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ABSTRACT
Stratus is a new cluster scheduler specialized for orchestrating
batch job execution on virtual clusters, dynamically allocated collec-
tions of virtual machine instances on public IaaS platforms. Unlike
schedulers for conventional clusters, Stratus focuses primarily on
dollar cost considerations, since public clouds provide effectively
unlimited, highly heterogeneous resources allocated on demand.
But, since resources are charged-for while allocated, Stratus aggres-
sively packs tasks onto machines, guided by job runtime estimates,
trying to make allocated resources be either mostly full (highly uti-
lized) or empty (so they can be released to save money). Simulation
experiments based on cluster workload traces from Google and
TwoSigma show that Stratus reduces cost by 17–44% compared to
state-of-the-art approaches to virtual cluster scheduling.
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1 INTRODUCTION
Public cloud computing has matured to the point that many or-
ganizations rely on it to offload workload bursts from traditional
on-premise clusters (so-called “cloud bursting”) or even to replace
on-premise clusters entirely. Although traditional cluster sched-
ulers could be used to manage a mostly static allocation of public
cloud virtual machine (VM) instances,1 such an arrangement would
fail to exploit the public cloud’s elastic on-demand properties and
thus be unnecessarily expensive.

A common approach [15, 36, 38, 54] is to allocate an instance
for each submitted task and then release that instance when the
1We use “instance” as a generic term to refer to a virtual machine resource rented in a
public IaaS cloud.
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task completes. Although straightforward, this new-instance-per-
task approach misses significant opportunities to reduce cost by
packing tasks onto fewer and perhaps larger instances. Doing so
can increase utilization of rented resources and enable exploitation
of varying price differences among instance types.

What is needed is a virtual cluster (VC) scheduler that packs work
onto instances, as is done by traditional schedulers, without assum-
ing that a fixed pool of resources is beingmanaged. The concerns for
such a scheduler are different than for traditional clusters, with re-
source rental costs being added and queueing delay being removed
by the ability to acquire additional resources on demand rather
than forcing some jobs to wait for others to finish. Minimizing cost
requires good decisions regarding which tasks to pack together on
instances as well as when to add more instances, which instance
types to add, and when to release previously allocated instances.

Stratus is a scheduler specialized for virtual clusters on public
IaaS platforms. Stratus adaptively grows and shrinks its allocated
set of instances, carefully selected to minimize cost and accom-
modate high-utilization packing of tasks. To minimize cost over
time, Stratus endeavors to get as close as possible to the ideal of
having every instance be either 100% utilized by submitted work
or 0% utilized so it can be immediately released (to discontinue
paying for it). Via aggressive use of a new method we call runtime
binning, Stratus groups and packs tasks based on when they are
predicted to complete. Done well, such-packed tasks will fully uti-
lize an instance, complete around the same time, and allow release
of the then-idle instance with minimal under-utilization. To avoid
extended retention of low-utilization instances due to mispredicted
runtimes, Stratus migrates still-running tasks to clear out such
instances.

Stratus’s scale-out decisions are also designed to exploit both
instance type diversity and instance pricing variation (static and
dynamic). When additional instances are needed in the virtual
cluster in order to immediately run submitted tasks, Stratus requests
instance types that cost-effectively fit sets of predicted-completion-
time-similar tasks. We have found that achieving good cost savings
requires considering packings of pending tasks in tandem with
the cost-per-resource-used of instances on which the tasks could
fit; considering either alone before the other leads to many fewer
<packing, instance-type> combinations considered and thereby
higher costs. Stratus co-determines how many tasks to pack onto
instances and which instance types to use.

Simulation experiments of virtual clusters in AWS spot markets,
driven by cluster workload traces from Google and TwoSigma, con-
firm Stratus’s efficacy. Stratus reduces total cost by 25% (Google)
and 31% (TwoSigma) compared to an aggressive state-of-the-art
non-packing task-per-VM approach [47]. Compared to two state-of-
the-art VC schedulers that combine dynamic virtual cluster scaling
with job packing, Stratus reduces cost by 17–44%. Even with static
instance pricing, such as is used for AWS’s on-demand instances as
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well as Google Compute Engine and Microsoft Azure, Stratus re-
duces cost by 10–29%. Attribution of Stratus’s benefits indicates that
significant value comes from each of its primary elements—runtime-
conscious packing, instance diversity-awareness, and under-utilization-
driven migration. Further, we find that the combination is more
than the sum of the parts and that failure to co-decide packing and
instance type selection significantly reduces cost savings.

This paper makes four primary contributions. (1) It identifies
the unique mix of characteristics that indicate a role for a new job
scheduler specialized for virtual clusters (VCs). (2) It describes how
runtime-conscious packing can be used to minimize under-utiliza-
tion of rented instances and techniques for making it work well
in practice, including with imperfect runtime predictions. (3) It
exposes the inter-dependence of packing decisions and instance
type selection, showing the dollar cost benefits of co-determining
them. (4) It describes a batch-job scheduler (Stratus) using novel
packing and instance acquisition policies, and demonstrates the
effectiveness of its policies with trace-driven simulations of two
large-scale, real-world cluster workloads.

2 BACKGROUND AND RELATEDWORK
Job scheduling for clusters of computers has a rich history, with
innovation still occurring as new systems address larger scale and
emerging work patterns [16, 19, 22, 24, 31, 32, 41, 46, 55, 56]. Gener-
ally speaking, job schedulers are the resource assignment decision-
making component of a cluster management system that includes
support for detecting and monitoring cluster resources, initiating
job execution as assigned, enforcing resource usage limits, and
so on. Users submit jobs consisting of one or more tasks (single-
computer programs that collectively make up a job) to the cluster
management system, often together with resource requests for each
task (e.g., how much CPU and memory is needed). The job sched-
uler will decide when and on which cluster computer to run each
task of the job. Each task is generally executed in some form of
container for resource isolation and security purposes.

Stratus is a cluster scheduler aimed to schedule batch process-
ing workloads (e.g., machine learning model training, parallel test-
suites, and distributed ETL workloads such as MapReduce [18]
and Spark [59]) on virtual clusters (a “VC scheduler”). This paper
describes how Stratus reduces cost by exploiting public clouds’
effectively-unbounded virtual cluster elasticity, instance type di-
versity, and rental price variation. This section overviews relevant
aspects of public IaaS cloud offerings and discusses related work.

2.1 Cloud service provider offerings
IaaS instance types and contracts. Cloud service providers (CSPs)
offer an effectively infinite (from most customers’ viewpoints) set
of VM instances available for rental at fine time granularity. Each
CSP offers diverse VM instance “types”, primarily differentiated by
their constituent hardware resources (e.g., core counts and memory
sizes), and leasing contract models.

The two primary types of contract model offered by major
CSPs [3, 6, 8] are on-demand and transient. Instances leased un-
der an on-demand contract are non-preemptible. Instances leased
under a transient contract are usually much cheaper, but can be uni-
laterally revoked by the CSP at any time. The price of on-demand

instances are usually fixed for long periods of time, whereas the
price of transient instances may frequently vary over time.

In AWS EC2 [3], instances leased under transient contracts are
termed spot instances. Prices of spot instances are dictated by a spot
market [4], which fluctuates over time but typically remains 70–
80% below the prices of corresponding on-demand instances [28].
To rent a spot instance, a user specifies a bid price, which is the
maximum price s/he is willing to pay for that instance. The spot
instance can be revoked at any moment, but this rarely occurs
when using common bidding strategies (e.g., bidding the on-demand
price) [47].
Autoscaling of virtual clusters. There are two parts to autoscal-
ing a virtual cluster (VC): determining the capacity to scale to and
picking the right set of instances to scale to said capacity.

CSPs offer VC management frameworks (e.g., Amazon EC2 Spot
Fleet [9]) for choosing and acquiring instances to scale based on a
user-specified strategy, up to a target capacity. Available strategies
in Spot Fleet include lowestPrice (always add new instances with
the currently lowest spot price) and diversified (add new instances
such that the diversity in the spot VM pool increases).

Determining the VC’s target capacity can be done by the VC
scheduler reactively, scaling up whenever a new job’s tasks cannot
be run on existing resources. Whereas forecasting the right target
capacity is needed for web services to prevent violation of SLOs in
which the tolerable latency is on the order of seconds or less [21,
27, 39, 49], the cluster workloads targeted by job schedulers are
more forgiving. Even compared to the ideal of always being able to
immediately start every new job, we observe reactive VC scaling
provides reasonable job latencies (see Sec. 5).
Assigning containerized tasks to instances. Container services
enable containerized user application tasks to be run on a public
cloud. There are two dominant flavors of container management
services available: server-based and container-based.

In the server-based model [1], users provide a pool of instances
(e.g., via Spot Fleet) while the container service schedules tasks
on to available VMs according to a configured placement policy.
For example, available task placement policies in Amazon ECS [2]
include binPack (place task on to instance with least amount of
available resource), random, and spread (round-robin). Server-based
container services, in the VC scheduling context, are responsible
for packing containerized tasks on to VM instances.

In the container-based model [5], the container service automat-
ically manages container placement, execution, and all underlying
infrastructure. A user is billed in terms of resources consumed by
the container. As explained further in Section 4, this approach is
currently significantly more expensive than using a server-based
model with a virtual cluster of spot instances for substantial cluster
workloads.

2.2 Related work
Private cluster schedulers. Private clusters generally have a fixed
set of machine composition, with whatever hardware heterogeneity
was present at deployment time. Existing state-of-the-art sched-
ulers [17, 19, 22, 24, 29, 31, 32, 41] frequently optimize scheduling
decisions based on the existing set of instances. But, public clouds
offer instances of many types and sizes, allowing a virtual cluster
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to vary over time not only in size but in composition, so the best-
match instance type for a given job can usually be acquired when
desired. Naturally, different instance types have different rental
prices, which must be considered. Further complicating decision-
making is the fact that rental costs for particular instance types can
vary over time, most notably in the AWS spot markets (as discussed
below). Such differences require VC schedulers to focus on different
issues than traditional cluster schedulers.
Task-per-instance virtual cluster schedulers. Most previous
work on scheduling jobs on public cloud resources maps each task
of each job to an instance, acquired only for the duration of that task.
This approach works both for cloud bursting configurations [15, 25,
54], in which excess load from a private cluster is offloaded onto
public cloud resources, and full virtual cluster configurations.

Various policy enhancements have been explored for task-per-
instance schedulers. Mao et al. [36, 38] proposed framework-aware
VC scheduling techniques that balance job deadlines and budget
constraints. Niu et al. [40] discuss scheduling heuristics to address
AWS’s previous hour-based billing model by reusing instances for
new tasks with time remaining in a paid-for hour. HotSpot [47]
addresses (exploits) the dynamic nature of spot markets and the di-
versity of instance types, always allocating the cheapest instance on
which a new task will fit and migrating tasks from more expensive
instances to cheaper instances as spot market prices fluctuate.
Packing VC schedulers. Compared to the common approach of
assigning a single-task-per-instance in existing VC scheduling lit-
erature, schedulers that pack tasks (from the same or different jobs)
onto instances may reduce overall cost, as they reduce the risk of
lower utilization due to imperfect fit.

One reasonable approach [10] is to pack containerized tasks on
an elastic VC using CSP-offered services like those discussed above.
Specifically, one can use server-based container services (e.g., ECS)
to place containerized tasks on to (spot) instances, while maintain-
ing the pool of running instances with an instance management
frameworks (e.g., SpotFleet). This combination essentially results
in a packing VC scheduler, and it is one of the approaches to which
we compare Stratus in Section 5.

SuperCloud is a system that enables application migration across
different clouds [48], and it includes a subsystem (SuperCloud-Spot)
used for acquiring and packing spot instances [30]. SuperCloud-
Spot appears to be designed primarily for a fixed set of long-running
jobs (e.g., services), since methods for on-line packing to address
dynamic task arrival/completion and varied task CPU/memory
demands were not discussed. But, it represents an important step
toward effective VC scheduling, and we include it in our evaluations.
We also evaluate natural extensions to it as part of understanding
the incremental benefits of Stratus’s individual features.
Energy-conscious scheduling. Energy-conscious schedulers at-
tempt to reduce the energy consumption of a cluster by actively
causing some machines to be idle and powering them down. To
do so, they attempt to pack tasks onto machines as tightly as pos-
sible to minimize the number that must be kept on [13, 14, 35].
This goal draws a parallel to the goal of VC schedulers, whose pri-
mary objective is to minimize the cluster’s bill typically by using
less instance-time and packing instances more efficiently. Acquir-
ing/releasing a VM instance in the cloud is akin to switching on/off
a physical machine.

Although energy-conscious schedulers and VC schedulers share
a goal ofmaximizing utilization of activemachines, energy-conscious
schedulers generally do not address the opportunities created by
instance heterogeneity or price variation aspects of VC scheduling.
Strictly focusing on task packing, however, the closest scheme to
Stratus is a scheduler proposed by Knauth et al [33], which packs
VMs onto physical machines based on pre-determined runtimes
(rental durations). Unlike that scheduler, Stratus does not have
known runtimes, but it does exploit runtime predictions to pack
tasks expected to finish around the same time.

3 STRATUS
Stratus is a VC scheduler designed to achieve cost-effective job
execution on public IaaS clouds. Stratus combines a new elasticity-
aware packing algorithm (Sec. 3.2) with a cost-aware cluster scaler
(Sec. 3.3) that exploits instance type diversity and instance pricing
variation. Stratus reduces cost in two ways: (1) by aligning task
runtimes so (ideally) all tasks on an instance finish at the same
time, allowing it to transition quickly from near-full utilization to
being released and (2) by selecting which new instance types to
acquire during scale-out in tandem with task packing decisions,
allowing it to balance the cost benefits of instance utilization and
time-varying instance prices. This section describes the design and
implementation of Stratus.

3.1 Architecture
This section presents the architecture and key components of Stra-
tus (Fig. 1) and walks the reader through the lifetime of a job pro-
cessed by Stratus. Stratus acts as the scheduling component of a
runtime environment, such as a YARN or Kubernetes cluster. The
Resource Manager (RM) (e.g., YARN RM/Kubernetes master) is still
responsible for enforcing scheduling decisions in the environment.

Jobs submitted to the VC are processed as follows:
(1) Job requests are submitted by users and received by the Resource
Manager (RM). A job request contains the number of tasks to be
launched and the amount of resource required to execute each task.
(2) If a job is admitted, the RM spins off task requests from the
job and dispatches them to the Stratus RM Proxy. The RM Proxy is
responsible for receiving state events (e.g., new task request, task
failure, task completion, etc.) from the RM and routing them to the
scheduler.
(3) The scheduler consists of the packer (Sec. 3.2) and the scaler
(Sec. 3.3). The packer decides which tasks get scheduled on which
available instances. The scaler determines which and when VM
instances should be acquired for the cluster as well as when task
migrations need to be performed to handle task runtime misalign-
ments (Sec. 3.4). Given a task request from the RM Proxy, the packer
puts the task request into the scheduling queue. Pending tasks are
scheduled in batches during a periodic scheduling event; the fre-
quency of the scheduling event is configurable.
(4) The packer and scaler make scheduling and scaling decisions
based on task runtime estimates provided by a Runtime Estimator.
(5) If there are tasks that cannot be scheduled on to any available
instances in the cluster, the packer relays the tasks along with their
runtime estimates to the scaler, which decides on the instances
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Figure 1: Stratus architecture

to acquire for these tasks. The scaler sends the corresponding in-
stance requests to the Cloud Connector, which is the pluggable
cloud-provider-specific module that acquires and terminates in-
stances from the cloud for Stratus.
(6) The Cloud Connector translates the request and asynchronously
calls IaaS cloud platform APIs to acquire new instances. When new
instances are ready, the Cloud Connector notifies the packer via an
asynchronous callback.
(7) The scheduler informs the RM of task placement decisions,
availability of new instances, and tasks to migrate at the end of a
scheduling event.
(8) The RM enforces task placements and adds new instances to its
pool of managed instances.
(9) After tasks complete on instances, completion events are prop-
agated to the RM. A job is completed when the RM receives all
task completion events of the job’s tasks, and its task runtimes are
reported to Runtime Estimator to update job run history (Sec. 3.4).

3.2 Packer
This section describes the on-line packing component of Stratus,
which places newly arriving tasks on to already-running instances.
The Scaler (Sec. 3.3), which decides which new instances to acquire
based on the packing properties of tasks that cannot be packed on
to running instances, uses a compatible scheme.

3.2.1 Setup. The primary objective of Stratus is to minimize
the cloud bill of the VC, which is driven mostly by the amount
of resource-time (e.g., VCore-hours) purchased to complete the
workload. Thus, the packer aims to pack tasks tightly, aligning
remaining runtimes of tasks running on an instance as closely as
possible to each other; otherwise, some tasks will complete faster
than others and some of the instance’s capacity will be wasted.
Packer input. The inputs to the packer are:
(1) Queue of pending task requests, where each task request contains
the task’s resource vector (VCores and memory), estimated runtime,

priority, and scheduling constraints (e.g., anti-affinity, hardware
requirements, etc.).
(2) Set of available instances. For each instance, Stratus tracks the
amount of resource available on the instance and the remaining
runtimes of each task assigned to the instance (i.e., time required
for the task to complete).
Runtime binning. The packer maintains logical bins character-
ized by disjoint runtime intervals. Each bin contains tasks with
remaining runtimes that fall within the interval of the bin. Simi-
larly, an instance is assigned to a bin according to the remaining
runtime of the instance, which is the longest remaining runtime of
the tasks assigned to the instance. In both cases, the boundaries
of the intervals are defined exponentially, where the interval for
the ith bin is [2i−1, 2i ). For ease of discussion, we compare run-
time bins according to the upper-bound of their defined runtime
intervals—i.e., the smallest bins are bins with runtime intervals [0,
1), [1, 2), [2, 4), . . . , and so on.

3.2.2 Algorithm description. At the beginning of a scheduling
event, the packer organizes tasks and instances into their appro-
priate bins. Tasks are then considered for placement in descend-
ing order by runtime—longest task first. For each task, the Packer
attempts to assign it to an available instance in two phases: the
up-packing phase and the down-packing phase.
Up-packing phase. In placing a task, the packer first looks at
instances from the same bin as the task. If multiple instances are
eligible for scheduling the task, the packer chooses the instance
with the remaining runtime closest to the runtime of the task.

If the task cannot be scheduled on any instance in its native
runtime bin, the packer considers instances in progressively greater
bins. If there are multiple candidate instances from a greater bin, the
task is assigned to the instance with the most available resources
(as opposed to assigning to the instance with the closest remaining
runtime). The reasoning is to leave as much room as possible in the
instance, which will increase the chance of being able to schedule
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(a) Tasks A, B, and C scheduled. All tasks in [16, 32) bin. Instance in [16, 32)
bin. One empty slot.
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(b) Time progresses and tasks A and B move down to [8, 16) bin. Task C
remains in [16, 32) bin. Task D scheduled on instance in [16, 32) bin. Instance
remains in [16, 32) bin. Instance is full.

0 1 2 4 8 16 32 Time 
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Task D

Task C
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(c) Time progresses further and tasks A and B finish. Task C moves down to
[4, 8) bin. TaskDmoves down to [8, 16) bin. Task E isup-packed to the instance
and placed in [1, 2) bin. Instance moves down to [8, 16) bin. One empty slot.

Figure 2: Toy example showing how runtime binning works with
the scheduling of tasks on to an instance over time (subfig. a–c). This
simple example assumes all tasks are uniformly sized, and that the
instance can hold four tasks in total. The solid gray box outlines
the instance. Runtime bins are color-coded (e.g., blue and red repre-
sent bins [16, 32) and [8, 16), respectively). Bars inside the instance
represent tasks assigned to it. Task bars are color-coded to the bins
they are assigned to. The dotted box shows the runtime bin that the
instance assigned to.

tasks from the same bin on to the instance when tasks arrive in
the future. If the task cannot be scheduled on any instance, the
packer proceeds to examine instances in the next-greatest bin until
all instances in greater bins have been examined.

While up-packing can cause instance runtime misalignments as
Stratus attempts to pack tasks with shorter runtimes on instances
with greater remaining runtimes, it also increases utilization of
instances in greater bins and prevents the acquisition of new in-
stances for small and short tasks when there are enough resources
to run them on already-acquired instances. Up-packing minimally
disrupts the scheduling opportunities of tasks of greater bins ar-
riving in the future, as the up-packed task uses only half of the
remaining runtime on the instance. Fig. 2 shows a toy example of
runtime binning in the up-packing phase on a single instance over
time.
Down-packing phase. After all greater bins have been examined
for VMs to schedule the task on, the Packer examines progressively
lesser bins for a suitable VM in the down-packing phase. If there
are multiple candidate VMs from a lesser bin Stratus, like when
up-packing, finds the VM with the most available resources that
the task fits on. Down-packing the task promotes the VM to the
task’s native runtime bin.

While promoting an instance may cause task runtime misalign-
ments on an instance, it is counter-intuitively beneficial in practice.

Since tasks with similar runtimes and resource requests are often
submitted concurrently/in close-succession for batch data process-
ing jobs, promoting a large, poorly-packed instance may allow for
more opportunities to fully utilize the instance with unscheduled
tasks of such a job—especially because the need to down-pack im-
plies that VMs that satisfy the current task’s resource requirement
be found neither in the task’s native runtime bin nor in greater
runtime bins. Promoting an instance also increases the chance of
better utilizing the instance in later scheduling cycles, since tasks
are always up-packed prior to being down-packed. Furthermore,
if task runtimes are already inaccurate, it is likely that some of
the tasks assigned to an instance in fact belong in some greater
bin, especially if an instance is large. If a promoted instance re-
mains under-utilized, instance clearing (Sec. 3.4) can then be used
to de-allocate the instance and redistribute tasks to their rightful
bins.

3.3 Scaler
When Stratus does not have enough instances to accommodate all
tasks in a scheduling event, it scales out immediately and acquires
new instances for the unscheduled tasks. Stratus’s process of de-
ciding which instances to acquire is iterative. It decides on a new
instance to acquire at the end of each iteration, assigns unscheduled
tasks to the instance, and continues until each unscheduled task is
assigned to some new instance.

During scale-out, Stratus considers task packing options to-
gether with instance type options, seeking to achieve the most
cost-efficient combination. In each iteration, it considers unsched-
uled tasks in each bin in descending order of runtime bins. The
scaler constructs several candidate groups of tasks to be placed on
the new instance. Each candidate group is assigned a cost-efficiency
score for each possible instance type. The candidate group with the
greatest cost-efficiency score is assigned to its best-scoring instance
type, which is acquired and added to the virtual cluster.

Considering both in tandem is crucial to achieving high cost-
efficiency. Doing either (task packing or instance type selection)
in isolation, and then doing the other, results in too many missed
opportunities—selecting instance types first leads to lower utiliza-
tion of selected instances due to poor packing fits, whereas packing
tasks first excludes opportunities to exploit dynamic price variations
by limiting the instance sizes that make sense. Stratus’s iterative
approach balances the complexity of the potentially massive search
space of combinations with the importance of exploring varied
points in that space.
Candidate task groups. Candidate task groups are constructed
so that the ith group contains the first i tasks in the list sorted in
descending runtime order. The first group contains the longest task,
the second group contains the two longest tasks, and so on. The
scaler continues to build candidate task groups until the aggregate
resource request of the largest task group exceeds that of the largest
allowed instance type.
Cost-efficiency score. The cost-efficiency score, computed as

score =
normalized used constraining resource

instance price
,
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for each candidate <task group, instance> pair, evaluates the re-
source efficiency of the placement of a candidate task group on a
candidate instance relative to the cost of the instance.

To find the normalized used constraining resource, we first find the
constraining resource type by computing the utilization for each
resource type (VCores, memory) as if the task group is assigned
to the instance. The resource type yielding the greatest utilization
is the constraining resource type. Knowing the constraining re-
source type, the amount of constraining resource requested by the
task group is the used constraining resource. Finally, we normalize
the used constraining resource by the amount of resource of the
constraining resource type available on the smallest instance type
that we can acquire to obtain the normalized used constraining
resource. The normalized used constraining resource is used to
facilitate comparisons across <task group, instance> pairs with
different constraining resource types.

For example, if a candidate task group requests 4 VCores and
1 GiB of memory and a candidate instance has 8 VCores and 16
GiB of memory, the constraining resource type would be VCores (4
VCores / 8 VCores > 1 GiB / 16 GiB), the used constraining resource
would be 4 VCores. Assuming that the smallest instance type that
we can acquire provides 2 VCores, the normalized used constraining
resource would be 2 (= 4 VCores / 2 VCores).

Intuitively, if only a single resource dimension is considered, ac-
quiring the instance with the greatest cost-efficiency score is equiva-
lent to acquiring the instance with the lowest cost-per-resource-used.

At the end of each scale-out iteration, the candidate (task group,
instance) pair with the best cost-efficiency score is chosen, and
the corresponding task group is scheduled on to the instance. If
there remains any unscheduled tasks, the scaler begins another
iteration to place the rest of the tasks and continues until all tasks
are scheduled.
Scaling in. There are two opportunities when Stratus terminates
instances: (1) when an instance does not have any tasks assigned
to it, and (2) when it continuously experiences low utilization, in
which case its tasks are migrated off of it (Sec. 3.4).
Runtime interval bin selection. With a sufficient amount of
tasks in a runtime bin, more instance scale-out options become
available—specifically for instances that are larger, potentially more
cost-efficient, and less prone to resource fragmentation. As often
observed [20, 44], job and task runtime distributions are frequently
long-tailed. We therefore define runtime bin intervals exponentially
to enable a principled way to group tasks with runtimes at the tail
while not sacrificing packing efficiency for tasks that fall in lesser
interval bins. Defining runtime bins exponentially also allows us to
bound the number of bins without having to specify statically-sized
runtime intervals or determine a particular best bin size.
Bidding strategy and instance revocations. Stratus does not try
to take advantage of the refund policy of spot instance revoca-
tions, where spot instances revoked within the first hour are fully
refunded; rather, it focuses only on attaining cost-efficiency by ex-
ploiting cost-per-resource dynamicity2. Stratus uses a safe instance
bidding scheme, where it always bids for an instance at its corre-
sponding on-demand price. Shastri et al. [47] found that bidding
2In the EC2 spot market, the cost-per-resource (e.g., VCore) of instances changes
frequently. For m4 instances in us-west-2 only, the sorted order of cost-per-VCore
changes 850 times/day (Aug. to Sept. 2017).

the on-demand price for Spot instances result in very long times-
to-revocation (25 days on average). Our experiments confirm their
observation, as only a single spot price-spike was experienced in
all our experiments.

3.4 Runtime estimates
Runtime Estimator Runtime Estimator is the component that
provides runtime estimates from a queryable task runtime estimate
system for tasks submitted to Stratus. The topic of estimating job
and task runtimes has been researched extensively [34, 50–52],
and Stratus does not attempt to innovate on this front; instead,
we obtained a copy of JVuPredict [52] and modified it to predict
average task runtime rather than job runtime.

JVuPredict’s algorithm works as follows: For each incoming job,
JVuPredict identifies candidate groups of similar jobs in job execu-
tion history based on job attributes (e.g., submitted by same user,
same job name submitted during the same hour of day,. . . , etc). For
each group, several candidate estimates are produced by applying
estimators (average, median,. . . , etc) to the average task runtimes of
all jobs in the group. JVuPredict associates the estimate produced
by the attribute-estimator pair that historically performs best (mea-
sured by normalized median absolute error) to the incoming job.
Handling runtime misestimates. The accuracy of task runtime
estimates plays a large role in Stratus’s packing algorithm. While
Stratus’s use of exponentially-sized runtime bins already tolerates
some degree of task runtime misestimates, it is beneficial to incor-
porate more specialized methods to deal with larger misestimates.
Stratus uses two heuristics to mitigate the impact of task runtime
misestimates on cost:
Heuristic 1: Task runtime readjustment. In adjusting for task runtime
under-estimates, Harchol-Balter et al. [26] observed that the proba-
bility that a process with age T seconds lasts for at least another T
seconds is approximately 1/2. Stratus thus readjusts task runtime
underestimates by assuming that the task has already run for half
of its runtime.
Heuristic 2: Instance clearing. Stratus migrates tasks away from
instances that continuously (e.g., for more than three scheduling
events of one minute each in our experiments) experience low
resource utilization due to task runtime mis-alignments of various
scales such that they can be terminated safely without losing task
progress. We define such an instance as one whose resources are
less than 50% utilized in each dimension, since this is often when
all tasks on an instance can be migrated to a smaller instance based
on how many CSPs size their VMs [3, 6, 8].

VM candidates are evaluated for clearing in decreasing order of
cost-per-resource-used. For each VM candidate, either all or none
of its tasks are migrated—if an instance only ends up partially-
migrated, its utilization decreases while the VC operator still has
to pay the same amount of money to keep the instance running;
therefore, whenever an instance is selected to be migrated, it is
placed on a blacklist such that no new tasks can be scheduled on to
it. For each task on a VM candidate, Stratus attempts to re-pack the
tasks on to currently running instances using the packing algorithm
described in Sec. 3.2. If no suitable instance is found, Stratus may
also choose to acquire a new, potentially smaller/cheaper instance
on which to place all of a candidate’s tasks. Stratus computes the
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Instance/ A bundle of resources rented from the IaaS

platform, generally in the form of a virtual
machine (e.g., Amazon EC2).

Server/
VM
Container An isolated environment deployable in an instance,

e.g., a nested-VM or Linux container.
Resource Instance hardware resources, for example, VCores

and memory.
Resource util Aggregate percent instance resources allocated to

tasks.
Task The smallest logical unit of a computation, typically

executed in a single container.
Job A collection of tasks that perform a computation

submitted by the user of a cluster.
Runtime bin Logical bin defined by a time interval, consisting of

a set of instances whose task runtimes are estimated
to continue to run for less than the upper bound of
the time interval. Used by Stratus to assign tasks of
similar runtimes on to instances.
Table 1: Summary of terms used.

tradeoff of clearing an instance before executing the taskmigrations.
Stratus only clears an instance if the predicted runtime for the
instance’s longest task is greater than the estimated migration time
(plus spin-up time, in the case of new instance acquisitions).

4 EXPERIMENTAL SETUP
We use simulation-based experiments to evaluate Stratus and other
VC scheduling approaches in terms of dollar cost, resource uti-
lization, and job latency. This section describes our experimental
setup.

4.1 Environment
Simulator. We built a high-fidelity event-based workload simu-
lator that takes as input a job trace (Sec. 4.2) and a Spot market
trace for each allowed instance type (discussed below). It simulates
instance allocation and job placement decisions made by evaluated
schedulers (Sec. 4.3), advancing simulation time as jobs arrive and
complete. The simulator includes instance spin-up delays consis-
tent with observations on AWS [37, 47], drawing uniformly from
instance spin-up times ranging from 30 to 160 seconds. Container
migration times are computed based on the container’s memory
footprint and a transfer rate of 160MBps for container memory [47].
To simulate the effect of spot market price movements, including
the very rare spot instance revocations,3 we use price traces pro-
vided by Amazon [11] spanning a three month period starting from
June 5th, 2017.
Instance types and regions available.We limit our experiments
to use instances of the same family in EC2 (m4 instances) in order
to (1) avoid unknown performance comparisons among compute
resources4 and (2) justify runtime estimates produced by JVuPre-
dict, as JVuPredict does not consider tasks’ runtime environments

3Spot instance revocation can be determined from the spot market price trace, because
they occur when the market price exceeds the bid price. We use the common approach
of bidding the on-demand price and, like others, observe that revocation is very
infrequent [28, 47].
4Amazon used to report ECU as a unifying measurement to describe the CPU per-
formance across varying instance types, but ECU measurements have since slowly
disappeared from EC2’s documentation, presumably due to the difficulty in summariz-
ing the compute power of different instance types in a single number.

(e.g., underlying VM configuration) when generating runtime es-
timates5. We list the amount of resources available in each of the
instance types in Fig. 3c, and we assume that valid instance requests
are always fulfilled. We limit instance allocations to the us-west-2
region, because migrations and data transfers across regions incur
significant cost.
VM acquisition/termination. For all evaluated schedulers, (1)
instances are bid for at or above (HotSpot) the on-demand price,
and (2) an instance is voluntarily released to the CSP when no more
tasks are running on it.

4.2 Workload traces
Our experiments use two traces from production clusters. Fig. 3a
shows their task runtime distributions. For each trace, our eval-
uations use twenty 1-day ranges of the trace, starting at random
points within the traced period. We filter out jobs that start be-
fore the trace start time and jobs that end after the trace end time.
In addition to avoiding inclusion of partial jobs, this filtering re-
moves long-running services from the Google trace, allowing the
evaluation to focus on interactive and batch jobs.
Google trace. The Google trace [44, 45], released in 2011, records
jobs run on one of Google’s production clusters with 12.5kmachines
spanning a period of 29 days. The amount of requested resources
for each task has been obfuscated by Google, with each dimension
re-scaled to have a value between 0 and 1 based on the largest
capacity of the resource available on any machine in the trace.
In our simulations, for each task resource dimension, we scale
the requests to the largest corresponding resource dimension of
instance types used (64 VCores and 256 GiB).

We observe the following job/task properties in the filtered
Google trace: (1) Tasks are typically CPU-heavy (i.e., tasks are
limited by the CPU dimension when scheduled), (2) the number
of tasks per job is very small—in fact, more than 75% of the jobs
contain less than 10 tasks, and (3) tasks are short, with most shorter
than two minutes.
TwoSigma trace. The TwoSigma trace [12] contains 3.2 million
jobs and was collected on two private computing clusters of Two
Sigma, a quantitative hedge fund, over a nine-month period from
Jan. to Sept. 2016. The clusters consist of a total of 1313 machines
with 24 CPU cores and 256GiB RAM each. The majority of jobs in
the TwoSigma trace are batch-processing jobs that analyze financial
data with home-grown data analysis applications or Spark [59] pro-
grams. The workload does not contain any long-running services.

We observe the following job/task properties in the TwoSigma
trace: (1) tasks typically have substantial memory footprints, (2) num-
ber of tasks per job is greater than in the Google trace, and (3) tasks
are longer on average compared to tasks from the Google trace.
Runtime predictor performance. We report the task runtime
estimate error profiles of the modified JVuPredict (Sec. 3.4) for both
traces in Fig. 3b. The estimates are less accurate in the TwoSigma
trace compared to the Google trace because the estimate quality
largely depends on (1) the ability of JVuPredict to identify similar
jobs in the history and (2) the variability of runtimes within the

5The Runtime Estimator is a pluggable component which can be extended to use
runtime estimates produced by a more sophisticated runtime estimator that is VM
configuration aware [57].
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Figure 3(a): Task runtime distributions of the
Google and TwoSigma traces. The time axis is
plotted in log-scale.
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Figure 3(b): PMF of the task runtime estima-
tion error of the modified JVuPredict.

Instance type VCores Memory
m4.large 2 8GiB
m4.xlarge 4 16GiB
m4.2xlarge 8 32GiB
m4.4xlarge 16 64GiB
m4.10xlarge 40 160GiB
m4.16xlarge 64 256GiB

Figure 3(c): The resource capacity of each
instance type.

group of similar jobs. TwoSigma trace is reported [43] to be inferior
on both measures.
Assumptions We make the following assumptions about jobs and
tasks in our simulation workloads: (1) tasks can bemigrated without
losing progress potentially using checkpoint-restore solutions such
as CRIU [7], (2) tasks do not have any hard placement constraints
other than (for some) anti-affinity, (3) there are no inter-task de-
pendencies in the workloads, and (4) decisions regarding task
co-location have minimal impact on task runtimes.

Of the above, (1) is recommended practice in implementing dis-
tributed applications, and (2) and (3) arise in part from the obfus-
cation of production data in the traces. We believe that (4) is a
reasonable premise for two reasons. First, interference effects be-
tween two tasks co-located on a VM instance would likely still
be present if they each ran in their own smaller instance, because
smaller instances similarly share physical hardware. Second, some
co-location effects are already reflected in the runtimes recorded in
the traces, since both traced clusters co-locate tasks.

4.3 Approaches evaluated
Our experiments compare Stratus against several alternative so-
lutions. Each solution is implemented as closely as possible to its
respective source documentation. This section introduces these
approaches and modifications made to adapt them to the problem
of minimizing the cost of running a workload where tasks have
multi-dimensional resource requests and varying runtimes.
HotSpot: HotSpot (Sec. 2.2) is a single-task-per-instance VC sched-
uler that always chooses the cheapest instance type on which a
new task will fit and will migrate the task if a different instance
type becomes cheaper before it completes. We build HSpot, a VC
scheduler that implements HotSpot’s migration and scaling policies,
and enhance it with perfect runtime knowledge (unlike Stratus’s
imperfect predictions) so it can evaluate the tradeoff between cost
added due to migration overhead vs. cost reduction for running on
the new cheaper instance.
Spot Fleet + ECS: A reasonable way to place containerized tasks
on to Spot instances is to use one of Amazon’s ECS container
placement strategies in combinationwith EC2 Spot Fleet [10], which
acquires and releases Spot instances based on the allocation policy
specified by the user. We build a scheduler Fleet that uses the most
cost-efficient VM acquisition policy in Spot Fleet (lowestPrice [9]),
in tandem with the most cost-efficient packing strategy in ECS

(binpack [2]). Sec. 2.1 provides an overview of Spot Fleet and ECS,
along with their respective policies.
SuperCloud Spot instances: SuperCloud-Spot (Sec. 2.2) is a pack-
ing VC scheduler specifically designed for scheduling nested VMs
on Spot instances. We build SCloud, implementing features as
closely as possible to what was documented in the paper describing
SuperCloud-Spot [30].

SCloud uses SuperCloud-Spot’s greedy packing algorithm on
the most-constrained resource type rather than its dynamic pro-
gramming (DP) algorithm, which cannot be generalized to tasks
of different sizes and with multiple resource request dimensions (a
known NP-hard problem [42]).

SuperCloud-Spot’s original migration scheme is designed for
AWS’s previous hour-based billing model; SuperCloud-Spot there-
fore makes sub-optimal decisions when computing the trade-off
to re-pack tasks to new instances as it assumes no extra cost for
leaving instances running as long as the instance-hour has not
yet expired. So, we enhance SCloud with both HSpot’s migration
scheme that is suited for instances that are charged per-second and
perfect task runtime knowledge.
AWS Fargate: AWS Fargate is a service that allows users to run
containerized workloads without having to manage VM servers. We
evaluated Fargate as an alternative to manually deploying VM clus-
ters and running tasks on top of it. As Fargate charges on-demand
prices per-resource plus a premium for managing containers for
users, we posit the Fargate-based solution to be much more expen-
sive than any other VC scheduling alternatives. Indeed, simulated
experiments show that at its current price-point (May 2018), Far-
gate costs on average 4.4× more than HSpot. Our discussions thus
focus on the Spot VC schedulers introduced above.

5 EXPERIMENTAL RESULTS
This section evaluates Stratus, yielding four key takeaways. First,
Stratus is adept at reducing the VC cloud bill, such as by 25–31%
compared to the non-packing VC scheduler (HSpot). Second, Stra-
tus’s runtime binning and tandem-consideration of task packing
and instance selection allows it to reduce VC cost by 17–44% over
the other packing-based VC schedulers (Fleet and SCloud). Third,
each of Stratus’s key techniques is important to achieving its cost
reductions. Fourth, Stratus’s instance clearing technique is benefi-
cial and necessary in VC scheduling when runtime estimates are
inaccurate.
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Figure 4: Average daily cost for each VC scheduler on the Google
and TwoSigma workloads, normalized to the most costly option for
the given trace. Stratus reduces the cost of other schedulers by at
least 17% in both traces.

5.1 Stratus vs state-of-the-art
This section compares Stratus against existing VC scheduling solu-
tions such as HSpot, SCloud, and Fleet.
Cost reduction. Fig. 4 shows the average daily costs of schedul-
ing the Google and TwoSigma workloads for each VC scheduler,
normalized to the most expensive case for each trace. Stratus out-
performs the other VC schedulers by combination of its alignment
of task runtimes and coordinated task packing and instance type
selection.

Stratus outperforms HSpot by reducing the cloud bill by 25%
(Google) and 31% (TwoSigma) through continuously packing newly
arriving tasks on to cost-effective instances. Stratus also reduces
cost by 44% (Google) and 17% (TwoSigma) compared to SCloud.
While ideas from SuperCloud-Spot may have been well-suited for
long-running services, it does not carry over well to workloads
where task runtimes can greatly vary (Google). SCloud’s scaling
algorithm often bids for large VMs to reduce fragmentation and
improve cost-per-resource at the time of packing. However, if task
runtimes on the VM are misaligned, the large VMs acquired by
SCloud will often be under-utilized as tasks on the VM complete.
Because SCloud does not specify how newly arriving tasks are
packed on to existing VMs, the resource holes will be unfilled
until all tasks on the VM completes. Stratus outperforms SCloud
by a smaller margin on the TwoSigma workload because (1) task
runtimes on the TwoSigma workload tend to be longer and more
runtime-aligned (Fig. 3a) and because (2) task runtime estimates
are significantly less accurate on the TwoSigma trace (Fig. 3b).

Although Fleet utilizes on-line packing, it still incurs higher
cloud bills compared to Stratus. Stratus reduces the cloud bill of
Fleet by 17% (Google) and 22% (TwoSigma). Aside from Stratus’s
runtime binning, another primary reason as to why Fleet’s use of
on-line packing is not as effective is due to its use of Spot Fleet’s
lowestPrice scaling algorithm. Fleet always acquires the cheapest
(and frequently the tightest-fitting) instances for newly arriving
tasks, leaving little room to pack more tasks on an instance and
leading to greater resource fragmentation. In addition, the cheapest
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Figure 5: Constraining resource utilization (VCores for Google and
memory for TwoSigma) with the different VC schedulers.

instance for a taskmay not be themost cost-efficient instance for the
set of pending tasks that are available. By considering the packing
of groups of tasks and their runtime alignments while selecting
instance types, Stratus is able to achieve lower fragmentation and
acquire instances with better cost-per-resource-used.

To confirm this observation, we experimented with a version
of Stratus that always selects the best-fitting instance for a new
task when scaling out (akin to Fleet) while using runtime binning.
Consistent with our observation that schedulers that always acquire
best-fitting or cheapest-fitting instances for individual tasks have
little opportunity to pack, we observe the cost for Stratus increases
by 17% (Google) and 25% (TwoSigma), only slightly beating Fleet
in both traces.
Resource utilization. Much of Stratus’s cost reduction comes
from increased utilization of rented resources. Fig. 5 shows the
utilization of the constraining resource, VCore in the case of the
Google workload and memory for TwoSigma, for the four VC sched-
ulers.

Stratus attains higher resource utilization than the other VC
schedulers, achieving 86% and 79% utilization, respectively, for the
two workloads. Stratus’s high resource utilization results from its
combination of aligning task runtimes in tasks packed onto a given
instance, acquiring instances of suitable sizes, and judicious use
of instance clearing to avoid retaining under-utilized instances on
which most tasks already completed. Importantly, Stratus’s selec-
tion of instance types during scale-out in light of different possible
packing configurations, rather than only considering packing after
selection, significantly increases utilization. At the same time as
both, Stratus considers instance pricing differences per-resource-
used, resulting in the overall cost reductions described above.
Job latency. We define normalized job latency as the observed job
latency normalized to an idealized job runtime that incurs no sched-
uling or instance spin-up delays. Table 2 shows the 50th and 95th
percentile normalized job latencies for each compared scheduler
on each trace.

Overall, we observe that schedulers that always acquire new
instances for tasks (SCloud and HSpot) incur greater normalized
job latency than those that pack (Fleet and Stratus) on workloads
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Google TwoSigma
Scheduler 50%-ile 95%-ile 50%-ile 95%-ile

Stratus 1.3 3.2 1.1 1.6
Fleet 1.2 3.1 1.0 1.4
HSpot 2.2 7.0 1.1 1.5
SCloud 2.5 11.4 1.2 2.0

Table 2: The normalized job latencies for each evaluated VC sched-
uler. Schedulers that pack continuously (Stratus and Fleet) incur
lower job latencies than those that do not (HSpot, SCloud) when
jobs are short and small (Google).

0510152025303540
Google

0510152025303540
TwoSigma

On-line packing
Stratus's scale-out

Instance clearing
Runtime binning

Breakdown of cost savings over SCloud (%)

Figure 6: Break-down of Stratus’s cost savings over SCloud (44% for
Google and 17% for TwoSigma). The cost of running workloads re-
duces as Stratus features are added to SCloud, starting with features
from left to right (on-line packing to runtime binning). The closer
to zero, the smaller the cost difference between SCloud and Stratus.

with jobs that are mostly short and small (Google), as instance
start-up delay can cause proportionally significant job slowdowns.
For workloads where jobs are longer (TwoSigma), instance start-up
delays are obviously less significant. And, withmorememory-heavy
tasks (TwoSigma), use of migration for instance clearing induces
marginally higher job latencies for Stratus, because such tasks take
longer to migrate.

5.2 Benefit attribution: SCloud to Stratus
Stratus uses a combination of heuristics to reduce cost. This section
evaluates the incremental contributions of each by adding each
to SCloud, one by one, until it matches Stratus. Fig. 6 shows the
breakdown of how much of Stratus’s cost savings is realized with
each heuristic added to SCloud.
SCloud. We start the incremental build-up with SCloud, as de-
scribed in Sec. 4.3, which only implements features as explicitly
noted in the original SuperCloud-Spot paper. As discussed above
(Sec. 5.1), Stratus reduces cost compared to SCloud by 44% on the
Google trace and by 17% on the TwoSigma trace.
Adding online vector bin packing. To close the gap between
SCloud and Stratus, we add support for packing new tasks on to
running instances whenever possible, via the dot-product geometric
heuristic for online vector bin-packing [23, 42] to SCloud. This
technique is effective in reducing the cost of SCloud. But, there
remains a cost-gap of 17% (Google) and 11% (TwoSigma) between
SCloud and Stratus.

Also adding Stratus’s scale-out policy. While SCloud’s greedy
instance acquisition algorithm is effectivewith taskswhose requests
are uniform and tasks with resource requests only in a single di-
mension, it performs less well when tasks request a varying amount
of resources in multiple dimensions. Using Stratus’s instance ac-
quisition scheme that considers the cost-per-resource-used of each
group of tasks assigned on to each instance lowers the cost of SCloud
with on-line packing (by 8% on the Google workload and by 3% on
the TwoSigma workload). Implementing SCloud + on-line packing
+ Stratus’s scaling heuristic closes the cost gap between SCloud and
Stratus down to 9% (Google) and 8% (TwoSigma).
Also adding instance clearing. We found that incremental ad-
dition of instance clearing via migration did not help much. In-
terestingly, we found that instance clearing is not effective when
used without taking task runtime into account. When instance
clearing was used without taking task runtime into account on the
enhanced SCloud, we found that cost increased on the TwoSigma
trace for two reasons: (1) Although TwoSigma tasks are generally
more uniform in runtime compared to Google tasks (Sec. 3a), task
runtimes can become increasing mis-aligned with the introduction
of instance clearing, as the runtimes of partially-run tasks may vary
more significantly. Task runtime mis-alignment causes the number
of instance under-utilizations to fluctuate, increasing the number of
task migrations required. (2) TwoSigma tasks require more time to
migrate, as they have larger memory footprints. Without knowing
the cost-benefit tradeoff of clearing an instance, which depends on
how much longer tasks will run, the number of task migrations can
increase significantly.

Therefore, we enhance our enhanced SCloud with perfect run-
time knowledge, such that it only migrates instances when the
benefit in migration outweighs the task migration cost. Even with
this unrealistic knowledge, instance clearing was not very effective
in reducing cost in the enhanced SCloud. With previous features
plus instance clearing, SCloud reduces the cost-gap by 1% (Google
and TwoSigma) only. Stratus still reduces the cost by 8% (Google)
and 7% (TwoSigma).
Side note: Stratus without instance clearing. In addition to
evaluating SCloud enhancedwith the previous features and instance
clearing, we also evaluated Stratus with instance clearing disabled.
The latter increases the cloud bill for Stratus by 28% for the Google
trace and by 15% for TwoSigma. This shows that instance clearing is
effective in assisting Stratus in putting tasks into their rightful bins,
whereas it is less effective on other packing schemes where tasks
are placed on to instances without regard to task runtimes. Unlike
with the enhanced SCloud, less time is spent on task migration by
Stratus (up to 23% less). Futher, tasks that have been migrated at
least once in Stratus are only on average migrated 1.2 times before
they reach an instance on which they terminate.
Also adding runtime binning. Adding Stratus’s runtime binning
to the rest of the enhancements to SCloud, we end up with Stratus.

5.3 Attribution: dynamic instance pricing
Stratus’s scale-out policy exploits dynamic instance pricing better
than the other VC schedulers, because it considers different amounts
of packing as part of selecting the most cost-efficient instance types
based on current prices. Even with statically-priced instances like

130



Stratus: cost-aware container scheduling in the public cloud SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Google TwoSigma
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d 
co

st $1431 $10374

Stratus
Fleet

HSpot
SCloud

Figure 7: Average daily cost for each VC scheduler on the Google
and TwoSigma workloads, using only on-demand VMs, normalized
to the most costly option for each trace.

those offered in Google Cloud Engine andMicrosoft Azure, however,
Stratus’s use of runtime binning and instance clearing to align co-
located tasks’ completion times remains beneficial.

Fig. 7 shows the average daily costs of the VC schedulers when
using only on-demand instances instead of the price-varying spot
instances used in our other experiments. As expected, costs are
much higher for all VC schedulers, since on-demand instances
are usually more expensive than spot instances. Although the dif-
ferences are somewhat smaller, the relative rankings of the VC
schedulers are the same, and we find that Stratus still reduces cost
compared to the others—by 10–29% for Google and by 14–25% for
TwoSigma.

5.4 Sensitivity to runtime est. accuracy
This section characterizes the effect of task runtime estimate accu-
racy on Stratus.

5.4.1 Stratus with perfect runtime knowledge. We evaluated Stra-
tus with perfect runtime knowledge on the Google and TwoSigma
workloads to see how much more Stratus could lower cost in this
ideal scenario. As expected, enhancing Stratus with perfect runtime
knowledge improves its cost-efficiency, further reducing cost by 5%
(Google) and 9% (TwoSigma). Stratus with known runtimes reduces
the cost of Stratus with JVuPredict by improving the constrained
resource utilization of Stratus from 86% to 90% (Google) and from
79% to 84% (TwoSigma), and by reducing the total task migration
time by 64% (Google) and by 82% (TwoSigma).

Less accurate task runtime estimates necessarily induce more
task runtime misalignment for runtime-aware schedulers, leading
to less effective usage of resources on instances as tasks do not
complete in a coordinated manner. When task runtime estimates
are inaccurate, tasks may unexpectedly complete early or late on
an instance, leaving a portion of its resources idle. Although Stratus
has implemented instance clearing to reduce the number of active
VMs in case of under-utilization, instance clearing comes with non-
trivial cost. Namely, tasks that are being migrated do not make

Google TwoSigma
h 50%-ile 95%-ile 50%-ile 95%-ile

0.01 1.3 3.2 1.1 1.7
1 1.3 3.3 1.0 1.6
100 1.3 3.2 1.1 1.8

Table 3: Normalized job latencies for values of h (Sec. 5.4.2).

any progress but reserve resources on both the source and the
destination VMs, and during instance clearing, newly arriving tasks
cannot be assigned on to the cleared VM such that the cleared VM
can be terminated when its task migrations complete.

5.4.2 Runtime estimate accuracy sensitivity. Our previous exper-
iments evaluate Stratus using a real state-of-the-art task runtime
estimator and, in Sec. 5.4.1, a hypothetical runtime estimator pro-
viding perfect estimates. This section characterizes the effect of
task runtime estimate accuracy on Stratus at a finer granularity by
controlling the range of (synthetic) runtime estimate errors.
Setup. In each experiment, we generate runtime estimates for each
task by scaling the actual runtime of the task by a factor of hτ ,
where hτ is uniformly sampled from a range of [h, 1) if h < 1 and
from [1,h] if h ≥ 1. Setting h = 1 is the same as using perfect
task runtime knowledge. We perform 29 experiments on each trace,
with each experiment consisting of five runs on different slices of
the trace, for h ∈ [0.01, 100].
Cost trends and estimate accuracy. Fig. 8a shows Stratus’s sen-
sitivity with respect to cost to the accuracy of its task runtime
estimates. As expected, cost increases as the quality of the run-
time estimates degrades, whether under-estimates (to the left in
the graph) or over-estimates (to the right). As runtime estimates
become less accurate, Stratus makes less informed decisions in
choosing which tasks to co-locate on instances.

Comparing variants of Stratus with and without instance clear-
ing (“no migration”), we observe that instance clearing reduces
the impact of runtime misestimates and misalignments. Stratus is
efficient even without instance clearing when runtime estimates
are accurate (h = 1), only incurring 4% (Google) and 3% (TwoSigma)
more cost thanwith instance clearing. Instance clearing helps signif-
icantly when runtime estimates are increasingly inaccurate. Stratus
achieves 31% (Google) and 14% (TwoSigma) lower cost at h = 0.01
with instance clearing than without. Cost savings at h = 100 with
and without instance clearing is comparable.

The disparate behavior between the results with and without
instance clearing for the Google and TwoSigma traces stems from
the different characteristics of their jobs, as discussed in Sec. 4.2:
TwoSigma jobs consist of tasks longer in duration (the time that
new instances remain well-packed is longer) and often have more
tasks per job (there are more tasks with similar runtimes).
Instance acquisition/clearing and estimate accuracy.The blue
line in Fig. 8b shows Stratus’s sensitivity to task runtime estimates
with respect to number of instances acquired, while the red line
shows Stratus’s sensitivity to task runtime estimates with respect
to number of instances cleared. Table 3 shows the normalized job
latencies for polar values of h on the Google and TwoSigma traces.

As task runtime estimates become increasingly accurate, op-
portunities to release empty instances increase as task runtimes
become better-aligned, decreasing the need to migrate tasks using
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Figure 8: Experiments varying the degree of runtime estimate error in completing jobs from traces. Each experiment consists of tasks with
runtime estimates set to runtime ∗ hτ , where hτ is uniformly sampled from [h, 1) if h < 1 and from [1, h] if h ≥ 1.

the instance clearing heuristic. This, however, also means that as
new tasks arrive there are less instances available on which to place
the new tasks, leading to a greater number of instances acquired
and a larger portion of job latency spent on waiting for instances
to spin up.

Similarly, as task runtime estimates become less accurate, fewer
instances are acquired since instances generally “stick around" for
a longer period of time due to mis-aligned runtimes. Mis-aligning
runtimes raises the chance to trigger instance clearing, increasing
the number of instances cleared and causing the job latency to be
increasingly dominated by task migration time.

Our experimental results (Table 3) show that for the Google and
TwoSigma traces, the impact of increased instance spin-up time vs
increased task migration time on job latency approximately balance
out.

6 CONCLUSION
The Stratus cluster scheduler exploits cloud properties and runtime
estimates to reduce the dollar cost of cluster jobs executed on pub-
lic clouds. By packing jobs that should complete around the same
time, simultaneously considering possible packings and available
instance types/prices, and judicious use of task migration to clear
under-utilized instances, Stratus actively avoids having leased ma-
chines that are not highly utilized. We expect Stratus’s approach to
be a core element of future virtual cluster management for public
clouds.
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