

Basic results: sharing

25 August 2005 Zygaria 11

Configuration	Total CPU (%)	Throughput (IOPS)
No Zygaria	1.11	145
1 pool, 1 sess, <i>q</i> =10	1.07	112
10 pool, 10 sess, <i>q</i> =10	1.24	112
1 pool, 1 sess, <i>q</i> =100	0.88	145
10 pool, 10 sess, <i>q</i> =100	0.78	145

Zygaria

Combining bandwidth and IO rate

25 August 2005

25 August 2005	Zygaria

13

Related work · IO and soft realtime scheduling - Media-oriented IO scheduling: Clockwise, Cello - Zygaria provides looser scheduling than traditional SRT Hierarchical resource allocation - UCSC hierarchical disk sharing, Q-RAM, HLS, DQM • Fair share scheduling - Lottery scheduling, YFQ • Façade, SLEDrunner - Adaptive mechanisms, focused on latency - Built around an EDF scheduler - Zygaria provides stronger guarantees, better control transparency 25 August 2005 16 Zygaria

14

Conclusions

- Global resource control based on local enforcement
- Zygaria algorithm was simple to implement
- Provides:
 - Reserve and limit enforcement per pool, session
 - Fair sharing
 - Isolation between sessions (applications)
- Good performance requires request batching and aggressive slack use

25 August 2005

Zygaria

18

Contact

- Richard Golding (rgolding@us.ibm.com)
- Theodore Wong (<u>theowong@us.ibm.com</u>)

Zygaria

25 August 2005

19