Foundations for Scaling Analytics in Apache Spark

Joseph K. Bradley
September 19, 2016
Who am I?

Apache Spark committer & PMC member

Software Engineer @ Databricks (ML team)

Machine Learning Department @ Carnegie Mellon
Talk outline

Intro

Apache Spark

Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames
Apache Spark

- General engine for big data computing
- Fast & scalable
- Easy to use
- APIs in Python, Scala, Java & R

Open source
- Apache Software Foundation
- 1000+ contributors
- 250+ companies & universities
It’s big

- Spark beat Hadoop’s Gray Sort record by 3x with 1/10 as many machines
- Largest cluster size of 8000 Nodes (Tencent)
MLlib: Spark’s ML library

Goals
Scale-out
Standard library
Extensible API

Data utilities
Featurization
Statistics
Linear algebra

ML tasks
Classification
Regression
Recommendation
Clustering
Frequent itemsets

Workflow utilities
Model import/export
Pipelines
DataFrames
Cross validation

Challenges for big data
• Iterative algorithms
• Diverse algorithmic patterns
• Many data types
GraphX and GraphFrames

Goals
- Scale-out
- Standard library
- Extensible API

Graph algorithms
- Connected components
- PageRank
- Label propagation
- ...

Graph queries
- Vertex degrees
- Subgraphs
- Motif finding
- ...

Challenges for big data
- Iterative algorithms
- Many (big) joins
- Many data types
Talk outline

Intro

Apache Spark

Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames
Talk outline

Intro
 Apache Spark
 Machine Learning (and graphs) in Spark

Original implementations: RDDs
Future implementations: DataFrames
Resilient Distributed Datasets (RDDs)

val myData: RDD[(String, Vector)]
myData.map {
 _._2 * 0.5
}
Resilient Distributed Datasets (RDDs)
Resilient Distributed Datasets (RDDs)

- Resiliency
 - Lineage
 - Caching & checkpointing
ML on RDDs

Compute gradient (Vector) for each row (training example)

Aggregate gradient

Broadcast gradient
ML on RDDs: the good

Flexible: GLMs, trees, matrix factorization, etc.

Scalable: E.g., Alternating Least Squares on Spotify data (2014)
- 50+ million users x 30+ million songs
- 50 billion ratings

Cost ~ $10
- 32 r3.8xlarge nodes (spot instances)
- For rank 10 with 10 iterations, ~1 hour running time.
ML on RDDs: the challenges

- Maintaining state
- Python API
- Iterator model
- Data partitioning
Maintaining state on master

Current state
Maintaining state in RDDs
Maintaining state

Cons of master
• Single point of failure.
• Cannot support large state (1 billion parameters)

Cons of RDDs
• More complex
• Lineage becomes a problem ➔ cache & checkpoint

Unstated con: Developers have to choose 1 option!
Python API (RDD-based)

Data stored as Python objects → Serialization overhead
Iterator model

```scala
val rdd0: RDD[(String, Vector)] = ...
val rdd1 = rdd0.map { (name, data) =>
  (name.trim, normalizeVec(data))
}
val rdd2 = rdd1.map {
  ...
}
```

- Arbitrary data types
- Black box lambda functions
- Iterative processing (especially in ML!)
- Boxed types
- JVM object creation & GC
Data partitioning: numPartitions

Selecting numPartitions can be critical.
- Each task has overhead.
- Overhead / parallelism trade-off.

Different numPartitions for different jobs:
- SQL: 200+ is reasonable
- ML: 1 per compute core
Data partitioning: co-partitioning

Algorithm
- Join
- Map
- Iterate

Co-partitioning is critical for
- ALS (matrix factorization)
- Graph algorithms
ML on RDDs: the challenges

Maintaining state (& lineage)
Python API
Iterator model
Data partitioning
Talk outline

Intro

Apache Spark

Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames
Talk outline

Intro
 Apache Spark
 Machine Learning (and graphs) in Spark

Original implementations: RDDs

Future implementations: DataFrames
Spark DataFrames & Datasets

Data grouped into named columns

<table>
<thead>
<tr>
<th>dept</th>
<th>age</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio</td>
<td>48</td>
<td>H Smith</td>
</tr>
<tr>
<td>CS</td>
<td>34</td>
<td>A Turing</td>
</tr>
<tr>
<td>Bio</td>
<td>43</td>
<td>B Jones</td>
</tr>
<tr>
<td>Chem</td>
<td>61</td>
<td>M Kennedy</td>
</tr>
</tbody>
</table>

Datasets: Strongly typed DataFrames

```
data.groupBy("dept").avg("age")
```

DSL for common tasks
- Project, filter, aggregate, join, …
- Statistics, n/a values, sketching, …
- User-Defined Functions (UDFs) & Aggregation (UDAFs)
Catalyst query optimizer

Catalyst transformations

SQL
DataFrame
Dataset

Query Plan

Optimized Query Plan

RDDs

Abstractions of user programs (Trees)
Project Tungsten

Memory management
• Off-heap (Java Unsafe API)
• Avoid JVM GC
• Compressed format

Code generation
• Rewrite chain of iterators into single code blocks
• Operate directly on compressed format
DataFrames in ML and Graphs

API
- DataFrame-based API in MLlib (spark.ml package)
- GraphFrames (Spark package)

Transformation & prediction

Training
Python API

Time to aggregate 10^6 Int pairs (secs) in Spark 1.4

- Spark Python DF
- Spark Scala DF
- RDD Python
- RDD Scala

better
Transformation/prediction with DataFrames

User-Defined Types (UDTs)
- Vector (sparse & dense)
- Matrix (sparse & dense)

User-Defined Functions (UDFs)
- Feature transformation
- Model prediction

Whole-stage code generation
- Fuse across multiple operators

Spark 1.6: 14M rows/s
Spark 2.0: 125M rows/s
Future work: model training

Goal: Port all ML/graph algorithms to run on DataFrames for better speed & scalability.

Currently:

• Belief propagation
• Connected components
Catalyst in ML

What’s missing?

• Concept of iteration
• Handling caching and checkpointing across many iterations
• ML/Graph-specific optimizations for Catalyst query planner
Tungsten in ML

Partly done
- Vector/Matrix UDTs
- UDFs for some operations

What’s missing?
- Code generation for critical paths
- Closer integration of Vector/Matrix types with Tungsten
OOOMing

DataFrames automatically spill to disk

→ Classic pain point of RDDs
 java.lang.OutOfMemoryError

Goal: Smoothly scale, without custom per-algorithm optimizations
To summarize...

MLlib on RDDs
• Required custom optimizations

MLlib with a DataFrame-based API
• Friendly API
• Improvements for prediction

In the future
• Potential for even greater scaling for training
• Simpler for non-experts to write new algorithms
Get started

Get involved
• JIRA http://issues.apache.org
• mailing lists http://spark.apache.org
• Github http://github.com/apache/spark
• Spark Packages http://spark-packages.org

Learn more
• New in Apache Spark 2.0 http://databricks.com/blog/2016/06/01
• MOOCs on EdX http://databricks.com/spark/training

Try out Apache Spark 2.0 in Databricks Community Edition http://databricks.com/ce

Many thanks to the community for contributions & support!
Databricks

Founded by the creators of Apache Spark

Offers hosted service
- Spark on EC2
- Notebooks
- Visualizations
- Cluster management
- Scheduled jobs

We’re hiring!
Thank you!

FB group: Databricks at CMU
databricks.com/careers