX Association.

[9] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing. Solving the straggler problem with
bounded staleness. In Presented as part of the 14th Workshop
on Hot Topics in Operating Systems, Berkeley, CA, 2013.
USENIX.

[10] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei,
W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and
E. P. Xing. Exploiting bounded staleness to speed up big
data analytics. In 2014 USENIX Annual Technical Conference

(USENIX ATC 14), pages 37–48, Philadelphia, PA, June 2014.
USENIX Association.

[11] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-
Kucharsky, Q. Ho, G. R. Ganger, P. B. Gibbons, G. A. Gibson,
and E. P. Xing. Exploiting iterative-ness for parallel ml com-
putations. In Proceedings of the ACM Symposium on Cloud
Computing, SOCC ’14, pages 5:1–5:14, New York, NY, USA,
2014. ACM.

[12] W. Dai, A. Kumar, J. Wei, Q. Ho, G. A. Gibson, and E. P.
Xing. High-performance distributed ML at scale through pa-
rameter server consistency models. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Jan-
uary 25-30, 2015, Austin, Texas, USA., pages 79–87, 2015.

[13] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker,
K. Yang, and A. Y. Ng. Large scale distributed deep networks.
In Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States., pages 1232–1240,
2012.

[14] J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization
paths for generalized linear models via coordinate descent.
Journal of Statistical Software, 33(1):1–22, 2 2010.

[15] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-
scale matrix factorization with distributed stochastic gradient
descent. In Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
KDD ’11, pages 69–77, New York, NY, USA, 2011. ACM. .

[16] A. Genkin, D. D. Lewis, and D. Madigan. Large-scale
bayesian logistic regression for text categorization. Techno-
metrics, page 2007.

[17] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. Probe:
A thousand-node experimental cluster for computer systems
research. volume 38, June 2013.

[18] W. R. Gilks. Markov chain monte carlo. Wiley Online
Library, 2005.

[19] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natu-
ral graphs. In Presented as part of the 10th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI 12), pages 17–30, Hollywood, CA, 2012. USENIX.

[20] T. L. Griffiths and M. Steyvers. Finding scientific topics.
PNAS, 101(suppl. 1):5228–5235, 2004.

[21] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing. More effec-
tive distributed ml via a stale synchronous parallel parameter
server. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 1223–1231. Curran Associates,
Inc., 2013.

[22] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–
37, Aug. 2009.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,

Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598, Broomfield, CO,
Oct. 2014. USENIX Association.

[25] J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic regres-
sion. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
’09, pages 547–556, New York, NY, USA, 2009. ACM.

[26] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed graphlab: A framework for
machine learning and data mining in the cloud. Proc. VLDB
Endow., 5(8):716–727, Apr. 2012.

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’10, pages 135–146, New York, NY, USA, 2010. ACM.

[28] H. B. McMahan and M. Streeter. Delay-tolerant algorithms
for asynchronous distributed online learning. Advances in
Neural Information Processing Systems (NIPS), 2014.

[29] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner,
J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin,
S. Chikkerur, D. Liu, M. Wattenberg, A. M. Hrafnkelsson,
T. Boulos, and J. Kubica. Ad click prediction: a view from the
trenches. In Proceedings of the 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD), 2013.

[30] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[31] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’10, pages 1–14, Berkeley, CA, USA, 2010.
USENIX Association.

[32] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, Aug. 1990.

[33] L. Yao, D. Mimno, and A. McCallum. Efficient methods for
topic model inference on streaming document collections. In
Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’09,
pages 937–946, New York, NY, USA, 2009. ACM.

[34] J. W. Young. A first order approximation to the optimum
checkpoint interval. Commun. ACM, 17(9):530–531, Sept.
1974.

[35] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie,
J.-W. Chou, P.-H. Chung, C.-H. Ho, Y.-H. Chang, Chun-Fu an
d Wei, et al. Feature engineering and classifier ensemble for
kdd cup 2010. KDD Cup, 2010.

[36] M. Zinkevich, J. Langford, and A. J. Smola. Slow learners are
fast. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams,

and A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems 22, pages 2331–2339. Curran Associates,
Inc., 2009.

