Diagnosis and Automation for Deployed Distributed Systems

The Weatherman Effort

Gideon Mann, Mark Sandler, Eyal Even-dar, Darja Krushevskaja, Sudipto Guha, Krzysztof Ostrowski, Sebastian Pueblas, Lev Ratinov, Eran Gabber

The Weatherman Effort

Gideon Mann, Mark Sandler, Eyal Even-dar, Darja Krushevskaja, Sudipto Guha, Krzysztof Ostrowski, Sebastian Pueblas, Lev Ratinov, Eran Gabber

Two Scenarios of Interest

Latency distribution has multiple peaks, at different orders of magnitude.

Well, probably a lot has changed. What's the most significant?

ar

Dapper Distributed Trace Collection

Sigelman, Barroso, Burrows, Stephenson, Plakal, Beaver, Jaspan, Shanbhag '10

Figure 5: An overview of the Dapper collection pipeline.

"If time in 14 is reduced, what is the predicted latency?"

observed latency for RPC t

predicted latency for RPC t

We predict the latency of a given RPC given the latency of its children C(t), and relevant features of the RPC t and children.

$$\hat{\lambda}_t = \Psi(f_t, f_{C(t)}, \lambda_{C(t)})$$

 χ An (asynchronous) execution model $\chi(t_i)$ The blocking set for a RPC t_i

$$\psi_{\chi(t_i)} = \lambda_{t_i} + \max_{t \in \chi(t_i)} \psi(t)$$

$$\hat{\lambda}_{p} = \Psi(f_{p}, f_{C(p)}, \lambda_{C(p)})$$
$$= \Psi(\chi, \lambda_{C(p)})$$
$$= \psi_{\chi}(t_{return})$$

Given the children latencies and the execution model, we can compute the latency for a given parent RPC.

Find best matching flow via Nearest Neighbor :

A perfect model would be a line at y=1.0

Induced models ("Nearest Neighbor Flow") are better predictors of parent latencies from children than:

Mann, Sandler, Kruschevskaja, Guha, Even-dar. HotCloud '10.

- Linear regression
- Longest critical path
- Either a full serial or full parallel RPCs

First Scenario of Interest

Overall latency distribution

Red Line : top-level latency without time in ...

Overall latency distribution

Red Line : top-level latency with

Bigtable Local Processing

Second Scenario of Interest

Latency distribution has multiple peaks at different orders of magnitude.

Sample Based Approach

=> shift latency distribution

 $\Lambda_{\delta A} = \mathbb{P}_{t \in A}(\Psi(\chi, \lambda_{\delta C(t)}))$

Sample Based Approach

=> shift distribution of traces

= absent = present

mounica trades								
"base" traces "fix"	trace 1	trace 2	trace 3		"target" traces			
trace 1 trace 2 trace 3	weight = 1/6	weight = 1/6	weight = 2/3		trace	4 trac	ce 5 t	race 6
Root Cause			25%	50%	75%	90%	95%	98%
► Total Server Detail				0.01	-8.67	-1048.20	-1618.00	-583.34
► :/Storage Read <u>Detail</u>	Sample Ex at of 90%.	pectation	0.00	0.02	-9.37	-1015.80	-1516.00	-376.00
Total Local Computation Detail			0.00	0.02	-9.36	-1015.80	-1516.00	-376.00
:method returned Detail			0.00	0.02	-9.36	-1015.80	-1516.00	-376.00
 Distribution of Annotation Existence: net @Annotation Existence: netsched send Distribution of Annotation Existence: net %d others (624) <u>Detail</u> @Annotation Existence: netsched queue (624): PRESENT <u>Detail</u> 	tsched send (62 (624): PRESEI sched queuing ing send behind	24) <u>Detail</u> NT <u>Detail</u> send behind d %d others	0.00	0.01	-1.89	-950.00	-1501.00	-382.29
@Annotation Existence: starting lock acquisition	on (610): PRES	FNT Detai	-0.33	-0.47	-9.85	-1034.20	-1850.00	-6;

modified traces

@Annotation Existence: starting lock acquisition (610): PRESENT ► Detail

$$\Lambda_A \text{ Sample } \Lambda_{A\star} \text{ Reference}$$
$$\tau(\Delta_j) = \mathbb{E}[\Lambda_{\Delta jA}] - \mathbb{E}[\Lambda_{A\star}]$$

Evaluation Testbed

Synthetic Services: physical network delays, random lognormal processing times, temporal dependencies from the induced execution models

Diagnose changes we introduce: Modify the model of a service, generate a new set of traces using the modified model, and diagnose the difference between these sets of traces using our tool

Ostrowski, Mann, Sandler. LADIS '11.

Google Two Introduced Changes

1. Substitute ("S"): replace the models in a subtree of base services with those from the target. Only on one call path, so if B is called in two different places, only one of them is affected

2. Make Terminal ("T"): remove all child RPCs in a model of a service; make it return immediately

The number of genuine causes found and missed.

The quality of ranking relative to the K-S baseline.

Recent Work

Understanding Latency Variation of Black Box Services

Krushevskaja, Sandler. WWW '13

Diagnosis and Automation for Deployed Distributed Systems

- Automatic Job Health Assessment
- Real-time Diagnosis of Problem Events
- Diagnosis of Text Bugs
- Intelligent Automation