NetApp[®]

From server-side to host-side: Flash memory for enterprise storage

Jiri Schindler et al. (see credits) Advanced Technology Group NetApp

May 9, 2012

ISE Storage

Go further, faster®

v 1.0

Shared Compute

Shared Storage

How do we make effective use of flash SSDs while preserving the benefits of shared storage?

Go further, faster®

Step I. Replace HDDs with SSDs

© 2012 NetApp, Inc. All rights reserved.

CMU PDL Visit Day 2012

- Each disk in a carrier
 - Hot-swappable
 - 3.5" or 2.5" form-factor
- Serial-attached SCSI expanders
 - 36-port cross-bar switch
 - Single link: 3 or 6 Gb/s, ~60-80K IOPS

DS4243 Shelf: 24x 4U

Daisy-chaining Disk Shelves

- Single Flash SSD
 - 10-12K IOPS
 - ~125 MB/s
- Port-to-port links
 Opened individually
- As chain grows:
 - IOPS diminished
 - BW limitations

SAS back-end (w/ many shelves) can be an IOPS bottleneck

Go further, faster®

Step II. Optimize for ONTAP Data Path

Flash Cache (PAM-II Card) Overview

- NetApp-designed card
 - No COTS design existed
 - FPGA controller
 - 512GB SLC Flash

Up to 4 cards in a singe FAS controller (up to 8 in FAS6xx0 series)

- Specific to Data ONTAP® I/O data path
 - Read-only victim cache behind RAM buffer cache
- Minimal SW changes
 - Leverage existing RAM-based PAM card design
 - Buffer tags in RAM, simple FTL

© 2012 NetApp, Inc. All rights reserved.

CMU PDL Visit Day 2012

Managing Flash Cache

- Flash acts as buffer for read-only (clean) data
 - No "in-place" overwrites of cached data
 - Invalidation of existing mapping on new write
- Simple FTL
 - Circular buffer w/ generation garbage collector
 - implicit wear leveling
- Tag store for buffer headers in RAM
 - Takes away RAM buffer cache space for data
 - Non-trivial with 8 PAM-II cards/4TB of Flash

OLTP-like Workload Performance

Same operational costs, 30% COGS price reduction w/ PAM-II

Source: NetApp White Paper WP-7082-0809 http://media.netapp.com/documents/wp-7082.pdf

SPECsfs2008 (nfs.v3) Performance

Cost savings: replace FC-AL with fewer SATA HDDs & PAM-II

Source: http://www.spec.org/sfs2008/results/sfs2008nfs.html

Go further, faster®

Step III. Combine with Host-side Project Mercury Presented at MSST '12 Conference

© 2012 NetApp, Inc. All rights reserved.

CMU PDL Visit Day 2012

Shared (Virtualized) Compute

Shared Storage

Reliability and availability is different at host-side

<u>Goal</u>

Never lose data in any situation

Consequence

Write-through policy

Chose common denominator policy Other policies possible that leverage app's specifics

<u>Goals</u>

- Consistency with storage array
- Consistent with peers

Consequences

- Cache non-shared objects
- Invalidate on migration, restore, etc.

Datacenter Management Integration

<u>Goal</u>

Simple and transparent management

Consequence

Hypervisor integration

Most important for the end-user deployment

Design & Implementation

NetApp^{*} Prototype Implementation Overview

- Write-through
 - Simple cache consistency

Persistent

- Warm cache on restart
- Cache durability after a crash is ongoing work

Detecting Cache Hits

- All cache metadata in RAM for speed.
 - Mercury is a second-level cache → modest hit rate → minimize cache overhead
 - Memory-to-cache ratio is 0.5%
 - (e.g., 500 GB cache requires 2.5 GB of RAM)
- Cache headers
 - One header for each block in the cache
- Address Map
 - (primary storage, LBA) keys, header index values
 - Implemented with hash table, O(1) lookup time

Specialize I/O access patterns for flash

- LFS-style writes
 - Large chunks match erase (meta) block size
 - Minimizes cleaning/slowdown at the SSD FTL

- Unrestricted (default)
 - All writes and read misses inserted in the cache
- Write-Around
 - writes skip the cache
- Sequential I/O Bypass (ongoing work)
 - Sequential reads, writes, or both skip the cache

Results

- Two workloads:
 - Microsoft[®] Exchange Jetstress
 - NetApp[®] Enterprise Workload¹
- Flash cache
 - PCIe device with SLC (single-level cell) flash
 - Paper contains SLC and MLC SSD results
- Other hardware
 - x86 Server with Linux, KVM/QEMU
 - NetApp FAS3270 with iSCSI LUN(s)

¹ S. Daniel et al., A portable, open-source implementation of the SPC-1 workload.

Significant Response Time Improvement

Enterprise workload. Unrestricted admittance policy. CLOCK eviction policy.

NetApp^{*} Warming Cache: Takes a Long Time

Enterprise workload. Unrestricted admittance policy. Flash capacity set to 11.25% of dataset.

Enterprise workload. CLOCK eviction policy. Flash device capacity set to 11.25% of dataset.

Host-side flash

- minimizes flash access latency

Hypervisor-based I/O cache

- simplifies deployment

Persistent

– cache is warm on a restart

Write-through

- consistent with primary storage

Working with real-world constraints
 Timing is everything

Design for the long haul
 Deliver <u>something</u> useful fast

- Learn from the users
 - Collect field data

Improve design in iterations over-time

Efforts of many product engineers

Project Mercury

Steve ByanJames LentiniAnshul MadanLuis PabónMichael CondictJeff KimmelSteve KleimanChristopher SmallMark StorerImage: Construct of the store of

Advanced Technology Group NetApp

