
Multi-Dimensional Hashed
Indexed Metadata/Middleware

(MDHIM) Project

James Nunez
Ultrascale Systems Research Center

High Performance Computing Systems Integration
May 10, 2012

LA-UR 12-10467 and LA-UR-11-11964

Agenda

• Project Personnel
• Motivation - PLFS Problem
• MDHIM - Description
• MDHIM - How It Works
• Communication
• Data Stores
• Future Work

LA-UR 12-10467 and LA-UR-11-11964

MDHIM Project Personnel
• Team Members

– Gary Grider - Project PI
– James Nunez - Developer
– Hugh Greenberg - Developer

• Interested Parties
– CMU: Garth Gibson, Chuck Cranor, and students(?)

LA-UR 12-10467 and LA-UR-11-11964

MOTIVATION – PLFS: REVIEW AND
PROBLEMS

LA-UR 12-10467 and LA-UR-11-11964

DOE Parallel Apps “should” do
Parallel IO

• Periodic checkpoint writes because the
thousands of compute notes are not reliable

• Visualization writes
• Writes are synchronized
• Hundreds of thousands to millions of

synchronized writes can be difficult for the file
system

• Two most common write patterns
– N-1 where N procs write to 1 shared file
– N-N where N procs write to N non-shared files

LA-UR 12-10467 and LA-UR-11-11964

N-N File IO N-1 File IO

LA-UR 12-10467 and LA-UR-11-11964

N to 1 is Really Better for the Long Run
If Issues Can Be Addressed

• N to N at a billion way will just be a non starter.
• Further, even N to M seems silly for the user to

have to manage, we have to solve the same
problems for N to M as we do for N to 1

• N to 1 really looks like the best long run answer but
we have to fix
– Concurrence Management
– Metadata Management
– Etc.

• Lets take the best of both N to N and N to 1

 PLFS
LA-UR 12-10467 and LA-UR-11-11964

Decouples Logical from Physical

PLFS Virtual Layer

/foo

host1 host2 host3

/foo/

host1/ host2/ host3/

131 132 279 281 132 148

data.131

indx

data.132 data.279 data.281

indx
data.132 data.148

indx
Physical Underlying Parallel File System LA-UR 12-10467 and LA-UR-11-11964

LBNL PatternIO Benchmark

With PLFS

Without
PLFS

Stripe aligned

block aligned

Unaligned

PLFS makes alignment and blocksize irrelevant!
LA-UR 12-10467 and LA-UR-11-11964

23X

7X

150X

2X

5X

28X

83X

PLFS Checkpoint BW Summary

These were small
problems, the
bigger the
problem the
bigger the win

LA-UR 12-10467 and LA-UR-11-11964

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Recall: PLFS Independent Writing
Each proc has
a block of data

{0,47},{47,10},{57,100},{157,11},{168,60},{228,50},{278,90},{368,11},{379,30},{409,60}

PLFS writes each block to
a unique physical file
(one log structured file
per proc) and
remembers where data
is with an index.

Logical
Offset

Physical
Offset

Length Physical
Block ID

0 0 47 0

47 0 10 1

57 0 100 2

157 0 11 3

168 0 60 4

228 0 50 5

278 0 90 6

368 0 11 7

379 0 30 8

409 0 60 9

Notice that if every write
were the same size (i.e.
it was structured), then
PLFS could save just one
index entry identifying
the pattern instead of
one entry per write. LA-UR 12-10467 and LA-UR-11-11964

Naïve Approach: Every Process Reads All
Indexes to have a Complete Index in Each

Proc’s Memory to Honor any Unknown
Read Request (N Squared!)

LA-UR 12-10467 and LA-UR-11-11964

Effects of Everyone Reading All PLFS
Indexes

LA-UR 12-10467 and LA-UR-11-11964

MDHIM – WHAT IS IT?

LA-UR 12-10467 and LA-UR-11-11964

The MDHIM Project

• The Multi-Dimensional Hierarchical Indexing
Metadata/Middleware (MDHIM) project aims to
develop a research prototype infrastructure capable
of managing massive amounts of index information
representing even larger amounts of scientific data
to enable data exploration at enormous scale

• Another way to think about the utility of what we are
proposing is to think of a highly scalable/parallel
multi-dimensional Virtual Storage Access Method
(VSAM) or key/value store (Bigtable/Hbase).

LA-UR 12-10467 and LA-UR-11-11964

Key/Value Stores Already Exist, Why Another?
• What about the new indexing technology like Bigtable, Hbase …

• Written in languages not suited for extreme scientific computing
environments (Java, Erlang, etc.)

• Built on top of immature infrastructures like HDFS etc.
• Even Hypertable which runs on standard file systems does not leverage the

real power of parallel file system technology
• Don’t really take advantage of supercomputer interconnects

• We can make data operations scale on commercial parallel file
systems today by utilizing shared nothing/append only concepts just
like Google has done with lessoned semantics

• Our premise is that GFS/HDFS recreated many of the wheels that parallel
file systems have had for years and just went unnoticed.

• Shouldn’t there be a way to make needed metadata/indexing
operations scale on top of existing commercial file systems?

• Can we leverage supercomputer style interconnects to go beyond
shared nothing style indexing techniques LA-UR 12-10467 and LA-UR-11-11964

How? Leverage
– Giga+ and its algorithms for achieving very high concurrency to

very large numbers of entries within a single file system directory.
– Commercial Parallel File System files, directories, tree indexing
– Bigtable/Hypertable have reasonable key/value api’s
– Public ISAM and other index methods exists but most are not

parallel (PBL ISAM, Tokutek, Fastbits, etc.)
– These leveraged capabilities are the required ingredients for

building a scalable Parallel ISAM:
• append only methods for data and metadata
• shared nothing to everything
• tree indexing, ranging, etc.
• light weight embeddable single machine ISAM

– Supercomputing class interconnects, enabling shared some
 LA-UR 12-10467 and LA-UR-11-11964

MDHIM – HOW IT WORKS

LA-UR 12-10467 and LA-UR-11-11964

What Does MDHIM Look Like?

LA-UR 12-10467 and LA-UR-11-11964

Application
code

Rank-0
MDHIM

Application
code

Rank-1
MDHIM

Application
code

Rank-N
MDHIM

Application
code

Rank-N-1
MDHIM

Application
code

Rank-2
MDHIM

MDHIM
Range
Server

MDHIM
Range
Server

…

Independent
data store
Range 0

Independent
data store
Range 1

Independent
data store
Range N

MDHIM
Range
Server

…
Logical Database

Distributed Application

MDHIM API
• MDHIM init

– Initializes MDHIM structures and creates range server threads.

• MDHIM open
– Creates directories for data and key files.

• MDHIM insert
– A list function that inserts new records with key and record data.

• MDHIM flush
– Makes key distribution information available to the clients.

• MDHIM find
– find a record using primary key (match, best higher or lower) and set

the absolute record number.

• MDHIM finalize
– Shut down range server threads.

LA-UR 12-10467 and LA-UR-11-11964

MDHIM API
• MDHIM close

– close a MDHIM file

• MDHIM get
– get previous/next/first/last record

• MDHIM read
– a list function that read records (key and data), using absolute record

numbers

• MDHIM readkey
– a list function that read the keys, using absolute record numbers

• MDHIM delete
– Delete the current (last read) record

• MDHIM update
– a list function that update data (not key) in records, using absolute

record numbers LA-UR 12-10467 and LA-UR-11-11964

MDHIM Operation: Initialization

LA-UR 12-10467 and LA-UR-11-11964

Application
code

Rank-0

Application
code

Rank-1

Application
code

Rank-4

Application
code

Rank-3

Application
code

Rank-2

Initialization is a collective call,
it fires up index range services
on specified nodes, set up
range computation and ensure
everyone knows how to
compute range

Initialization

MDHIM
MDHIM
Range
Server

MDHIM
MDHIM
Range
Server

MDHIM MDHIM
MDHIM
Range
Server

MDHIM

MDHIM Operation: Open

LA-UR 12-10467 and LA-UR-11-11964

Application
code

Rank-0

Application
code

Rank-1

Application
code

Rank-4

Application
code

Rank-3

Application
code

Rank-2

Open/create is a collective call,
that ensures specified files can
be written to and creates
subdirectories

Open /tmp/keyfile Range Srv List 1,2,4 Key Ranges
Every 50

MDHIM
MDHIM
Range
Server

MDHIM
MDHIM
Range
Server

MDHIM MDHIM
MDHIM
Range
Server

MDHIM

MDHIM Operation: Insert

LA-UR 12-10467 and LA-UR-11-11964

Application
code

Rank-0
MDHIM

Application
code

Rank-1
MDHIM

Application
code

Rank-4
MDHIM

Application
code

Rank-3
MDHIM

Application
code

Rank-2
MDHIM

MDHIM
Range
Server

MDHIM
Range
Server

MDHIM
Range
Server

Processes use range
computation to send records to
be indexed to appropriate
range server, notice ranges are
created on the fly by the range
servers

Nodes 0 and 2 insert records

Record key 57 Record key 1

Independent
data store

Range 50-99

Nodes 0, 2, 3, 4 insert records

Record key 351 Record key 43 Record key 72 Record key 127

Independent
data store

Range 100-149
Independent

data store
Range 350-399

Independent
data store

Range 0-49

Range List
0 - 1

Range List
50 – 1

Range List
100 - 1

Range List
0 - 2

Range List
50 – 2
350 - 1

Range List
100 - 2

Indexes Types
– Primary Global – Global index with key order same as record order and Primary Global

keys point at data records
• There must be exactly one of these per PISAM file
• If there is a Secondary Global index, this the Primary Global Index must be unique
• If there is no Secondary Global index, the Primary Global Index doesn’t have to be unique
• If you don’t want the Primary Global index functionality, then setting the Primary Global keys

to random and possible random but unique is a way to accomplish this fuctionality (which
implies you only want to use Secondary Local indexes)

– Secondary Local
• There can be multiples of these and they do not have to be unique
• There will be one instance of each Secondary Local index for each Global index (Primary and

Secondary's)
• There can be more than one type of Secondary Local index, to enable multiple statistical

representations of the Secondary Local key values

– Secondary Global – Global index where key order is not same as record order. A
Secondary Global key does not point at a data record, it points at the Primary Global key
for the record which does point at a data record

• There can be multiples of these and they do not have to be unique
• If there is a Secondary Global index, the Primary Global keys must be unique
• The Global Primary index is used to gain access to the data records

LA-UR 12-10467 and LA-UR-11-11964

MDHIM Operation: Flush

LA-UR 12-10467 and LA-UR-11-11964

Application
code

Rank-0
MDHIM

Application
code

Rank-1
MDHIM

Application
code

Rank-4
MDHIM

Application
code

Rank-3
MDHIM

Application
code

Rank-2
MDHIM

MDHIM
Range
Server

MDHIM
Range
Server

MDHIM
Range
Server

Flush is collective, all range
servers report all ranges and
how many records per range
and broadcast

Flush

Independent
data store

Range 50-99

Independent
data store

Range 100-149
Independent

data store
Range 350-399

Independent
data store

Range 0-49

Range List
0 - 2

Range List
50 – 2
350 - 1

Range List
100 - 2

Range List
0 – 2

50 – 2
100 – 2
350 - 1

Range List
0 – 2

50 – 2
100 – 2
350 - 1

Range List
0 – 2

50 – 2
100 – 2
350 - 1

Range List
0 – 2

50 – 2
100 – 2
350 - 1

Range List
0 – 2

50 – 2
100 – 2
350 - 1

Key Distribution Methods
– For all indexes, one of the functions of MDHIM on flush is to share key distribution. For every

range, for every index (Primary Global, Secondary Global, and Secondary Local) key distribution
information can be kept as records are inserted and then this key distribution information can be
provided to the query client for use in query optimization.

– The amount of key distribution information that can be kept by the range servers for each key can
be specified. The minimum information would be number of records per range for the Primary
Global Key which would result in knowing minimal key distribution information and global order for
the records across ranges.

– Key distribution information can be ignored and this would imply basically a map/reduce or Hive
like functionality. This minimizes the inter machine communications required and behaves as if we
were not really on a supercomputer with a high performance interconnect

– Key distribution can be extremely rich and could provide statistics on each index for each range, for
example quartiles or distribution type, mean, standard deviation, etc. The exact number of these
statistical key distribution representations is not known at this time and will need to be flexible to
allow the user to specify key distribution type information for each index for each range.

– This key distribution capability is one of the things that shows how adding the high performance
interconnect on a parallel machine can benefit, more extensive statistical models per range or
subrange per index versus costs to store the records.

– This is part of the power of the MDHIM approach, to provide the user the flexibility to have as
many dimensions of indices as desired with as much or little key distribution information as desired.
We are trying to provide a tool to allow people to represent enormous volumes of record oriented
data with very small amounts of indices/statistical distribution information.

LA-UR 12-10467 and LA-UR-11-11964

COMMUNICATION

LA-UR 12-10467 and LA-UR-11-11964

 MDHIM Communication

LA-UR 12-10467 and LA-UR-11-11964

Application
code

Rank-0
MDHIM

Application
code

Rank-1
MDHIM

Application
code

Rank-N
MDHIM

Application
code

Rank-N-1
MDHIM

Application
code

Rank-2
MDHIM

MDHIM
Range
Server

MDHIM
Range
Server

…
MDHIM
Range
Server

Distributed Application

Communications Facility (MPI, GasNET, etc.)

MDHIM Communication

• Objective
– Make use of the Supercomputer’s high speed

interconnect for communication with range
services and key statistics distribution

• Currently using MPI
• Future

– Abstract layer for communication
– MPI, shmem, UPC (GASnet), …

LA-UR 12-10467 and LA-UR-11-11964

DATA STORES

LA-UR 12-10467 and LA-UR-11-11964

Data Store
• Requirements

– Embeddable
– Language
– No client-server model
– Support range queries

• Currently using Program Base Library
Functions Indexed Sequential Access Method
(PBL ISAM)

• Future
– Abstract layer for data stores
– Berkeley DB, Level DB, Toukutek, B-Trees, …

LA-UR 12-10467 and LA-UR-11-11964

Candidate Data Stores

LA-UR 12-10467 and LA-UR-11-11964

Data Store Investigation

LA-UR 12-10467 and LA-UR-11-11964

• Performance
• DB File size
• Features

TESTING

LA-UR 12-10467 and LA-UR-11-11964

Testing
• Testing

– Data store routines vs. data store routines with wrapper
code vs. MDHIM routines

– Insert scaling study
– Against Map Reduce style and other key-value data stores

• Test Harness
– Simulates application inserting records in parallel

• Benchmarks
– TPC-C, …?
– Sort benchmarks

LA-UR 12-10467 and LA-UR-11-11964

RESEARCH QUESTIONS AND
FUTURE WORK

LA-UR 12-10467 and LA-UR-11-11964

What are the Research Questions?
• Can massively parallel indexing be done on

existing commercial file systems and not require
new data intensive style file systems?

• Can we build a multi-dimensional indexing
system that effectively represents petabytes with
only mega-gigabytes of representation data?

• Can the application of “shared some” as apposed
to shared nothing be done using supercomputing
class interconnect technology and how would
this “shared some” environment help over the
current “shared nothing” fad (is there something
in between map-reduce and transactional SQL)? LA-UR 12-10467 and LA-UR-11-11964

Current and Future Work
• Current

– Full functionality/tested
– Work through scaling issues
– Enhanced flush statistics
– Test against competing distributed parallel data

stores

• Future
– Rebalance of range servers
– Restart capability
– User defined key comparison
– User defined statistical function

LA-UR 12-10467 and LA-UR-11-11964

Summary
• Multiple dimensions of global indices
• Multiple local indices
• Efficient queries
• “Stab” or range queries into global indices
• Range queries into local indices
• Range queries over combinations of global and local indices
• Can be treated as global index system
• Can be treated as only local index system (like Hive etc.)
• Utilizes interconnect present in HPC systems (not really present in

classical data intensive systems) to provide:
– Rich key distribution information to make queries optimized and

parallel
– Representing petabytes of record information with megabytes of

key distribution information
LA-UR 12-10467 and LA-UR-11-11964

Acknowledgements

This work was supported by the United States
Department of Defense & used resources of the
Extreme Scale Systems Center at Oak Ridge
National Laboratory.

Questions?

James Nunez (jnunez@lanl.gov)

LA-UR 12-10467 and LA-UR-11-11964

	Multi-Dimensional Hashed Indexed Metadata/Middleware (MDHIM) Project
	Agenda
	MDHIM Project Personnel
	Motivation – PLFS: Review and Problems
	DOE Parallel Apps “should” do �Parallel IO
	N-N File IO
	N to 1 is Really Better for the Long Run�If Issues Can Be Addressed
	Decouples Logical from Physical
	LBNL PatternIO Benchmark
	Slide Number 10
	Recall: PLFS Independent Writing
	Naïve Approach: Every Process Reads All Indexes to have a Complete Index in Each Proc’s Memory to Honor any Unknown Read Request (N Squared!)
	Effects of Everyone Reading All PLFS Indexes
	MDHIM – What is it?
	The MDHIM Project
	Key/Value Stores Already Exist, Why Another?
	How? Leverage
	What Does MDHIM Look Like?
	MDHIm – How it works
	What Does MDHIM Look Like?
	MDHIM API
	MDHIM API
	MDHIM Operation: Initialization
	MDHIM Operation: Open
	MDHIM Operation: Insert
	Indexes Types
	MDHIM Operation: Flush
	Key Distribution Methods
	Communication
	 MDHIM Communication
	MDHIM Communication
	Data Stores
	Data Store
	Candidate Data Stores
	Data Store Investigation
	Testing
	Testing
	Research Questions and Future Work
	What are the Research Questions?
	Current and Future Work
	Summary
	Acknowledgements
	Questions?
	Back up Slides
	Phase 1�Primary Global Index�
	Phase 2�Primary Global Index,�Multiple Secondary Local Indices
	Phase 3�Primary Global Index, Multiple Secondary Local Indices, Multiple Secondary Global Indices
	Insert Function with�Primary Global Index, Multiple Secondary Local Indices, Multiple Secondary Global Indices
	Flush Function with�Primary Global Index, Multiple Secondary Local Indices, Multiple Secondary Global Indices
	Find: Example Stab Query Using Primary Global Index
	Find: Example Min/Max Query Using Any Index
	Find: Example Range Query Using Secondary Local Index Only
	Find: Example of Range Query using Primary Global Index and Secondary Local Indices
	Find Has Implied Order for Retrieval
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59

