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Thesis: Servers and
desktops require 

different design emphasis
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Goals

• Draw a vivid picture of a computing 
environment that may be foreign to your 
experience so far

• Expose some ongoing 
research problems

• Perhaps inspire contributions in this area
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Analogy (S.A.T. pre-2005)
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Datacenter Servers are Different

 Move data: big and small

 Real-time transactions: 1000s 
per second

 Isolation between programs

 Measurement underpinnings



 Move data: big and small
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Move data: big and small

• Move lots of data
– Disk to/from RAM
– Network to/from RAM
– SSD to/from RAM
– Within RAM

• Bulk data
• Short data: variable-length items
• Compress, encrypt, checksum, hash, sort
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Lots of memory

• 4004: no memory

• i7: 12MB L3 cache
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Little brain, LOTS of memory

• Server                                     64GB-1TB

Drinking straw access
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High-Bandwidth Cache Structure

• Hypothetical 64-CPU-thread server

L3 cache
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L1 caches

4  5  6  7
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L1 caches

8  9 10 11
Core 2

L1 caches

60 61 62 63 PCs
Core 15
L1 caches

…L2 cache L2 cache
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Forcing Function 

Move 16 bytes every CPU cycle

What are the direct consequences 
of this goal?
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Move 16 bytes every CPU cycle

• Load 16B, Store 16B, test, branch
– All in one cycle = 4-way issue minimum
– Need some 16-byte registers

• At 3.2GHz, 50 GB/s read + 50 GB/s write,
– 100 GB/sec, one L1 D-cache

• Must avoid reading cache line before write
– if it is to be fully written (else 150 GB/s)
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Short strings

• Parsing, words, packet headers, scatter-
gather, checksums

the _ quick brown_ _ fox

IP hdr TCP hdr chksumVLAN …
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Generic Move, 37 bytes

thequ ickbrownfoxjumps overthelazydog..

thequ ickbrownfoxjumps overthelazydog..

5 bytes 16 bytes 16 bytes
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Generic Move, 37 bytes

thequ ickbrownfoxjumps overthelazydog..

thequ ickbrownfoxjumps overthelazydog..

5 bytes 16 bytes 16 bytes

16B aligned 
cache accesses
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Generic Move, 37 bytes, aligned target

thequick brownfoxjumpsove rthelazydog..  

thequickbr ownfoxjumpsovert helazydog..

10 bytes 16 bytes 11 bytes

16B aligned 
cache accesses

32B shift helpful:
LD, >>, ST
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Useful Instructions

• Load Partial R1, R2, R3
• Store Partial R1, R2, R3

– Load/store R1 low bytes with 0(R2), length 0..15 from 
R3 low 4 bits, 0 pad high bytes, R1 = 16 byte register

– 0(R2) can be unaligned
– Length zero never segfaults
– Similar to Power architecture Move Assist instructions

• Handles all short moves
• Remaining length is always multiple of 16
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Move 16 bytes every CPU cycle

• L1 data cache: 2 aligned LD/ST accesses 
per cycle: 100 GB/s, plus 100 GB/s fill

L3 cache

L2 cache L2 cache
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Core 1

L1 caches
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60 61 62 63 PCs
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L1 caches
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L1 caches
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Move 16 bytes every CPU cycle

• Sustained throughout L2, L3, and RAM
• Perhaps four CPUs simultaneously

L3 cache

L2 cache L2 cache

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…4  5  6  7
Core 1

L1 caches

8  9 10 11
Core 2

L1 caches

60 61 62 63 PCs

Core 15
L1 caches

0  1  2  3
Core 0

L1 caches
100 GB/s

x 16

200 GB/s
x 4

400 GB/s
x 1
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Top 20 Stream Copy Bandwidth (April 2014)

Date          Machine ID                           ncpus COPY 
1. 2012.08.14 SGI_Altix_UV_2000 2048 6591 GB/s
2. 2011.04.05 SGI_Altix_UV_1000 2048 5321 
3. 2006.07.10 SGI_Altix_4700 1024 3661 
4. 2013.03.26 Fujitsu_SPARC_M10-4S 1024 3474 
5. 2011.06.06 ScaleMP_Xeon_X6560_64B 768 1493 
6. 2004.12.22 SGI_Altix_3700_Bx2 512 906 
7. 2003.11.13 SGI_Altix_3000 512 854 
8. 2003.10.02 NEC_SX-7 32 876 
9. 2008.04.07 IBM_Power_595 64 679 
10. 2013.09.12 Oracle_SPARC_T5-8 128 604 
11. 1999.12.07 NEC_SX-5-16A 16 607 
12. 2009.08.10 ScaleMP_XeonX5570_vSMP_16B 128 437 
13. 1997.06.10 NEC_SX-4 32 434 
14. 2004.08.11 HP_AlphaServer_GS1280-1300  64 407 

Our Forcing Function             1        400 GB/s
15. 1996.11.21 Cray_T932_321024-3E 32 310 
16. 2014.04.24 Oracle_Sun_Server_X4-4 60 221 
17. 2007.04.17 Fujitsu/Sun_Enterprise_M9000 128 224 
18. 2002.10.16 NEC_SX-6 8 202 
19. 2006.07.23 IBM_System_p5_595 64 186 
20. 2013.09.17 Intel_XeonPhi_SE10P 61 169 

https://www.cs.virginia.edu/stream/top20/Bandwidth.html
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Latency

• Buy 256GB of RAM only if you use it
– Higher cache miss rates
– And main memory is ~200 cycles away
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Cache Hits
200-cycle miss @4 Hz
Cache Hits
1-cycle hit @4 Hz
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Cache Miss to Main Memory
200-cycle miss @4 Hz

cache miss
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What constructive work
could you do during 

this time?
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Latency

• Buy 256GB of RAM only if you use it
– Higher cache miss rates
– And main memory is ~200 cycles away

• For starters, we need to prefetch about 
16B * 200cy = 3.2KB to meet our forcing 
function; call it 4KB
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Additional Considerations

• L1 cache size = associativity * page size
– Need bigger than 4KB pages

• Translation buffer at 256 x 4KB covers 
only 1MB of memory
– Covers much less than on-chip caches
– TB miss can consume 15% of total CPU time 
– Need bigger than 4KB pages

• With 256GB of RAM @4KB: 64M pages
– Need bigger than 4KB pages
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Move data: big and small

• It’s still the memory

• Need a coordinated design of instruction 
architecture and memory implementation 
to achieve high bandwidth with low delay
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Modern challenges in CPU design

• Lots of memory
• Multi-issue CPU instructions every cycle 

that drive full bandwidth 
• Full bandwidth all the way to RAM, not 

just to L1 cache
• More prefetching in software
• Bigger page size(s)

Topic: do better



 Real-time transactions:
1000s per second
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A Single Transaction Across ~40 Racks of ~60 
Servers Each
• Each arc is a related client-server RPC

(remote procedure call)
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A Single Transaction RPC Tree vs Time: Client & 
93 Servers

?

??
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Single Transaction Tail Latency

• One slow response out of 93 parallel RPCs
slows the entire transaction
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One Server, One User-Mode Thread vs. Time
Eleven Sequential Transactions (circa 2004)

Normal: 60-70 msec

Long: 1800 msec
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One Server, Four CPUs: User/kernel transitions 
every CPU every nanosecond (Ktrace)

200 usec

CPU 0

CPU 1

CPU 2

CPU 3
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16 CPUs, 600us, Many RPCs

CPUs 
0..15

RPCs
0..39
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16 CPUs, 600us, Many RPCs

THREADs
0..46

LOCKs
0..22
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That is A LOT going on at once

• Let’s look at just one long-tail RPC in 
context
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16 CPUs, 600us, one RPC

CPUs 
0..15

RPCs
0..39
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16 CPUs, 600us, one RPC

THREADs
0..46

LOCKs
0..22
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Thread 25 
actually runs

Wakeup Detail

Thread 19 frees 
lock, sends 
wakeup to 
waiting thread 
25

50 us

50us 
wakeup 
delay ??
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Wakeup Detail

• Target CPU was busy; kernel waited

THREADs

50 us 50us

CPUs CPU 9 
busy;
But 3 
was idle
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CPU Scheduling, 2 Designs

• Re-dispatch on any idle CPU core
– But if idle CPU core is in deep sleep, can take 75-

100us to wake up

• Wait to re-dispatch on previous CPU core, 
to get cache hits
– Saves squat if could use same L1 cache
– Saves ~10us if could use same L2 cache
– Saves ~100us if could use same L3 cache
– Expensive if cross-socket cache refills
– Don’t wait too long…
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Real-time transactions: 1000s per second

• Not your father’s SPECmarks

• To understand delays, need to track 
simultaneous transactions across servers, 
CPU cores, threads, queues, locks
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Modern challenges in CPU design

• A single transaction can touch thousands 
of servers in parallel

• The slowest parallel path dominates 
• Tail latency is the enemy

– Must control lock-holding times
– Must control scheduler delays
– Must control interference via shared resources

Topic: do better



 Isolation between 
programs
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Histogram: Disk Server Latency; Long Tail

Latency 99th %ile
= 696 msec



Isolation of programs reduces tail latency.
Reduced tail latency = higher utilization.

Higher utilization = $$$.

Non-repeatable Tail Latency Comes from 
Unknown Interference
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Many Sources of Interference

• Most interference comes from software
• But a bit from the hardware underpinnings

• In a shared apartment building, most 
interference comes from jerky neighbors

• But thin walls and bad kitchen venting can 
be the hardware underpinnings
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Isolation issue: Cache Interference

CPU thread 0 is moving 16B/cycle flat out, 
filling caches, hurting threads 3, 7, 63

0000000000000000000000000000000000

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…0 1  2  3
Core 0

00000000

4  5  6  7
Core 1

L1 caches

60 61 62 63 PCs
Core 15
L1 caches

0000000000000000000 L2 cache…

000 000
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Isolation issue: Cache Interference

• CPU thread 0 is moving 16B/cycle flat out, 
hurting threads 3, 7, 63

000000000000000000000…

0 1  2 3

Core 0

00000000

4  5  6 7

Core 1

77777777

Today

~000111222333444555666777…

0 1  2 3

Core 0

~00112233

4  5  6 7

Core 1

~44556677

Desired



February 2015 52

Cache Interference

• How to get there?
– Partition by ways

• no good if 16 threads and 8 ways
• No good if result is direct-mapped
• Underutilizes cache

– Selective allocation
• Give each thread a target cache size
• Allocate lines freely if under target
• Replace only own lines if over target
• Allow over-budget slop to avoid underutilization
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Cache Interference

• Each thread has target:current, replace 
only own lines if over target

2525 25 25
2427 24 24

Target
Current

100  100 …Target
Current 105  99  … ~000111222333444555666777…

0 1  2 3

Core 0

~00112233

4  5  6 7

Core 1

~44556677

Desired
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Cache Interference

• Each thread has target:current, replace 
only own lines if over target

• Requires owner bits per cache line 
– expensive bits

• Requires 64 target/current at L3
• Fails if L3 not at least 64-way associative

– Can rarely find own lines in a set
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Current …0-3 4-7 8-…OV K
Target …0-3 4-7 8-…OV K

Design Improvement

• Track ownership just by incoming paths
– Plus separate target for kernel accesses
– Plus separate target for over-target accesses

• Fewer bits, 8-way assoc OK

Current 30 1 2OV K
Target 30 1 2OV K 0

~000111222333444555666777…

0 1  2 3

Core 0

~00112233

4  5  6 7

Core 1

~44556677

Desired
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Isolation between programs

• Good fences make good neighbors

• We need better hardware support for 
program isolation in shared memory 
systems
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Modern challenges in CPU design

• Isolating programs from each other on a 
shared server is hard

• As an industry, we do it poorly
– Shared CPU scheduling
– Shared caches
– Shared network links
– Shared disks

• More hardware support needed
• More innovation needed



Measurement underpinnings
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Profiles: What, not Why

• Samples of 1000s 
of transactions, 
merging results

• Pro: understanding 
average performance

• Blind spots:
outliers, idle time

– Chuck Close
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Traces: Why

• Full detail of 
individual 
transactions

• Pro: understanding 
outlier performance

• Blind spot:
tracing 
overhead
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Histogram: Disk Server Latency; Long Tail

Latency 99th %ile
= 696 msec

1

2
3

4 65 7

0         25         50                   100   250       500   750       1000

The 1% long 
tail never 
shows up

CPU profile shows
the 99% common 
cases
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Trace: Disk Server, Event-by-Event

• Read RPC + disk time

• Write hit, hit, miss

• 700ms mixture

• 13 disks, three normal seconds:



February 2015 63

Trace: Disk Server, 13 disks, 1.5 sec

• Phase transition to 250ms boundaries exactly

Read

Write

Read hit

Write hit
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Trace: Disk Server, 13 disks, 1.5 sec

• Latencies: 250ms, 500ms, … for nine minutes

Read

Write

Read hit

Write hit

4

5

4
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Why?

• Probably not on your guessing radar…

• Kernel throttling the CPU use of any 
process that is over purchased quota

• Only happened on old, slow servers
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Disk Server, CPU Quota bug

• Understanding Why     sped up 25% of 
entire disk fleet worldwide!
– Had been going on for three years
– Savings paid my salary for 10 years

• Hanlon's razor: Never attribute to malice that 
which is adequately explained by stupidity.

• Sites’ corollary: Never attribute to stupidity 
that which is adequately explained by software 
complexity.

4
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Measurement Underpinnings

• All performance mysteries are simple once 
they are understood

• “Mystery” means that the picture in your 
head is wrong; software engineers are 
singularly inept at guessing how their view 
differs from reality
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Modern challenges in CPU design

• Need low-overhead tools to observe the 
dynamics of performance anomalies
– Transaction IDs
– RPC trees
– Timestamped transaction begin/end

• Traces
– CPU kernel+user, RPC, lock, thread traces
– Disk, network, power-consumption

Topic: do better



Summary: 
Datacenter Servers are 
Different
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Datacenter Servers are Different

 Move data: big and small

 Real-time transactions: 1000s 
per second

 Isolation between programs

 Measurement underpinnings
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Thank You, Questions?
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Thank You


