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Two Scenarios of Interest

Latency distribution has multiple peaks, at 
different orders of magnitude.

Over time, the latency has dramatically 
changed ... what happened?

Load-testing isn't enough. 

Well, probably a lot has changed. What's 
the most significant?
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Distributed Trace Collection

Sigelman, Barroso, Burrows, Stephenson, 
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StorageBackend

Distributed Trace Collection
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"If time in 14 is reduced, what is the predicted latency?"
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We need to model the asynchrony to understand the latency.
16

Mann, Sandler, 
Kruschevskaja, 
Guha, Even-dar.
HotCloud '10.
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observed latency for RPC t

predicted latency for RPC t

We predict the latency of a given RPC given the latency of its 
children C(t), and relevant features of the RPC t and children.
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An (asynchronous) execution model

The blocking set for a RPC t_i

14
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The blocking set for a RPC t_i

The finishing time for a RPC t_i is 
it's own latency and the finishing 
times of the RPCs in its blocking 
set.

Given the children latencies and 
the execution model, we can 
compute the latency for a given 
parent RPC.

An (asynchronous) execution model
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Mann, Sandler, 
Kruschevskaja, 
Guha, Even-dar.
HotCloud '10.

Find best matching flow via Nearest 
Neighbor : 
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Mann, Sandler, 
Kruschevskaja, 
Guha, Even-dar.
HotCloud '10.

A perfect model would be a line at y=1.0  

Induced models ("Nearest Neighbor Flow") are better predictors of 
parent latencies from children than:

- Linear regression
- Longest critical path
- Either a full serial or full parallel RPCs
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First Scenario of Interest

Latency distribution has multiple peaks at different orders of magnitude.
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Latency distribution has multiple peaks at different orders of magnitude.

Selectively set latencies of specific 
traces to 0, and then simulate the 
effects. 
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Latency distribution has multiple peaks at different orders of magnitude.

Selectively set latencies of specific 
traces to 0, and then simulate the 
effects. 

Or rather, selectively set sub-trace intervals to 
0, e.g. "Network Time"
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Random 
variable of 
Latency
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Random 
variable of 
Latency

Bigtable Local 
Latency -> 0

If response 
payload  >10k -> 
0 

Total Bigtable 
Latency -> 0

Mean Latency at 
90% percentile

30ms

44ms

45ms

100ms
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Red Line : top-level latency without time in ...

Bigtable Local Processing
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Red Line : top-level latency without time in ...

Bigtable Local Processing

Bigtable Outgoing Network
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Red Line : top-level latency without time in ...

Bigtable Local Processing

Bigtable Outgoing Network

Total FileSystem Time



Google Confidential and Proprietary

Second Scenario of Interest

Latency distribution has multiple peaks at different orders of magnitude.
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Selectively alter latencies of 
specific traces (or trace sub-
components) and then simulate 
the effects. 

Reference

Alter overall distribution of traces 
and then simulate the effects. 
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Sample Based Approach
=> shift latency distribution

"base"
traces

"target"
traces

14

latency of RPC 14 in base trace T = 10ms...
10ms 4.5ms

50% 50%
...this is at the 50-th 
latency percentile...

...which used to be 4.5ms

latency (ms) latency (ms)

CDF CDF

14
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"base" traces "target" traces
trace 1 trace 2 trace 3 trace 4 trace 5 trace 6

= absent
= presentmodified traces

trace 1 trace 2 trace 3

weight 
= 1/6

weight 
= 2/3

weight 
= 1/6

"fix"

Sample Based Approach
=> shift distribution of traces

Sample Expectation 
at of 90%.
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Sample Reference
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Match Bigtable 
Local Latency

Match latency 
only if response 
payload  >10k

Match Total 
Bigtable Latency

Mean Latency 
Difference at 
90% percentile

30ms

30ms

25ms

50ms

Sample Reference
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Evaluation Testbed
Synthetic Services: physical network delays, 
random lognormal processing times, temporal 
dependencies from the induced execution 
models

Diagnose changes we introduce: Modify the model 
of a service, generate a new set of traces using the 
modified model, and diagnose the difference 
between these sets of traces using our tool
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deployed real 
service S traces T(S) model m = m(T

(S))

network of 
synthetic services

N = N(m)
executing model m

collect
traces

induce
model

deploy testbed

traces T(N)

collect
traces

traces are very similar, T(S) ~ T(N), so we can experiment 
with N instead of S

Ostrowski, Mann, 
Sandler. LADIS '11.
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traces
T(N(m_c))

testbed N(m)

collect
traces

deploy 
testbed

traces
T(N(m))

collect
traces

run diagnosis
on these two
sets of traces

modified (target) 
model m_c

make change 
c to the base 

model

testbed N
(m_c)

deploy testbed

base

target

induced base model 
m

Ostrowski, Mann, 
Sandler. LADIS '11.



Google Confidential and Proprietary

2. Make Terminal ("T"): remove all child 
RPCs in a model of a service; make it return 
immediately

Two Introduced Changes

A

B

C

D

E

F
G

H

Fstart E return

model of B

start return

model of B

1. Substitute ("S"): replace the 
models in a subtree of base 
services with those from the 
target. Only on one call path, so 
if B is called in two different 
places, only one of them is 
affected

Ostrowski, Mann, 
Sandler. LADIS '11.
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The number of genuine causes found and missed.

Make 
Terminal

Substitute

Ostrowski, Mann, 
Sandler. LADIS '11.
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The quality of ranking relative to the K-S baseline.

Ostrowski, Mann, 
Sandler. LADIS '11.
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Recent Work

Krushevskaja, 
Sandler. WWW '13

Understanding Latency Variation of 
Black Box Services
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Diagnosis and Automation 
for Deployed Distributed 
Systems
- Automatic Job Health Assessment

- Real-time Diagnosis of Problem Events

- Diagnosis of Text Bugs

- Intelligent Automation


