
Datacenter Computers
modern challenges in CPU design

Dick Sites
Google Inc.
February 2015

February 2015 2

Thesis: Servers and
desktops require

different design emphasis

February 2015 3

Goals

• Draw a vivid picture of a computing
environment that may be foreign to your
experience so far

• Expose some ongoing
research problems

• Perhaps inspire contributions in this area

February 2015 4

Analogy (S.A.T. pre-2005)

:

:

as

February 2015 5

Analogy (S.A.T. pre-2005)

:

:

as

February 2015 6

Datacenter Servers are Different

 Move data: big and small

 Real-time transactions: 1000s
per second

 Isolation between programs

 Measurement underpinnings

 Move data: big and small

February 2015 8

Move data: big and small

• Move lots of data
– Disk to/from RAM
– Network to/from RAM
– SSD to/from RAM
– Within RAM

• Bulk data
• Short data: variable-length items
• Compress, encrypt, checksum, hash, sort

February 2015 9

Lots of memory

• 4004: no memory

• i7: 12MB L3 cache

February 2015 10

Little brain, LOTS of memory

• Server 64GB-1TB

Drinking straw access

February 2015 11

High-Bandwidth Cache Structure

• Hypothetical 64-CPU-thread server

L3 cache

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…0 1 2 3
Core 0

L1 caches

4 5 6 7
Core 1

L1 caches

8 9 10 11
Core 2

L1 caches

60 61 62 63 PCs
Core 15
L1 caches

…L2 cache L2 cache

February 2015 12

Forcing Function

Move 16 bytes every CPU cycle

What are the direct consequences
of this goal?

February 2015 13

Move 16 bytes every CPU cycle

• Load 16B, Store 16B, test, branch
– All in one cycle = 4-way issue minimum
– Need some 16-byte registers

• At 3.2GHz, 50 GB/s read + 50 GB/s write,
– 100 GB/sec, one L1 D-cache

• Must avoid reading cache line before write
– if it is to be fully written (else 150 GB/s)

February 2015 14

Short strings

• Parsing, words, packet headers, scatter-
gather, checksums

the _ quick brown_ _ fox

IP hdr TCP hdr chksumVLAN …

February 2015 15

Generic Move, 37 bytes

thequ ickbrownfoxjumps overthelazydog..

thequ ickbrownfoxjumps overthelazydog..

5 bytes 16 bytes 16 bytes

February 2015 16

Generic Move, 37 bytes

thequ ickbrownfoxjumps overthelazydog..

thequ ickbrownfoxjumps overthelazydog..

5 bytes 16 bytes 16 bytes

16B aligned
cache accesses

February 2015 17

Generic Move, 37 bytes, aligned target

thequick brownfoxjumpsove rthelazydog..

thequickbr ownfoxjumpsovert helazydog..

10 bytes 16 bytes 11 bytes

16B aligned
cache accesses

32B shift helpful:
LD, >>, ST

February 2015 18

Useful Instructions

• Load Partial R1, R2, R3
• Store Partial R1, R2, R3

– Load/store R1 low bytes with 0(R2), length 0..15 from
R3 low 4 bits, 0 pad high bytes, R1 = 16 byte register

– 0(R2) can be unaligned
– Length zero never segfaults
– Similar to Power architecture Move Assist instructions

• Handles all short moves
• Remaining length is always multiple of 16

February 2015 19

Move 16 bytes every CPU cycle

• L1 data cache: 2 aligned LD/ST accesses
per cycle: 100 GB/s, plus 100 GB/s fill

L3 cache

L2 cache L2 cache

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…4 5 6 7
Core 1

L1 caches

8 9 10 11
Core 2

L1 caches

60 61 62 63 PCs

Core 15
L1 caches

0 1 2 3
Core 0

L1 caches

February 2015 20

Move 16 bytes every CPU cycle

• Sustained throughout L2, L3, and RAM
• Perhaps four CPUs simultaneously

L3 cache

L2 cache L2 cache

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…4 5 6 7
Core 1

L1 caches

8 9 10 11
Core 2

L1 caches

60 61 62 63 PCs

Core 15
L1 caches

0 1 2 3
Core 0

L1 caches
100 GB/s

x 16

200 GB/s
x 4

400 GB/s
x 1

February 2015 21

Top 20 Stream Copy Bandwidth (April 2014)

Date Machine ID ncpus COPY
1. 2012.08.14 SGI_Altix_UV_2000 2048 6591 GB/s
2. 2011.04.05 SGI_Altix_UV_1000 2048 5321
3. 2006.07.10 SGI_Altix_4700 1024 3661
4. 2013.03.26 Fujitsu_SPARC_M10-4S 1024 3474
5. 2011.06.06 ScaleMP_Xeon_X6560_64B 768 1493
6. 2004.12.22 SGI_Altix_3700_Bx2 512 906
7. 2003.11.13 SGI_Altix_3000 512 854
8. 2003.10.02 NEC_SX-7 32 876
9. 2008.04.07 IBM_Power_595 64 679
10. 2013.09.12 Oracle_SPARC_T5-8 128 604
11. 1999.12.07 NEC_SX-5-16A 16 607
12. 2009.08.10 ScaleMP_XeonX5570_vSMP_16B 128 437
13. 1997.06.10 NEC_SX-4 32 434
14. 2004.08.11 HP_AlphaServer_GS1280-1300 64 407

Our Forcing Function 1 400 GB/s
15. 1996.11.21 Cray_T932_321024-3E 32 310
16. 2014.04.24 Oracle_Sun_Server_X4-4 60 221
17. 2007.04.17 Fujitsu/Sun_Enterprise_M9000 128 224
18. 2002.10.16 NEC_SX-6 8 202
19. 2006.07.23 IBM_System_p5_595 64 186
20. 2013.09.17 Intel_XeonPhi_SE10P 61 169

https://www.cs.virginia.edu/stream/top20/Bandwidth.html

February 2015 22

Latency

• Buy 256GB of RAM only if you use it
– Higher cache miss rates
– And main memory is ~200 cycles away

February 2015 23

Cache Hits
200-cycle miss @4 Hz
Cache Hits
1-cycle hit @4 Hz

February 2015 24

Cache Miss to Main Memory
200-cycle miss @4 Hz

cache miss

February 2015 25

What constructive work
could you do during

this time?

February 2015 26

Latency

• Buy 256GB of RAM only if you use it
– Higher cache miss rates
– And main memory is ~200 cycles away

• For starters, we need to prefetch about
16B * 200cy = 3.2KB to meet our forcing
function; call it 4KB

February 2015 27

Additional Considerations

• L1 cache size = associativity * page size
– Need bigger than 4KB pages

• Translation buffer at 256 x 4KB covers
only 1MB of memory
– Covers much less than on-chip caches
– TB miss can consume 15% of total CPU time
– Need bigger than 4KB pages

• With 256GB of RAM @4KB: 64M pages
– Need bigger than 4KB pages

February 2015 28

Move data: big and small

• It’s still the memory

• Need a coordinated design of instruction
architecture and memory implementation
to achieve high bandwidth with low delay

February 2015 29

Modern challenges in CPU design

• Lots of memory
• Multi-issue CPU instructions every cycle

that drive full bandwidth
• Full bandwidth all the way to RAM, not

just to L1 cache
• More prefetching in software
• Bigger page size(s)

Topic: do better

 Real-time transactions:
1000s per second

February 2015 31

A Single Transaction Across ~40 Racks of ~60
Servers Each
• Each arc is a related client-server RPC

(remote procedure call)

February 2015 32

A Single Transaction RPC Tree vs Time: Client &
93 Servers

?

??

February 2015 33

Single Transaction Tail Latency

• One slow response out of 93 parallel RPCs
slows the entire transaction

February 2015 34

One Server, One User-Mode Thread vs. Time
Eleven Sequential Transactions (circa 2004)

Normal: 60-70 msec

Long: 1800 msec

February 2015 35

One Server, Four CPUs: User/kernel transitions
every CPU every nanosecond (Ktrace)

200 usec

CPU 0

CPU 1

CPU 2

CPU 3

February 2015 36

16 CPUs, 600us, Many RPCs

CPUs
0..15

RPCs
0..39

February 2015 37

16 CPUs, 600us, Many RPCs

THREADs
0..46

LOCKs
0..22

February 2015 38

That is A LOT going on at once

• Let’s look at just one long-tail RPC in
context

February 2015 39

16 CPUs, 600us, one RPC

CPUs
0..15

RPCs
0..39

February 2015 40

16 CPUs, 600us, one RPC

THREADs
0..46

LOCKs
0..22

February 2015 41

Thread 25
actually runs

Wakeup Detail

Thread 19 frees
lock, sends
wakeup to
waiting thread
25

50 us

50us
wakeup
delay ??

February 2015 42

Wakeup Detail

• Target CPU was busy; kernel waited

THREADs

50 us 50us

CPUs CPU 9
busy;
But 3
was idle

February 2015 43

CPU Scheduling, 2 Designs

• Re-dispatch on any idle CPU core
– But if idle CPU core is in deep sleep, can take 75-

100us to wake up

• Wait to re-dispatch on previous CPU core,
to get cache hits
– Saves squat if could use same L1 cache
– Saves ~10us if could use same L2 cache
– Saves ~100us if could use same L3 cache
– Expensive if cross-socket cache refills
– Don’t wait too long…

February 2015 44

Real-time transactions: 1000s per second

• Not your father’s SPECmarks

• To understand delays, need to track
simultaneous transactions across servers,
CPU cores, threads, queues, locks

February 2015 45

Modern challenges in CPU design

• A single transaction can touch thousands
of servers in parallel

• The slowest parallel path dominates
• Tail latency is the enemy

– Must control lock-holding times
– Must control scheduler delays
– Must control interference via shared resources

Topic: do better

 Isolation between
programs

February 2015 47

Histogram: Disk Server Latency; Long Tail

Latency 99th %ile
= 696 msec

Isolation of programs reduces tail latency.
Reduced tail latency = higher utilization.

Higher utilization = $$$.

Non-repeatable Tail Latency Comes from
Unknown Interference

February 2015 49

Many Sources of Interference

• Most interference comes from software
• But a bit from the hardware underpinnings

• In a shared apartment building, most
interference comes from jerky neighbors

• But thin walls and bad kitchen venting can
be the hardware underpinnings

February 2015 50

Isolation issue: Cache Interference

CPU thread 0 is moving 16B/cycle flat out,
filling caches, hurting threads 3, 7, 63

0000000000000000000000000000000000

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…0 1 2 3
Core 0

00000000

4 5 6 7
Core 1

L1 caches

60 61 62 63 PCs
Core 15
L1 caches

0000000000000000000 L2 cache…

000 000

February 2015 51

Isolation issue: Cache Interference

• CPU thread 0 is moving 16B/cycle flat out,
hurting threads 3, 7, 63

000000000000000000000…

0 1 2 3

Core 0

00000000

4 5 6 7

Core 1

77777777

Today

~000111222333444555666777…

0 1 2 3

Core 0

~00112233

4 5 6 7

Core 1

~44556677

Desired

February 2015 52

Cache Interference

• How to get there?
– Partition by ways

• no good if 16 threads and 8 ways
• No good if result is direct-mapped
• Underutilizes cache

– Selective allocation
• Give each thread a target cache size
• Allocate lines freely if under target
• Replace only own lines if over target
• Allow over-budget slop to avoid underutilization

February 2015 53

Cache Interference

• Each thread has target:current, replace
only own lines if over target

2525 25 25
2427 24 24

Target
Current

100 100 …Target
Current 105 99 … ~000111222333444555666777…

0 1 2 3

Core 0

~00112233

4 5 6 7

Core 1

~44556677

Desired

February 2015 54

Cache Interference

• Each thread has target:current, replace
only own lines if over target

• Requires owner bits per cache line
– expensive bits

• Requires 64 target/current at L3
• Fails if L3 not at least 64-way associative

– Can rarely find own lines in a set

February 2015 55

Current …0-3 4-7 8-…OV K
Target …0-3 4-7 8-…OV K

Design Improvement

• Track ownership just by incoming paths
– Plus separate target for kernel accesses
– Plus separate target for over-target accesses

• Fewer bits, 8-way assoc OK

Current 30 1 2OV K
Target 30 1 2OV K 0

~000111222333444555666777…

0 1 2 3

Core 0

~00112233

4 5 6 7

Core 1

~44556677

Desired

February 2015 56

Isolation between programs

• Good fences make good neighbors

• We need better hardware support for
program isolation in shared memory
systems

February 2015 57

Modern challenges in CPU design

• Isolating programs from each other on a
shared server is hard

• As an industry, we do it poorly
– Shared CPU scheduling
– Shared caches
– Shared network links
– Shared disks

• More hardware support needed
• More innovation needed

Measurement underpinnings

February 2015 59

Profiles: What, not Why

• Samples of 1000s
of transactions,
merging results

• Pro: understanding
average performance

• Blind spots:
outliers, idle time

– Chuck Close

February 2015 60

Traces: Why

• Full detail of
individual
transactions

• Pro: understanding
outlier performance

• Blind spot:
tracing
overhead

February 2015 61

Histogram: Disk Server Latency; Long Tail

Latency 99th %ile
= 696 msec

1

2
3

4 65 7

0 25 50 100 250 500 750 1000

The 1% long
tail never
shows up

CPU profile shows
the 99% common
cases

February 2015 62

Trace: Disk Server, Event-by-Event

• Read RPC + disk time

• Write hit, hit, miss

• 700ms mixture

• 13 disks, three normal seconds:

February 2015 63

Trace: Disk Server, 13 disks, 1.5 sec

• Phase transition to 250ms boundaries exactly

Read

Write

Read hit

Write hit

February 2015 64

Trace: Disk Server, 13 disks, 1.5 sec

• Latencies: 250ms, 500ms, … for nine minutes

Read

Write

Read hit

Write hit

4

5

4

February 2015 65

Why?

• Probably not on your guessing radar…

• Kernel throttling the CPU use of any
process that is over purchased quota

• Only happened on old, slow servers

February 2015 66

Disk Server, CPU Quota bug

• Understanding Why sped up 25% of
entire disk fleet worldwide!
– Had been going on for three years
– Savings paid my salary for 10 years

• Hanlon's razor: Never attribute to malice that
which is adequately explained by stupidity.

• Sites’ corollary: Never attribute to stupidity
that which is adequately explained by software
complexity.

4

February 2015 67

Measurement Underpinnings

• All performance mysteries are simple once
they are understood

• “Mystery” means that the picture in your
head is wrong; software engineers are
singularly inept at guessing how their view
differs from reality

February 2015 68

Modern challenges in CPU design

• Need low-overhead tools to observe the
dynamics of performance anomalies
– Transaction IDs
– RPC trees
– Timestamped transaction begin/end

• Traces
– CPU kernel+user, RPC, lock, thread traces
– Disk, network, power-consumption

Topic: do better

Summary:
Datacenter Servers are
Different

February 2015 70

Datacenter Servers are Different

 Move data: big and small

 Real-time transactions: 1000s
per second

 Isolation between programs

 Measurement underpinnings

February 2015 71

References
Claude Shannon, A Mathematical Theory of Communication, The Bell System

Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October, 1948.
http://cs.ucf.edu/~dcm/Teaching/COP5611-Spring2013/Shannon48-MathTheoryComm.pdf

Richard Sites, It’s the Memory, Stupid!, Microprocessor Report August 5, 1996.
http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf

Ravi Iyer, CQoS: A Framework for Enabling QoS in Shared Caches of CMP
Platforms, ACM International Conference on Supercomputing, 2004.

http://cs.binghamton.edu/~apatel/cache_sharing/CQoS_iyer.pdf

M Bligh, M Desnoyers, R Schultz , Linux Kernel Debugging on Google-sized
clusters, Linux Symposium, 2007

https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=29

February 2015 72

References
Daniel Sanchez and Christos Kozyrakis , The ZCache: Decoupling Ways and

Associativity. IEEE/ACM Symp. on Microarchitecture (MICRO-43), 2010.
http://people.csail.mit.edu/sanchez/papers/2010.zcache.micro.pdf

Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, Chandan Shanbhag, Dapper, a
Large-Scale Distributed Systems Tracing Infrastructure, Google Technical
Report dapper-2010-1, April 2010

http://scholar.google.com/scholar?q=Google+Technical+Report+dapper-2010-
1&btnG=&hl=en&as_sdt=0%2C5&as_vis=1

Daniel Sanchez, Christos Kozyrakis, Vantage: Scalable and Efficient Fine-
Grained Cache Partitioning, Symp. on Computer Architecture ISCA 2011.

http://ppl.stanford.edu/papers/isca11-sanchez.pdf

Luiz André Barroso and Urs Hölzle , The Datacenter as a Computer An
Introduction to the Design of Warehouse-Scale Machines, 2nd Edition 2013.

http://www.morganclaypool.com/doi/pdf/10.2200/S00516ED2V01Y201306CAC024

February 2015 73

Thank You, Questions?

February 2015 74

Thank You

