
Towards understanding heterogeneous clouds at scale:
Google trace analysis

Charles Reiss (UC Berkeley), Alexey Tumanov (CMU),
Gregory R. Ganger (CMU), Randy H. Katz (UC Berkeley),

Michael A. Kozuch (Intel Labs)

ISTC-CC-TR-12-101

April 2012

INTEL SCIENCE & TECHNOLOGY CENTER
FOR CLOUD COMPUTING

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Abstract
With the emergence of large, heterogeneous, shared computing clusters, their efficient use by mixed distributed workloads and
tenants remains an important challenge. Unfortunately, little data has been available about such workloads and clusters. This paper
analyzes a recent Google release of scheduler request and utilization data across a large (12500+) general-purpose compute cluster
over 29 days. We characterize cluster resource requests, their distribution, and the actual resource utilization. Unlike previous
scheduler traces we are aware of, this one includes diverse workloads – from large web services to large CPU-intensive batch
programs – and permits comparison of actual resource utilization with the user-supplied resource estimates available to the cluster
resource scheduler. We observe some under-utilization despite over-commitment of resources, difficulty of scheduling high-priority
tasks that specify constraints, and lack of dynamic adjustments to user allocation requests despite the apparent availability of this
feature in the scheduler.

Acknowledgements: The authors wish to gratefully acknowledge Google for their public release of this cluster trace dataset. This research is
supported in part by Intel as part of the Intel Science and Technology Center for Cloud Computing (ISTC-CC), by gifts from Google, SAP, Amazon
Web Services, APC, Blue Goji, Cloudera, EMC, Emulex, Ericsson, Facebook, Fusion-IO, General Electric, Hewlett Packard, Hitachi, Huawei, IBM,
Intel, MarkLogic, Microsoft, NEC Labs, NetApp, Oracle, Panasas, Quanta, Riverbed, Samsung, Seagate, Splunk, STEC, Symantec, VMware, by
an NSERC Fellowship, and by DARPA (contract number FA8650-11-C-7136). We thank the member companies of the PDL Consortium and the
AMPLab sponsors for their interest, insights, feedback, and support.



Keywords: cloud computing, cluster scheduling, trace characterization

2



1 Introduction

Consolidation of heterogeneous workloads into a common shared infrastructure is becoming increasingly
common. It has the advantages of statistical multiplexing of physical resources, centralized asset management,
and workload-specific benefits, such as the ability to share datasets and results of intermediate computations.
Cluster resource consolidation has been popular with the scientific and supercomputing communities for
decades. Only recently, however, has the shared infrastructure started being utilized for a variety of workload
profiles, ranging from long-running services, to shorter map-reduce tasks, and even transient opportunistic
background computation. Infrastructure operators, such as Google, Microsoft, and Amazon, have now fully
embraced this approach.

Little is known, however, about the specifics of how these extensive heterogeneous, physical infrastruc-
tures are managed and their resources allocated. Publicly available datasets with traces from such clusters are
rare. Google released one such dataset [20] in 2011, augmenting a prior release described in [7]. We are not
aware of any other publicly available datasets that describe a larger cluster of such type. The level of detail
and mixture of workload types in this trace is unprecedented.

This paper aims to characterize the composition of this example workload. We identify the “boulders”
and “sand” of this workload. Like many large workloads, this trace is constructed overwhelmingly of small
requests (sand), but its usage is dominated by a modest number of large requests (boulders). These large
requests appear to represent long-running services, while the small requests are tiny on many dimensions,
including resource requirements, duration, and number of replicas. All these requests do not appear to be
particularly well-tuned: many parameters seem to be chosen arbitrarily by humans and do not reflect the
actual performance of the jobs.

Comparing overall usage of the cluster to its capacity, we find that the average utilization of the cluster
only accounts for half the cluster capacity1, despite cluster resource over-commitment and demonstrably
regular use of preemption to achieve its utilization. Interestingly, restarting tasks such as after preemption
events is responsible for a comparable amount of the scheduler’s activity to task scheduling. Additionally, we
examine and quantify the difficulty of scheduling tasks. Since the scheduler does not gang-schedule jobs, we
hypothesize that difficulties in fitting tasks into a running cluster are due to resource constraints.

The remainder of the paper is organized as follows. Section 2 describes the trace, including the cluster,
workload mix, and key features and terminology. Section 3 examines basic characteristics, including overall
utilization and request frequencies, durations, sizes, and shapes. Section 4 examines in more detail the
accuracy of resource allocation requests in order to better understand the large gap between actual aggregate
cluster usage and allocations. Section 5 examines task scheduling delay in more detail in order to understand
which request characteristics are most challenging to accommodate. Section 6 discusses related work.
Section 7 summarizes our contributions.

2 The Trace

The cluster trace released by Google consists of data collected from approximately 12,500 machines and
is summarized in Table 1. The cluster machines are not homogeneous; they consist of three different
platforms (microarchitecture and memory technology combinations) and a variety of memory/compute ratios.
The configurations are shown in Table 2. Because the data has been obfuscated to hide exact machine
configurations, exact numbers of CPU cores and bytes of memory are unavailable; instead, CPU and memory
size measurements are normalized to the configuration of the largest machines. We will use these units

1Note that the 40-60% utilization seen in the Google trace is much better than is observed in typical data centers. For example,
surveys of federal, corporate, and university data centers generally report average utilization of 7–25% [8, 11, 14]. Here, we focus on
understanding the remaining room for improvement.

3



Trace Characteristic Value
Time span of trace 29 days
Jobs run 650k
Number of users (with usage) 925
Tasks submitted 25M
Scheduler events 143M
Resource usage records 1233M
Compressed size 39 GB

Table 1: Summary characteristics of the trace.

Number of machines Platform CPUs Memory
6732 B 0.50 0.50
3863 B 0.50 0.25
1001 B 0.50 0.75
795 C 1.00 1.00
126 A 0.25 0.25
52 B 0.50 0.12
5 B 0.50 0.03
5 B 0.50 0.97
3 C 1.00 0.50
1 B 0.50 0.06

Table 2: Configurations of machines in the cluster. CPU and memory units are linearly scaled
so that the maximum machine is 1. Machines may change configuration during the
trace; we show their first configuration.

throughout this paper. Most of the machines have half of the memory and half the CPU of the largest
machines.

Data was collected from two sources: from the cluster scheduler, for which user requests and scheduling
actions are available, and from the individual machines, for which measurements of running programs are
available.

The cluster scheduler manages a cell, which is a collection of physical machines that are operated as
a single management unit. The cluster scheduler places tasks on these machines. Each task is a request to
schedule a unit of execution encapsulated in a Linux container – “a lightweight virtual system mechanism
sometimes described as ‘chroot on steroids’ ” [3]. A single task can be placed on machines multiple times,
but it is only run on exactly one machine at any given time (except in cases of network partitions). For
example, a task can be scheduled on a machine, run on that machine for some time, then be terminated and
started again on a different machine. Tasks migrated in this fashion do not rely on any scheduler state for
migration and/or restart.

Tasks are organized into jobs. A job is a collection of one or more usually identical tasks. Typically, all
tasks in a job are meant to be run simultaneously, although the scheduler does not ensure this. Although it is
possible for a job to contain a heterogeneous mix of tasks, this functionality is rarely used. Instead, when
a user wishes to run a mix of different types of processes to act as a unit, she would typically launch it as
multiple jobs. For example, a MapReduce program might be launched as two jobs: one for the MapReduce
masters and one for the workers. The trace identifies a user (a developer or internal service identified for

4



Figure 1: Moving hourly average of CPU (top) and memory (bottom) utilization (left) and
resource requests (right). Stacked plot by priority range, highest priority (infras-
tructure) on bottom, followed by monitoring (barely visible white line), normal
production (light grey), other (grey), and gratis (dark grey). The dashed line near
the top of each plot shows the total capacity of the cluster.

accounting purposes) associated with each job. The traces do not identify the nature of the computation
represented by the jobs/tasks.

Each task description also has scheduling attributes associated with it. Most notable are its priority,
resource request, and constraints. Priority refers to the entitlement to evict other tasks for resource reclamation.
Resource request indicates machine resources the task asks for, and task constraints indirectly specify which
machines are suitable for execution. We define the resource requests successfully granted as allocations,
while referring to all requests submitted (but not necessarily granted) as resource requests.

In addition to these scheduling attributes, the trace contains usage data for most tasks which run. These
include measurements of CPU time, memory space usage, and some other measurements (such as local disk,
CPI, etc.). These data have much coarser grain than the scheduler data: most measurements are available in
only 5 minute increments, while the scheduler data has sub-second precision.

3 Workload characterization

This section provides a broad characterization of the workload by describing (1) the aggregate volume of
work expressed as cluster utilization (Section 3.1) and (2) the properties of the jobs and tasks that make up
the workload (Section 3.2).

3.1 Cluster utilization

Figure 1 shows the utilization on the cluster over the 29 day trace period. We evaluated utilization both in
terms of the allocations (right side of figure) and the measured resource consumption (left side of figure).
Based on allocations, the cluster is very heavily booked. Total resource allocation at almost any time account
for more than 80% of the cluster’s memory capacity and more than 100% of the cluster’s CPU capacity.

5



Overall usage is much lower: averaging over one-hour windows, memory usage does not exceed about 50%
of the capacity of the cluster and CPU usage does not exceed about 60%.

To compute the utilization, we divided the trace into five-minute time periods; within each time period,
for each task usage record available, we took the sum of the resource requests and average CPU and memory
usage, weighted by the length of the measurement. We did not attempt to compensate for missing usage
records (which the trace producers estimate accounts for no more than 1% of the records). The trace providers
state that missing records may result from “the monitoring system or cluster [getting] overloaded” and from
filtering out records “mislabeled due to a bug in the monitoring system” [16].

3.1.1 Scheduler operation

Unlike many other cluster schedulers, the CPU and memory requests have a loose relationship to the actual
allocation on the cluster. Some tasks are permitted to use free CPU cycles beyond their allocation and to
use some memory in excess of the requested amount . Memory usage measurements account for some
kernel-managed memory like “hot” page cache, so it is possible for tasks to use memory in excess of their
request that the kernel can reclaim in the event of memory pressure. Otherwise, tasks that use more resources
than they request risk being throttled (for CPU) or killed (for memory).

The scheduler can place tasks on a machine whose total requests exceed the available resources of the
machine. This over-commitment is how the resource allocations can total more than 100% of the cluster’s
CPU and memory capacity. The aggregate amount by which the allocations exceed 100% of the capacity
does not reflect the distribution of over-commitment across machines: tasks need to be packed onto machines,
and many machines may not be fully allocated even when the total allocation exceeds capacity.

3.1.2 By priority

We have broken down the utilization by the priority in Figure 1. We group the twelve given task priorities,
numbered from 0 to 11, into five sets, for which we have chosen the following names based on information
given by the trace providers:

• infrastructure (11) — this is the highest (most entitled to get resources) priority in the trace and accounts
for most of the recorded disk I/O, so we speculate it includes some storage services;

• monitoring (10)

• normal production (9) — this is the lowest (and most occupied) of the priorities labeled ‘production’.
The trace providers indicate that jobs at this priority and higher which are latency-sensitive should not
be “evicted due to over-allocation of machine resources” [16].

• other (2-8) — we speculate that these priorities are dominated by batch jobs; and

• gratis (free) (0-1) — the trace providers indicate that resources used by tasks at these priorities are
generally not charged.

We separate usage by priority in preference to other indicators because the trace providers indicate that the
priority affects billing, so we believe that it will reflect the importance of the tasks accurately.

Most of the usage and allocation in the cluster is accounted for by tasks running at the ‘normal production’
priority. This priority accounts for 56/73% of the CPU/memory usage and 62/64% of the CPU/memory
allocations over the period of the trace. It also has the most noticeable diurnal and weekly patterns. Figure
2 (top) shows the production CPU usage normalized over a 24 hr period; the daily peak-to-mean ratio is
approximately 1.3.

6



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p
o
rt

io
n
 o

f 
cl

u
st

e
r 

C
P
U

0.0

0.1

0.2

0.3

0 5 10 15 20
time (hour)

0.0

0.1

Figure 2: Normal production (top) and lower (bottom) priority CPU usage by hour of day.
The dark line is the median and the grey band represents the middle quantile.

Usage at priorities higher than the normal production priority is small and stable. Usage at the monitoring
priority is too small to be visible on Figure 1; it accounts for only 0.6% of the memory allocation (and
similarly small amounts by other measurements). Utilization at the ‘infrastructure’ priority is larger (3% of
the memory or 7% of the CPU), and shows little diurnal or weekly variation in its usage.

Usage at priorities below the production priorities is much more irregular. It is not dominated by any
daily or weekly pattern but has a much larger peak-to-mean ratio than the production priorities. There is a
significant event spike on days 21 through 25 of the trace, where CPU usage at non-production priorities
increases by about a factor of two. This spike reflects the activity of only one user. The CPU usage spike is
substantially larger than the amount of CPU requested by the tasks. Since the cluster’s CPU is usually fully
allocated, one can consider much of this CPU capacity effectively “borrowed” from the CPU allocation of
higher priority tasks.

The variability in the non-production priorities reflects that, even though this is a large cluster, the
activity of small numbers of users or jobs will have a large effect on overall performance. There are only 925
users (with usage recorded) over the trace. Although none of them dominate usage of the cluster over the
month of the trace, a small number of users represent most of the usage overall. Though no user accounts
for more than 13% of the CPU or memory usage, the top 10 users account for more than half the CPU and
memory usage; the top 100 account for around 95%.

top 10 users: > 50% usage
top 100 users: > 95% usage

925 active users: 100% usage

3.2 Properties of jobs and tasks

To understand impediments that may prevent the scheduler from achieving higher cluster utilization, we
further characterized the task load presented to the scheduler.

7



3.2.1 Job runtime durations

2% jobs: 80% usage

Most jobs are short, but short jobs contribute little to utilization. Even though less than 2% of jobs run for
longer than one day, such jobs account for over 80% of the recorded usage by task-days, and requested CPU-
or memory-days. About two-thirds of these long-running jobs are at production priorities and one-quarter
at gratis priorities. Even though long-running jobs are a small subset of jobs, they represent many users:
excluding gratis-priority jobs, 310 of the 925 users whose jobs have usage records are included, and including
gratis priority jobs, 615.

Most (92%) of these long jobs come from the production priorities or the gratis priorities. Also, at
production priorities, about half of the jobs are these long jobs; long jobs are a small percentage of the
gratis priority jobs. This matches our expectation that the production priorities includes most important
long-running services and that the gratis priorities include testing and development for all types of services.
Other markers of job purpose are less conclusive. Each of the four “scheduling classes,” which represent
latency sensitivity, account for at least 14% of the day or longer jobs. Typical memory or CPU requests are
larger for long jobs than for jobs overall, but still have a similar dynamic range.

About two-thirds of the jobs run for less than five minutes and one-fifth for less than one minute. These
short jobs dominate the ‘other’ priority set. Like the long jobs, these short jobs are not dominated by a small
subset of users.

3.2.2 Request shapes

Most jobs in the trace make relatively small resource requests, though utilization is dominated by somewhat
larger jobs. Very little of the utilization is taken up by tasks that require nearly a whole machine (although
such tasks exist), but most of the utilization is not “sand”. In terms of resource requests, the workload is
diverse; the utilization is not dominated by jobs with any particular request profile.

The trace contains approximately 650k jobs (which run and have usage records). About 75% of jobs
only run one task, and the median length of a job is around 3 minutes. Others of these single-task jobs
may support larger jobs; for example, the trace providers indicate that a MapReduce program will run with
a separate job for the MapReduce master. Some of these single-task jobs likely arise from users running
non-distributed programs or splitting an embarrassingly parallel computation across many jobs.

Similarly, most jobs request less than 2.5% of a typical machine’s memory per task. These small, short
jobs do not account for most of the utilization of the cluster, however. By just about any measure of how
much of the cluster is used (task-days, memory- or CPU-days requested), jobs with 1 task, running for less
than ten minutes, or requesting less than 5% of a typical machine per tasks account for well below 5% of
the machine time on the cluster. Indeed, only jobs with at least hundreds of tasks contribute significantly to
cluster resource allocation.

Even weighting by the portion of the total utilization they account for, requests for most of a typical
machine are rare as can be seen in Figure 3. A majority is accounted for by tasks that each request (in both
CPU and memory) less than a fifth of a typical machine. There is a wide variety of task CPU and memory
request ‘shapes’: the middle quantile (for jobs) of ratios between memory and CPU requests varies by a factor
of 7, and the middle quantile of per-task CPU and memory request sizes vary by a factor of 4 (memory) to 7
(CPU). There is a weak positive correlation between the size of per-task CPU requests and per-task memory
requests (R2 = 0.14 for a linear regression over jobs).

Though memory and CPU requests follow the rule of lots of small requests and a few large ones, neither
appears to be well-approximated by a power law distribution. Memory requests are better modeled by a
log-normal distribution, but a continuous distribution will not correctly model the special popularity of certain,

8



0.0 0.1 0.2 0.3 0.4 0.5
memory request

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
CPU request

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Weighted CDFs of memory (top) and CPU (bottom) requests in terms of the number
of tasks with those requests (thin line) and the portion of the memory allocation
used by tasks with those requests (thick line).

likely round number values. No such simple continuous distribution seems to be a good approximation to the
distribution of CPU requests, based on our analyses.

The frequency of job submissions might suggest that many instances of the same program are being
run. We can approximately identify repeated jobs through the “logical job name”, which, according the trace
providers, will usually remain the same across different executions of the same program. (The trace providers
do not, however, indicate how often different programs are likely to have the same job name.) Based on this
information, we find that many jobs may represent repeated programs.

There are around 40k unique names in the trace. The number of jobs per name loosely follows a Zipf-like
distribution; most names appear exactly once and the most common job name appears 22k times. Some
numbers of job repetitions, however, are more popular than predicted by a Zipf-like distribution. Some of
these peaks correspond to the number of days in the trace, so they may indicate some daily jobs. We suspect
other peaks arise from sets of related jobs that run repeatedly.

There are approximately 14k unique request shapes (in terms of the CPU and memory request); no
single task resource request shape accounts for more than 7% of jobs. We examined the ten most common
request sizes. Six of the ten most common request sizes each represent less than 200 unique names even
though they each account for tens of thousands of jobs. But, since all but one of these very common request
shapes represent at least tens of jobs, we believe they do not simply arise from one application’s requirements.

Job submissions are dominated by the lower priorities. Even though they account for most usage, the
production priorities only account for 7% of jobs and 1% of tasks. This reflects that jobs running at these
priorities run for longer than most of the lower-priority jobs. Over 50% of job submissions are in the other
priorities, where job durations are shortest. For this reason, we speculate that the other priorities include

9



nu
m

be
r o

f j
ob

s
nu

m
be

r o
f j

ob
s

nu
m

be
r o

f j
ob

s
task count

memory request (per task)

CPU request (per task)

104

103

102

101

104

103

102

101

104

103

102

101

01 102 103 104

0.00 0.050.10 0.150.20 0.25

0.00 0.050.10 0.150.20 0.25

Figure 4: Histograms of job counts by task count (top), memory request size (middle) and
CPU request size (bottom). Note the log-scale on the y-axis and the log-scale on
the top plot’s x-axis. We speculate that many of the periodic peaks in task counts
and resource request sizes represent humans choosing round numbers. Memory and
CPU units are the same as Table 2. Due to the choice of x-axis limits, not all jobs
appear on these plots.

batch processing jobs. The remaining approximately 40% come from jobs at the gratis priorities.

3.2.3 Bias due to human influence

Job parameters show many indications of being selected by humans. Most notable are the sizes of jobs.
Round numbers of tasks — such as 16, 100, 500, 1000, and 1024 — are disproportionately popular numbers
of tasks. We can thus infer that the number of tasks being run is usually not selected through an automated
process. Like resource requests sizes, there are a variety of other task counts in use.

For the resource requests, it is more difficult to identify whether the requests are for round numbers
since the units are rescaled. Nevertheless, we can identify several evenly spaced bands of popular requests as
seen in Figure 4. For memory, we believe that these likely represent round numbers (for example, multiples
of 100 megabytes). It seems unlikely that a scheme based on measuring the memory requirement would
choose such round numbers, so we believe that these requests are made by humans.

For CPU, there are similar patterns. But, some of the “bands” likely represent whole numbers of CPUs,
which would be reasonable to choose even if the requests were chosen based on measurements. [17] We
believe it is unlikely that this accounts for all of the especially popular CPU request sizes, because it would
suggest that typical cluster machines have 40 to 80 cores, which seems unrealistically high for commodity
hardware that would be in active use in May 2011. It does not, however, appear to be the case that jobs that

10



0 5 10 15 20 25
time (days)

0

1M

2M

3M

e
v
e
n
ts

 p
e
r 

d
a
y

new tasks
rescheduling

Figure 5: Moving average (over day-long window) of task submission (a task became
runnable) rates.

have a common number for their CPU requests are much more likely to have a round number for its memory
request.

3.2.4 Job arrival rates

Jobs arrive at the cluster approximately continuously. The median inter-arrival period is less than 4 seconds,
and almost all job inter-arrival times are less than 5 minutes. Job inter-arrival times roughly follow an
exponential distribution except that very small inter-arrival periods (seconds) are more common than a
simple exponential distribution would predict. We speculate this skew comes from related sets of jobs that
communicate with each other. Using hourly buckets, the peak-to-mean ratio of job arrivals is 2.5. There is a
regular weekly peak in overall job arrival rates which accounts for the entire peak-to-mean ratio.

3.2.5 Task resubmissions and outcomes

Much of the scheduler’s workload comes from resubmitted tasks. We consider a task resubmitted when
it becomes runnable after terminating for any reason. Although it is possible for users to resubmit tasks
manually, most resubmissions are likely automated. The terminations preceding most resubmissions are
marked as either failures (software crashes of a task) or as evictions (task ceased to fit on the machine, due to
competing workload, over-commitment of the machine, or hardware failures). Other possible reasons for
terminations include kills, where the underlying reason for a task’s death is not available, and finishing, where
the program executed in a task exits normally. Some kill events may logically represent failures or evictions,
and so we may undercount the true failure or eviction rate.

Large spikes in the rate of task resubmissions seen in Figure 5 can be attributed to ‘crash-loops’. These
are cases where the tasks of a job fail deterministically shortly after starting, but they are configured to be
restarted shortly after failing. Of the 14M task failures recorded in the trace, 10M are in three crash looping
jobs, each of which has tens of thousands of tasks. The length of these three large crash-loop examples ranges
from around 30 minutes to around 5 days.

Jobs with large numbers of tasks are not the only ones that appear to experience crash-loops. Approxi-
mately 2% of the memory allocated is accounted for by jobs that experience more than 10 failures per task
over the course of the trace. Most of the failures occur in lower priority jobs — especially the gratis priorities

11



0 5 10 15 20 25
time (days)

0

1M

e
v
ic

ti
o
n
s 

p
e
r 

d
a
y

gratis
all non-gratis

Figure 6: Moving average (over day-long window) of task eviction rates, broken by priority.

that are probably used for development, but there are some noticeable (but smaller in terms of task failure
count) crash loops even at the normal production priority.

After crash loops, evictions are the next most common cause of task rescheduling. As would be expected,
the eviction rate is heavily related to a task’s priority. The rate of evictions for production tasks is very low:
around one per one hundred task days. (If we assume that all non-final kill events for production-priority
tasks are evictions, then we obtain a maximum eviction rate of one per 14 task-days.) We suspect that most
of these evictions are due to machines becoming unavailable for maintenance; about 3% of the machines are
briefly removed from the cluster each day, most likely for software upgrades.

The rate of evictions at lower priorities varies by orders of magnitude, with a weekly decrease in the
eviction rate. Because of the variation in this eviction rate, we believe that almost all these evictions are to
make space for higher priority tasks. Gratis priority tasks average about 4 evictions per task-day, though
almost none of these evictions occur on what appear to be weekends. Given this eviction rate, an average
100-task job running at a gratis priority can expect about one task to be lost every 15 minutes; these programs
must tolerate a very high “failure” rate by the standards of typical cloud computing provider or Hadoop
cluster.

A majority of tasks that terminate without being restarted, terminate normally. 73% of tasks are marked
as terminating successfully, and most other tasks are marked as killed (so we cannot determine if they
terminated ‘normally’). Even though rescheduling due to failures is common, failing tasks and jobs are
relatively rare: about 2% of jobs and tasks. The median failing job is about twice as long (five and half
minute) as the median job overall, while the median length of jobs that are successful is slightly shorter
(about two minutes). The longer length of failed jobs can be partly explained by the retry on failure policy
that is responsible for crash loops: about half of the failing jobs reschedule their tasks on average at least
once; these jobs have a median duration of around 15 minutes.

But, because the workload is dominated by long-running jobs, this does not characterize most of the
utilization. 40% of the memory allocation is contained in tasks that do not complete in the trace. Of
long-running (more than half a day) tasks that do terminate, most of them are marked as killed. We speculate
that these most likely represent long-running services that are killed by some user or external script. 2% of
the memory usage within these long-running jobs is accounted for by jobs that experience about as many task
failures and task starting events. These tasks generally finally terminate as killed, probably because some
human or program recognizes that the job is stuck failing and kills it rather than the tasks reaching a threshold

12



for their maximum number of failures.

4 Resource requests versus usage

Resource requests clearly do not estimate the aggregate usage on this cluster. The overall memory usage
is only 53% of the corresponding allocation, and the CPU usage only 40%. A scheduler that trusted these
requests would have difficulty achieving high utilization. The requests are not consistently wrong, so simply
assuming a fixed “fudge factor” would not work. For example, aggregate CPU usage at the gratis priorities
ranges from around twice to half of the CPU requests, and individual jobs vary much more.

Requests to the scheduler in this cluster are supposed to indicate the “maximum amount . . . a task is
permitted to use” [16]. A large gap between aggregate usage and aggregate allocation, therefore, does not
necessarily indicate that the requests are inaccurate. If a task ever required those CPU and memory resources
for even as little as a second of its execution, then the request would be accurate, regardless of its aggregate or
subsequent consumption. Thus, resource requests could be thought of as reflecting the maximum anticipated
utilization of CPU and memory for the requesting task.

It is difficult to infer from the type of data available in the trace whether a task required some amount
of CPU or memory resources. One problem is that observed usage can either over- or under-indicate actual
requirements. A task that is given more resources than it ‘needs’ may use them: for example, a web server
might be able to cache more in its excess memory or burst to use more CPU than is required to meet its
SLO. Conversely, given too few resources, a task might still run, albeit less efficiently. For example, given
insufficient memory, it may thrash or experience garbage collection delays. With insufficient CPU, it may fail
to meet its latency requirements. Additionally, interactive jobs may need some headroom to handle a rare
worst case (e.g., denial of service) scenario.

For some types of programs, it does not make sense to talk about how much resources it requires or
should be permitted to use. For example, a batch program may be able to make progress in proportion to the
amount of CPU resources it is given. A program that makes use of a cache or lookup table may be able to
similarly trade off memory resources.

Without the ability to rerun programs and understand their performance objectives, we cannot find the
optimal resource request for applications. We will make some approximate best guesses from the actual
usage we observe: we will assume the maximum or some high percentile of the (usually five minute long)
actual usage samples is a good estimate of an appropriate resource request. Since the tasks in a job are usually
identical, we will assume that the resource request needs to be suitable for each task within a job. To account
for this, we will take a high percentile of the estimates for each task as the estimate for resource request
within each task.

4.1 Request accuracy

The differences between the resource request we would estimate from usage and the actual request is not
what one would infer from Figure 1. Jobs accounting for about 60% of the memory allocated fall within
10% of our estimate of their appropriate request. The remaining jobs over-estimate their memory usage,
accounting for about a fifth of the total memory allocation. (Memory requests rarely under-estimate their
jobs’ memory utilization by a large factor, probably because tasks are killed when the memory request is
exceeded by too much.) But the total difference between the memory allocation and its utilization is around
50% of the memory requested.

CPU usage is clearly not as constrained by the request as memory usage. Many jobs have tasks that
briefly use much more CPU than the job requests. These spikes are visible looking at usage samples which
usually account for five minutes of usage. (Some samples are shorter; for example, a task may not remain

13



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
fr

a
ct

io
n
 o

f 
jo

b
s

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Memory

0.0 0.5 1.0 1.5 2.0
portion of request used

0.0

0.2

0.4

0.6

0.8

1.0
CPU

(a) unweighted

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f 
re

so
u
rc

e
-d

a
y
s

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Memory

0.0 0.5 1.0 1.5 2.0
portion of request used

0.0

0.2

0.4

0.6

0.8

1.0
CPU

(b) weighted

Figure 7: 7(a) shows the CDF of the maximum five-minute usage sample relative to the
resource request for the corresponding job. The thin line represents the largest
five-minute sample within each job. The thick line discards outlier tasks within
a job; for each job, it shows the 99th percentile of the largest five-minute usage
measurements for each task. The top graphs shows memory usage; the bottom
graphs show CPU usage. 7(b) shows the same CDFs as 7(a), but with each job
weighted by its per-task request times the number of task-days its tasks run.

running for all of the five-minute sampling period.) To avoid being biased by rare CPU spikes or short
samples, we will primarily look at 99th percentiles of these samples. Even looking at the 99th percentile
shows that many jobs have some task use more CPU than the job requests. Since there are many small jobs
which make insignificant contributions to cluster usage, we will usually weight each job by the size of its
per-task resource request multiplied by the number of task-days for which its tasks run. As shown in figure
7(b), thus weighted, the ‘middle’ job accurately estimates its CPU usage: about half the weight is in jobs
for which 99% of the tasks have no CPU usage sample greater than the CPU request. But, otherwise, there
appears to be little relationship between the actual sustained CPU usage and the CPU request.

This estimate of CPU usage undercounts the requirements of jobs that require periodic CPU bursts rather
than sustained CPU capacity. For each of the usually five minute usage samples, this trace includes data about
the maximum one-second sample of the CPU usage in that sample. As this represents 99.7th (top 1 second
of 300 seconds) percentile CPU usage within each five-minute window, it is very noisy. These maximum
samples are often five or more times a job’s CPU requests (we trip the x-axis limit at 2.0). This is true even
after filtering out jobs with small CPU requests, low scheduling classes or priorities and selecting the median
of the samples.

We assume that most CPU requests allow jobs to at least meet their performance requirements. Thus, it
seems unlikely that latency-sensitive jobs actually require CPU bursts of four to five times their CPU request.
We are doubtful, therefore, that the maximum CPU usage measurements can be used to infer the accuracy of
the CPU requests.

4.2 Variation within tasks and jobs

Even if users could set the optimal resource request for their jobs, the gap between the overall allocation and
usage would remain large. Comparing the maximum usage for each job with the actual usage of the tasks
within the job, we find that any scheduler which actually sets aside resources equal to each running tasks’
request cannot come close to fully utilizing these resources. Even for memory usage (which, in aggregate,
is relatively constant), choosing the “correct” memory requests for each job would leave about 40% of the

14



memory allocation (in terms of byte-seconds) unused.
One source of this problem is that resource usage is not the same between tasks in a job or over time

within a job. Particularly, even if most tasks in a job use the same amount of resources most of the time,
there may be rarer outliers in resource usage that would define the corresponding resource request. If users
understood their resource usage well enough, one might imagine that users could provide adjustments for
their resource allocation over time or between tasks in the job. The system from which the trace was extracted
supports this, but it is rarely used: jobs accounting for around 4% of memory allocated adjusted their CPU
request in this fashion, and jobs accounting for another 3% updated their memory request.

Based on the usage measurements in the trace, the high percentile of the five-minute usage samples are
much larger than average usage — both between tasks in a job and within tasks over time. Surprisingly, this
difference exists even for memory utilization: differences between the maximum usage of tasks within jobs
account for about 20% of the total memory allocation (roughly the same as the apparent inaccuracies of each
job’s requests). Differences between the maximum usage for a task and its typical usage account for another
18%. (Because maximum memory usage can exceed the memory allocation, the sum of these percentages
can exceed the allocation/usage gap.)

Much of this difference is due to extreme outliers in resource usage. There is a large difference between
the 99th percentile measurements, often about as large as the difference between the 99th percentile and the
median. This difference exists even among long-running jobs, so it is unlikely to be from start-up effects
where memory usage needs to ramp up. Outside of high percentile measurements, memory usage is much
more stable, and, in particular, the memory usage of long-running tasks in one hour is usually within a small
percentage of its memory usage in the next hour.

5 Challenges in Task Scheduling

In this section we analyze task scheduling delays and identify potential causes. Scheduling latency is
characterized by priority as well as the presence or absence of constraints.

5.1 Scheduling Delay

Scheduling a wide diversity of workloads on a relatively full cluster is challenging. In addition to needing to
find a machine where the requested task shape fits, the scheduler must satisfy priorities and any specified
constraints. This trace is unique in providing anonymized yet expressive information on task placement
constraints. It is likely that some of these constraints will make tasks difficult to schedule. We assessed this
difficulty by examining how scheduling delay relates to the constraints placed upon a request.

Before examining task constraints, though, it is useful to have a general picture of how the task
scheduling delay behaves across the trace. Figure 8 shows a cumulative distribution of scheduling delays
over all scheduled task instances. Unlike jobs, tasks exhibit longer scheduling delays that range from 0 to
more than 20 days. As a point of reference, we note that more than 10% of tasks have delays longer than 10
seconds, suggesting that there is room to optimize schedulers with this metric in mind.

The long tail of this CDF stretches to the maximum observed task scheduling delay of 20.3 days. Long
scheduling delays are particularly interesting to us when they are symptomatic of task-specific constraints
that cannot be easily met rather than just over-utilization of physical resources or delaying of tasks with low
priorities. The most-delayed task (>20 days) had the highest possible priority and modest resource requests,
thereby discounting those as potential causes. More generally, the 100 worst scheduling delays are a roughly
evenly split mix of highest and lowest priorities—a counter-intuitive result, inviting a closer look at task
priorities.

15



0 5 10 15 20
task scheduling delay (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

nu
m

be
r o

f t
as

ks

1e7

all
gratis
other
prod

Figure 8: Task scheduling delay: reverse cumulative distribution. For each scheduling delay
X, we plot the number of tasks that experienced a scheduling latency of X seconds
or more for all (green) tasks and 3 subsets by priority: gratis (blue), other (black),
and production (red).

5.2 Scheduling Delay by Priority

A look at worst-case examples suggests that having a high priority does not ensure short scheduling latencies.
Figure 9 plots a cumulative distribution function of scheduling delay broken down by the major priority
groups, namely gratis, other, and production. As the priority increases, the CDF curve becomes more
convex—for a given task scheduling latency (on the x-axis), higher priority tasks have a lower probability of
reaching such a delay. The highest probabilities of delay intuitively correspond to the gratis priority class and
vice versa.

This was also confirmed by tabulating mean delays for each of these priority groups (see Table 3).

priority group mean scheduling delay (s)
gratis (0-1) 242.9
other (2-8) 202.3
production (9-11) 52.2
9-10 only 5.4

Table 3: task scheduling delay by priority group

5.3 Constraints and Anti-Affinity

Even though priority classes correlate well with scheduling delay, a higher resolution look and a breakdown
by individual priorities reveals a noisier picture. In particular, the scheduling latency for the highest priority
group is the highest of all groups: 7.43 hrs on average. That is 2 orders of magnitude higher than lowest
priority tasks, and exceeds the production priority group by 3 orders. Given the ability of the scheduler to
revoke lower priority tasks as well as a generally non-imposing shape of these tasks, there must be additional
factors. One strong possibility is the presence of the “anti-affinity” constraint found in all task instances with

16



0 5 10 15 20
task scheduling delay (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

of
 ta

sk
s

all
gratis
other
prod

Figure 9: Task scheduling delay: reverse CDF. For each scheduling delay X, we plot the
fraction of tasks that experienced a scheduling latency of X seconds or more for all
(green) tasks and 3 subsets by priority: gratis (blue), other (black), and production
(red). Note that with increase in priority, the probability of a larger scheduling delay
decreases.

priority 11, which means that all tasks of the given job must run on different machines. There are also various
other constraints that could be responsible for the scheduling delays.

It is interesting to note that there are about 25M unique tasks in the trace, but less than 6% of them have
any constraints. For those that do, we’ve established that the number of unique constraints does not exceed 6,
with fewer constraints being substantially more common, as can be seen in Table 4. Constraints in the trace

task count unique constraint count
24 019 159 0

1 368 376 1
33 026 2
2 782 3
1 352 4

30 5
6 6

25 424 731 17

Table 4: Task count by the number of unique constraints specified.

are specified as an attribute key, value, and comparison operator tuple on a per task basis. The uniqueness of
the constraint was determined by attribute key alone. This ensures that “range” constraints (e.g., X > 2 and
X < 5) and attribute value updates are not double-counted.

From our earlier experience with priorities, we took the presence/absence of constraints as the first-order
predictor and discovered that unconstrained tasks are scheduled 1.5 times faster (211 seconds) than tasks
with constraints (> 300 seconds), on average.

Finally, the anti-affinity requirement has already been noted as capable of substantially affecting the
schedulability of a task. As can be seen in table 5 and Figure 10, the absence of anti-affinity constraint

17



0 5 10 15 20
task scheduling delay (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

of
 ta

sk
s

gratis(0)
gratis(1)
prod(0)
prod(1)

Figure 10: Task scheduling delay CDF broken down by both priority and anti-affinity re-
quirement. The dashed line and “(1)” indicates those tasks with anti-affinity
constraints.

anti-affinity off anti-affinity on
Priority task count delay (s) task count delay (s)

0-1 28 002 936 233.49 260 809 892.19
2-8 14 148 983 244.19 2 945 288 11.40

9-10 1 558 255 5.06 80 861 13.19

Table 5: anti-affinity and priority as predictors of scheduling latency

correlates very well with a decrease in scheduling latency. The difference ranges from a factor of 2 (production
priority) to a factor of 4 (gratis priority). In Fig. 10, we’ve broken it down by priority group (color) as well as
anti-affinity (linestyle). It can be seen that starting from as early as a 2s delay (for gratis workloads) and 5s
delay for production, a greater number of constrained tasks have a given task scheduling delay than tasks
without anti-affinity.

The presence or absence of the anti-affinity constraint has thus also been shown to correlate with higher
or lower scheduling latency respectively.

5.4 Pending tasks

Figure 11 is a high-level visualization of the cluster queuing delay by calculating the number of pending
tasks on a minute-by-minute granularity. No smoothing was performed, preserving short-lived spikes in the
data. Despite the noise, a weekly pattern clearly emerges, as the queuing delay starts rising in the beginning
of each 7-day period and is falling off towards the end of the weekend. This pattern is strikingly consistent,
including on the first day of the fifth week on day 29.

18



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
days since start of trace

0

10000

20000

30000

40000

50000

nu
m

be
r o

f p
en

di
ng

 ta
sk

s

Figure 11: Task queue length over time.

6 Related Work

The corpus of computer science literature includes many examples of trace-based analysis. To our knowledge,
this paper presents the most complete study of a commercial, multipurpose cluster of this size and over this
duration. Perhaps the closest related work are studies of previous Google cluster traces. Chen et al. [7]
analyzed a trace which lacked task request information and only spanned a 6.25 hour time period. Zhang et
al. [21] analyzed a limited 5 day trace which included several clusters to determine an appropriate model for
run-time task resource usage that would reproduce aggregate resource usage and scheduling delays. They
found a model using only the mean and coefficient of variation within each of their task classes was sufficient
for that purpose. Sharma et al. [19] used trace samples from three Google clusters that span 5 days to form a
baseline against which synthetic workloads were compared.

Most other trace-based studies of a comparable size come from the high-performance computing or
grid domains (see [2] and [1] for trace repositories). Some of the phenomena observed in the present
study have analogues in these parallel, batch environments. For example, Downey et al. [9] found discrete
distributions of job parameters and a similar high count of small jobs together with resource usage dominance
by large jobs. More recent analyses [12, 6] of MapReduce logs has found a similar prevalence of many small
jobs. Disagreement between user-specified estimates and reality have been observed in scientific computing
clusters, but usually in terms of runtime estimates [4]. Although they could not have resource requests,
examinations of actual CPU and memory usage in Hadoop clusters have found similar diversity in resource
requirements [10].

The high-performance computing community has conducted extensive analysis of failure data from large
batch systems [18, 15, 13]. Some non-scheduler traces of heterogeneous datacenters have been analyzed. For
example, Benson et al. [5] analyzes network traffic traces from several multipurpose datacenters, identifying
the mix of applications from the network activity.

7 Summary and Conclusions

The workloads served by large, multi-purpose clusters vary across most dimensions, creating new challenges
for schedulers. This paper analyzes the Google cluster trace, which captures the demand on and activity of
over 12,500 machines over 29 days, to better understand these challenges. Our analysis confirms popular
anecdotes about ‘boulders’ and ‘sand’ among resource requests, with some tasks lasting for weeks but most

19



lasting no more than a few minutes; a few tasks require entire machines, but most – only a small fraction of a
machine; some jobs have many component tasks, but most jobs have only one.

Our analysis also identifies and examines two specific characteristics that may induce new scheduler
designs. First, we observe significant mismatches between resource requests and actual resource usage, which
make it difficult for a scheduler to effectively pack tasks onto machines to achieve maximum utilization.
Clearly aware of conservative resource allocation over-estimates, the traced scheduler over-commits machines
and relies on eviction to increase throughput. It thus achieves a commendable 40–60% average utilization,
leaving some room for further improvement in future work. Parts of this mismatch appear to result from
inaccurate human resource request specifications, but parts appear to be inherent variation within tasks and
jobs. Second, we observe substantial delays in the scheduling of some requests (e.g., up to 20 days), which
we attribute to difficult-to-satisfy task constraints.

The analyzed trace, including the workload mix and the scheduler characteristics, represent a single
noteworthy data point for those studying large, many-purpose heterogeneous commercial clusters. We believe
that many of the insights garnered from our analyses will apply broadly to many such clusters. As such,
we believe that there is substantial opportunity for new approaches to scheduling that explicitly address the
increasing challenges of intra-cluster workload heterogeneity and platform heterogeneity.

References

[1] The Grid Workloads Archive. http://gwa.ewi.tudelft.nl/.

[2] Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.

[3] lxc Linux containers, 2012. http://lxc.sourceforge.net/.

[4] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely. Are user runtime estimates
inherently inaccurate? In Proceedings of the 10th International Conference on Job Scheduling Strategies
for Parallel Processing, JSSPP’04, pages 253–263. Springer-Verlag, 2005.

[5] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteristics of data centers
in the wild. In Proceedings of the 10th Annual Conference on Internet Measurement, IMC ’10, pages
267–280. ACM, 2010.

[6] Yanpei Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating MapReduce performance
using workload suites. In Proc. of IEEE 19th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), pages 390–399, July 2011.

[7] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and Randy H. Katz. Analysis and lessons
from a publicly available Google cluster trace. Technical Report UCB/EECS-2010-95, EECS Depart-
ment, University of California, Berkeley, Jun 2010.

[8] Committee on Oversight and Government Reform. Cloud computing: benefits and risks of moving
federal IT into the cloud, July 2010. http://oversight.house.gov/index.php?option=com_

content&task=view&id=5012&Itemid=2.

[9] Allen B. Downey and Dror G. Feitelson. The elusive goal of workload characterization. SIGMETRICS
Performance Evaluation Review, 26:14–29, March 1999.

[10] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica.
Dominant resource fairness: fair allocation of multiple resource types. In Proceedings of the 8th

20

http://gwa.ewi.tudelft.nl/
http://www.cs.huji.ac.il/labs/parallel/workload/
 http://lxc.sourceforge.net/ 
 http://oversight.house.gov/index.php?option=com_content&task=view&id=5012&Itemid=2 
 http://oversight.house.gov/index.php?option=com_content&task=view&id=5012&Itemid=2 


USENIX Conference on Networked Systems Design and Implementation, NSDI’11, pages 24–24.
USENIX Association, 2011.

[11] Michael Goodrich. GSA presentation on the federal cloud computing initiative. Software & Information
Industry Association (SIAA) panel, June 2010. http://www.siia.net/blog/index.php/2010/

06/gsa-presentation-on-the-federal-cloud-computing-initiative/.

[12] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces from a production MapReduce
cluster. In Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), pages 94 –103, May 2010.

[13] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema. The failure trace archive: enabling
comparative analysis of failures in diverse distributed systems. In Proc. of 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), pages 398 –407, May 2010.

[14] Huan Liu. A measurement study of server utilization in public clouds. In Proceedings of International
Conference on Cloud and Green Computing (CGC), Dec 2011. https://sites.google.com/site/
huanliu/.

[15] A. Oliner and J. Stearley. What supercomputers say: a study of five system logs. In Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’07),
pages 575–584, June 2007.

[16] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage traces: format + schema,
2011. http://goo.gl/5uJri.

[17] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Obfuscatory obscanturism: making workload
traces of commercially-sensitive systems safe to release. In Proc. of IEEE/IFIP International Workshop
on Cloud Management (CloudMan’12), April 2012.

[18] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-performance computing
systems. In Proc. of the 40th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2006), pages 249–258, 2006.

[19] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Rifaat, and Chita R. Das. Modeling
and synthesizing task placement constraints in Google compute clusters. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, SOCC ’11, pages 3:1–3:14. ACM, 2011.

[20] John Wilkes and Charles Reiss. Details of the ClusterData-2011-1 trace, 2011. https://code.

google.com/p/googleclusterdata/wiki/ClusterData2011_1.

[21] Qi Zhang, Joseph L. Hellerstein, and Raouf Boutaba. Characterizing task usage shapes in Google’s com-
pute clusters. In Proc. of Large-Scale Distributed Systems and Middleware (LADIS 2011), September
2011.

21

 http://www.siia.net/blog/index.php/2010/06/gsa-presentation-on-the-federal-cloud-computing-initiative/ 
 http://www.siia.net/blog/index.php/2010/06/gsa-presentation-on-the-federal-cloud-computing-initiative/ 
 https://sites.google.com/site/huanliu/ 
 https://sites.google.com/site/huanliu/ 
http://goo.gl/5uJri
 https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1 
 https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1 

	Introduction
	The Trace
	Workload characterization
	Cluster utilization
	Scheduler operation
	By priority

	Properties of jobs and tasks
	Job runtime durations
	Request shapes
	Bias due to human influence
	Job arrival rates
	Task resubmissions and outcomes


	Resource requests versus usage
	Request accuracy
	Variation within tasks and jobs

	Challenges in Task Scheduling
	Scheduling Delay
	Scheduling Delay by Priority
	Constraints and Anti-Affinity
	Pending tasks

	Related Work
	Summary and Conclusions

