The L4Ka Vision

Uwe Dannavski Kevin Elphinstone JocherLiedtke GerdLieflander
VolkmarUhlig ChristianCeelen AndreasHaeberlen

EspenSkoglund
MarcusVolp

Universityof Karlsruhe
SystemArchitectureGroup
76128Karlsruhe,Germary

liedtke@ira.uka.de

Abstract

Microkernelsare minimal but highly flexible kernels. Both con-
ventionalandnon-classicabperatingsystemscanbe built on top
or adaptedo run ontop of them.Microkernel-base@rchitectures
shouldparticularly supportextensibility and customizability ro-
bustnessncluding reliability and fault tolerance protectionand
security

After desastrousesultsin the early 90’s, the microkernel ap-
proachnow seemsto be promising, althoughit still bearsa lot
of researctrisks. Currently University of Karlsruhes systemar
chitecturegroupis definingthe stateof theartin microkernelre-
search.

ThelL4Ka researclprojectaimsat substantiatingndestablish-
ing anew methodologyfor systemconstructiorthathelpsto man-
ageever-increasingOS compleity andminimizeslegag/ depen-
dence.Our vision is a microkerneltechnologythatcanbe andis
usedadwantageoushyfor constructingary generalor customized
operatingsystemincluding penasive systems,deep-computing
systemsandhugeseners.

The technologyshould help to manageever-increasingOS
compleity, enablestepwiseinnovationsin OS technologywhile
preservinglegagy compatibility and lead to a widely-accepted
foundationof systemarchitecture.

1 Status Quo

Managing OS compleity is the challengefor OS technology
Thecompleity resultsfrom combiningsystenrequirementsuch
assecurity reliability, configurability customizability quality-of-
service guaranteesand performance. The challengebecomes
even harderdueto (a) the ever-groving numberof servicesand
applicationghatincreasinglyinteractwith eachotherand(b) the
increasinghardwarecompleity andparallelism.

OS researchfocusesthereforeon techniquedo structuresys-
tems dynamically to isolate a systems componentsfrom each
other and to control interaction/communicatiofetweenthose
components. Microkernels, extensiblekernels,and sandboxing
(e.g. throughvirtual machines)are relevant approachesn this
area. Microkernelsmight have the broadestand highestimpact
onsystemdechnology— if they fly.

1.1 Client Projects

SomeprojectsalreadyuselL4Ka technology Suchclient projects
are extremely important and useful for L4Ka. As our “cus-
tomers”, they constantlyevaluateour microkernelsand alsoin-
fluenceour researclthroughtheir requirements.Closelyrelated

client projectsthat have strongly influencedpreparatoryL4Ka
work areSawMill, Drops, andMungi.

SawMill is a joint project betweenthe IBM T.J.WatsonRe-
searchCenterin Yorktown Heights, NY, and the University of
Karlsruhe. SawMill is mainly fundedthroughIBM Research.
SawMill aimsat a generalmethodologyfor constructinghighly-
configurablecomponent-baseaulti-sener operatingsystems.

It complementshe currentL4Ka project: SawMill focuseson
how to constructefficient senersandcomponent®n top of a mi-
crokernel. It doesnot only dealwith constructionfrom scratch
but alsotriesto find principleshow to take existing systemsapart
into components.(The first subprojectis a multi-sener Linux.)
The projectrequiresa robust, highly flexible, andextremely per
formantmicrokerneltechnology

As such,it is aprominentcustomerof L4Ka. SawMill imposes
practicallyrelevantrequirementsnthe L4Ka microkernels andit
givesusanidealtestcasefor ourtechnology

“The DresderReal-Time OperatingSystemsgprojectDropsis
aresearctprojectaiming at the supportof applicationswith
Quality-of-Servicerequirements. Although much research
hasbeendoneon networking supportfor continuous-media
applicationsyeryfew projectstacklerelatedoperatingsystem
issuessuchasschedulingandfile systenmsupportfor bounded
responséime. TheDrops projectattemptdo find designtech-
niguesfor the constructionof distributed real time operating
systemavhoseevery componenguarantees certainlevel of
serviceto applications.

A key componentis LLinux, the Linux sener on top of
the L4 microkernel; it servicesstandardLinux applications.
In addition, separatereal-time componentsdesignedfrom
scratch, provide deterministicserviceto real-time applica-
tions. At the moment,an ATM-basedreal-timeprotocoland
areal-timefile systemarebeingdeveloped. [Dre]

“Mungi is an operatingsystembasedon the ideaof a single

addressspace sharedby all processesind processorsn the

system.The aim of the projectis to shav thatsucha single-

address-spaceperatingsystem(SASOS)canwork on stan-
dardhardvare,canbe madeassecureastraditionalsystems,
is not inherentlylessefficient than traditional systems,and

delivers performanceadantagesover traditional systemson

someclassof importantapplications.

In addition, we are trying to build Mungi as a very pure
SASOS,thatis all data(even the systems’)is in the single
addressspace,and no other IPC mechanismsre supported
by the OS. A 64-bit Mungi kernelhasbeendeveloped. It is

implementecn top of the L4 microkernelandcurrentlyruns
on MIPS R4x00platforms. Critical to efficient operationof

Mungi is theimplementatiorof its capability-baseg@rotection
system,in particularthe protectiondomainextension(PDX)

mechanisnusedto performprotectedcross-domainproce-
durecalls. Extensve cachingof validationinformationis used
to ensurghatgoodperformancé.[Syd]

1.2 L4Ka Status Quo

The L4 microkernelfor Intel's x86 processorss currently avail-
ablein two independentlylevelopedversions:

“Lemon Pip” and “Lime Pip” Kernels. TheoriginalL4 as-
semblerersionfor x86 (“Lemon Pip”) hasbeendeveloped1995-
98 atIBM ResearctandGMD. Basedon our Joint StudyAgree-
mentwith IBM Researchit wasmaintainecandimprovedin Karl-
sruhe. The currentversionis highly efficient and stable. Most
microkernel-basedesearchand teachingactvities are basedon
this version.We expectopen-sourcavailability in fall 2000.

A derivative of Lemon Pip, the“Lime Pip” kernelhasbeende-
velopedin Karlsruheandcurrentlysenesasanexperimentaker-
nelin the SawMill project.

“Hazelnut” Kernels. For years, we were corvinced that
assemblebasednicrokernelimplementationsverenecessarjor

achieving ultimateperformanceHigh costsfor maintainingport-

ing andadaptingsuchmicrokernelsareobvious disadwantagesA

first C++ implementationof L4, Fiasco[Hoh], corroboratedhe

claim that higherlevel-languagemplementationoffer substan-
tially lessperformance However, we starteda new approactthat
might resulta microkernel-implementatiomechnologythat com-

bineshigherlevel-languagdenefitsandperformance:

Hazelnut kernel have beendevelopedfrom scratchat Karl-
sruheUniversity over the past10 months. Implementationan-
guagesareC++andassemblerCurrently prototypesareavailable
for x86 and ARM processorsas OpenSourceunderGPL since
09/00). Furthermore|BM Researchasstartedto adaptHazel nut
to Power PC750.

Early performancemeasurementsf Hazelnut/x86 look very
promising. Exactly comparableanicrobenchmarkshav IPC per
formancewithin a 10%-rangeof the original Lime Pip kernel.
However, Hazelnut still lacks someimportantfeatures,mostno-
tably the emulationof a taggedTLB on x86 which canimprove
IPC performanceby a factor of 3 or more. (For sale of fair-
ness,the above mentionediPC comparisondid not usethat fea-
ture on the Lime Pip.) Implementingthat necessarpptimization
in Hazelnut might thusleadto worseresults. Another potential
sourceof surprisemay be the cache. Indeed,cache-misgycles
today dominatein mary casesnstruction-e&ecutioncycles. Mi-
crokernel costsare thus determinedby both the raw execution
time andthe cacheworking setthatis requiredfor IPC or other
primitives. Theold Lime Pip kernelhasanextremelysmallcache
working set, about2% of the L1 cachefor an IPC (shortmes-
sage).We still do notknow howv smallcacheworking setscanbe
achieved for Hazelnut. It dependn the additionalfeaturesstill
to be implementedn Hazelnut andon to be explored code/data
optimizationtechniqueshatcanbe combinedwith gcc.

If it turnsoutthatwe succeedn makingthe full Hazelnut/x86
performcomparabléo theLime Pip kernel,we will probablydrop
the Pip line and completelyswitch to Hazelnut. Otherwise,we
have to includea very deepperformancenalysiscomparingooth
versionsin detail. Eitherwe canthereafterfix the Hazelnut prob-
lemsor have to keepthe Pip line in parallel,and adaptit to all
futurekerneldevelopments.

IDL%. Interface-definition-languaggtDL) arewell-known tools
from Corbasworld of middlewvare.However, IDL compilers, e.g.
Utah's Flick compiler[EFF+97], arealsobeneficialfor intra-node
communication,particularlglient/serer interaction.

In a component-baseslystem,an IDL makes IPC (and RPC)
mechanismgorveniently available for application-,component-
, and senerwriters. Through interface specifications,e.g. in
CORBA [Obj] or DCOM [EE98] IDL, remotemethodscan be
calledaseasyaslocal methods.The IDL compilergeneratesill
necessargodefor marshalling/unmarshallingarameteranethod
selectiongtc. Surprisingly we foundthatwith increasingPC per
formance the IDL-generatedstub codebecamea seriousbottle-
neck.We hadto investin anexperimenton generatingsuficiently
optimizedstubcode:

“As IPC mechanismbecomefastey stub-codeefficiengy be-
comesa performancessuefor local client/serer RPCsand
intercomponentommunicationlnefficientandunnecessary
complex marshallingcodecanalmostdoublecommunication
costs. We have developedan experimentalnewv IDL com-
piler that producesnearoptimal stub code for gcc and the
L4 microkernel. The currentexperimental DL* compilerco-
operateswith the gcc compiler and its x86 code generatar
Other compilersor target machineswould require different
optimizations. In mostcasesthe generatedstub codeis ap-
proximately 3 times faster(and shorter)than the codegen-
eratedby a commonlyusedportableIDL compiler Bench-
markshave shavn thatefficient stubscanincreaseapplication
performancdy morethan10 percent.Theresultsareapplied
within IBM’s SawMill projectthataimsattechnologyfor con-
structingmulti-sener operatingsystems. [HLP+00]

Currently IDL* is anexperimentalcompiler We planto improve
its flexibility andmale it widely usableasa standardool for the
L4 API.

Real Time. Early work of the L4 group evaluatedprinciple

techniguesof OS-basedcache-partitioningo increasethe pre-

dictability of real-timecomponentsn systemshatrun a mixture

of real-timeand non-real-timeapplications[LHH97]. Although

mostreal-timededicatedvork is donewith our partnergroupat

TU Dresdenthe L4Ka groupconductedsomefurtherresearcton

real-timespecificarchitecturese.g. how multiprocessosystems
couldbeusedfor real-timeapplications.The memorybusin such
a systemis a commonresourceor all processorandmalespre-

dictability andschedulingeven harderthancacheglo:

“Assumethat we have 4 job mixesthat canbe correctly
scheduledn 4 independentiniprocessorsWhat happensf
we put those4 job mixeson a 4-processosystemwith asin-
gle memorybus? Without ary additionalschedulingprovi-
sions,the sharedmemorybus can,in the worst case stretch
eachscheduldby a factorof 4. This is clearly unacceptable.
In generaljt would meanthatthereal-timecapacityof ann-
processosystemis only 1/n of thecapacityof auniprocessor
system.Multiprocessorsvould be unusabldor real-timeap-
plications.

Thereforememory-lus schedulings desirablelt should
enableusto give softandperhapsvenhardguarantees re-
lationto memorybandwidthandlateng to real-timeapplica-
tions. For nonreal-timeapplicationsjt shouldhelp optimize
asystems overall throughputand/orlateng.

Work in this areaseemdo berare. The authors areonly
awareof FrankBellosas work [Bel97].” [LVEOO]

Persistence . Making dataand perhapseven active programs
persistenmmight largely simplify programconstruction.Dataand
programsshould automatically survive shutdevns and crashes
without that the programsexplicitly write all their internal data
into files all the time. Suchoperatingsystemshave beenaround
sincedecadeflan92,Lie93, DABFT94, SSF99. Thepointthatis
extremelyinterestingto usis whetherorthogonalpersistencean
be implementedeasily and efficiently on top of the microkernel.
In otherwords: is themicrokernelsuficiently generabndflexible
thatpersistenceloesnot requirespecialkernelintegration?

“Orthogonalpersistence®pensup the possibility for a num-
ber of applications. We presentan approachfor easily en-
ablingtransparenorthogonalpersistencehasicallyon top of
a modernu-kernel. Not only areall dataobjectsmadeper
sistent. Threadsandtasksarealsotreatedasnormaldataob-
jects,makingthethreadsandtaskspersistenbetweersystem
restarts. As such,the systemis fault surviving. Persistence
is achiered by the meansof a transparentheckpointsener
running in userlevel. The checkpointsener takes regular
snapshotof all userlevel memoryin the system,and also
of the threadcontrol blocks inside the kernel. The execu-
tion of the checkpointingitself is completelytransparento
the u-kernel,andonly afew recarery mechanismsieedto be
implementednsidethekernelin orderto supportcheckpoint-
ing. During systemrecovery (after a crashor a controlled
shutdavn), the consisteng of threadsis assuredy the fact
thatall their userlevel state(usermemory)andkernel-level
state(threadcontrolblocks)will residein stablestorage.All
other kernel statein the systemcan be reconstructeceither
uponinitial recovery, or by standardpagefault mechanisms
duringruntime” [SLOO]

Security . For amicrokernel-basedystemthatis built oninter
processcommunication,|PC control, i.e. communicationinter
ception,is a fundamentatonceptrequiredto implementsecurity
senersandsecuritypolicies.

Overthepastyearswe foundthatL4’s original conceptClans
& Chiefs [Lie92], wasnot sufiiciently flexible andefficient. The
new Elphinstone-Jaeger redirectionmodel[JEL*T99] avoids most
of theold models problem(while beingupward compatibleto the
Clans& Chiefsmodel).

Furtherresearclactivities dealtwith how to build securityar
chitecturesmodels,andpoliciesbasedn our securityprimitives.

IA-64 In orderto follow trendsin hardware architecturedevel-
opmentandbroaderthe impactareaof microkernelsystemsthe
L4 microkernelmustsupportupcoming64-bit architecturesuch
asintel'sIA-64 andIBM’ sPower 4. |IA-64 hasbeenchoserasthe
main vehiclefor this researchandcurrentwork hasbeenpurely
theoretical focusingon how to provide the right abstractiongor
dealingwith EPIC, hugeregistersets,large amountsof memory
andmulti-level caches.

Work is now enteringa statewheremoreexperimentalstudies
areneededo propelresearctary further Awaiting the availabil-
ity of real hardware, Intel’'s SoftSDV environment[UFGT99] is
beingusedto createa preliminaryversionof thekernel—enabling
accuratehardware timing measurement® be madewithout the
underlyinghardware.

2 Goals

The L4Ka projectaims at substantiatingand establishinga new
methodologyfor systemconstructionOurvisionis amicrokernel

technologythatcanbeandis usedadwantageouslyor constructing
ary generalor customizedperatingsystem.

The technology should help to manageever-increasingOS
compleity, enablestepwiseinnovationsin OS technologywhile
preservinglegagy compatibility and lead to a widely-accepted
foundationof systemarchitecture.

Strategic Goals

At first, we describethe stratejic goalswhy we wantto substanti-
ateandto establisha microkerneltechnology

“A FOUNDATION TO MANAGE OS COMPLEXITY.” Ever
increasingcompleity is a seriousproblemin OS construction.
It mightbethe key challengefor thenext decade.

Improved compleity managementould have strongresearch
and practical consequencesResearchand industry could deal
with morecomplex systemsand/orimprove systenqualities.Fur-
thermore,industry might reducedevelopmentand maintenance
costs.

Our primary stratgyic goal, finding a usableway to manage
compleity, dominatesall furtherreasoningCurrently the micro-
kernelroadlooks mostpromisingfrom this point of view. Never
thelessour ideasof microkernelsmight substantiallychangeon
that path, perhapseven be replacedby new conceptsheyond mi-
crokernels.

“WEAKENING THE LEGACY DEPENDENCE.” Legagy soft-
wareandlegag systemsalwaysform a “bed of Prokrustes’ for
researchdevelopment,and even customers. Innovative and in-
compatiblenew systemsare hardto establishas researchopics
sincesuchsystemsannot coexist with the“standard”(which will
sooneror later becomelegagy). Far too often, innovative ideas
canalsonot be explored becausehey would requireto build an
entirelynev OSwith full functionality moreor lessfrom scratch.
The story continuesat the industrialdevelopmentandat the cus-
tomerlevel: Legag requirementsnake it impossibleto developor
even useincompatible(sub)systemsnd/orservicesconcurrently
to legag/ systemsandservices.

Our vision is a technologythat substantiallywealens this
legay dependence.OS researchshould more easily be able to
build principally new systemsandserviceswhile still usingexist-
ing OS services.Typically, the nev system/servicevould extend
anexisting OS by addingservicesor modify it by replacingser
vices,or coexist with the old OS. Microkernelarchitecturas not
a sufiicient preconditionbut probablya necessarpne for such
models.

“A SYSTEM-ARCHITECTURE FOUNDATION.” In contrastto
hardwarearchitecturendprogrammindanguagesye still donot
have a generalset of low-level basicconceptsand paradigmsn
systemarchitecture Most existing conceptsareeitheronly avail-
ablein theory or they areof atoo high level, or they aretoomuch
specialized.In particular we arelacking conceptghat orthogo-
nally fit togetherandcomplemeneachother

The bareavailability of sucha setof generalbasicparadigms
would boostsystemsn scienceandengineering— provided the
paradigmsvereimplementedperformedhicely, would beflexible
andpowerful, andwould be corvenientto use.

Currently the microkernel approachis one of very few ap-
proacheghat might have the potentialto lead to sucha set of
orthogonalgeneralandpracticallyavailableparadigms.

Tactical Goals

“WIDE APPLICABILITY.” To substantiatendestablishmicro-
kerneltechnologyasa generalbasisfor systemconstructionwe
mustevaluatemicrokernelsfor all relevantclasse®f systemsap-
plications,and hardware architectures.The goalis a technology
thatis asgenerallyapplicableas,e.g.,processorg,e. for almostall
differenttypesof systemsandapplicationsfrom penasive com-
puting to deepcomputing (including classicalapplicationsand
systems).

Consequentlywe needto make microkerneltechnologyavail-
ablefor (i) corventionalworkstationsandPCs,(ii) penasve sys-
temsincludingreal-timesystems(iii) hugeseners,(iv) anddeep-
computingsystemsncludingmassiely parallelsystemsandclus-
ter systemsFromapplication/systerperspectie, the “same” mi-
crokernel (cum grano salis), i.e. the sameAPI, shouldbe used
in all cases.Having alsoa commoncodebasewould be benefi-
cial. However, its is still anopenquestionto which degreea uni-
form implementatiorapproachs possible.Differentarchitectures
might requiredifferentimplementatiormethods.

Microkernelsshouldbe availablefor all relevant hardware ar-
chitectures,including not only the basic 32-bit processorfami-
lies but alsoupcoming64-bit processoarchitecturesparallelar
chitecturesandclusters. Only sucha broadavailability canen-
surethat microkernelsare suficiently generalandoffer a single,
hardware-independemPI. Also, availability on all major hard-
wareplatformsis necessaryo corvince a largernumberof exter-
nal researctprojectsto usemicrokerneltechnologyasa platform
or atool for their own research.

“OPEN BACKBONE PROJECT.” To getbroadacceptancen
scientific and engineeringcommunitiesand to cometo a suffi-
ciently broadevaluation,we needcustomersfor our technology
andwe needto foster and supportexternal experimentsand re-
searclparticipation.

CLIENT PROJECTS. We have to ensurethatwe dealwith prac-
tically relevantproblemsandoptimizationsanddo notloseour fo-
cus. We mustconstantlyevaluateL4Ka microkernelsin the con-
text of “real” systemsand applicationsrunningon top. Closely
relatedclient projectssuchas SawMill and Drops arevery effec-
tive in this context. They are“customers”of our technologyand
give us steadyandquick feedback.More looselyrelatedexternal
researchusersshouldextendthe setof client projects.

EASY ACCESS AND PARTICIPATION. All L4Ka technology
mustbe easilyaccessibldor everyonewho wantsto useit (open
source). Also, the projectmust enableotherresearchgroupsto
participatein microkernelresearch.

STEADY STREAMLINING AND MAINTENANCE. Continuous
streamlinings requiredto achieve our stratejic goalsandto meet
our optimality requirements] 4Ka hasto be steadilyimproved
andextended. This includesongoingefforts in validating, evalu-
ating,improving, andminimizing fundamentakernelabstractions
andconceptsaswell assimplemaintenanceCorrectnessperfor
mance,robustnesssupportfor applicationand OSeshave to be
improved wheneer possible.Maintenancecomplementstream-
lining andis necessaryo supportclient projectsandto improve
globalimpact.

Technical Goals

“EVALUATING THE UPPER BOUNDS OF PERFORMANCE."
For all classeof systemsandapplications performancenustbe
“closeto infinity”. ldeally, no adequatelywvritten programshould
be slower whenrunningon a microkernelthanwhenrunningon
ary other systemarchitecture. Although this requirementcan
never be fulfilled in entiretyandwith full generality we have to
drive performanceasfar aspossible.We operateon the architec-
turelevel andaim atwide applicability We mustthereforeunder
standthat performanceof the primitives doesnot only influence
currentapplicationsbut also determinesthe applicability range,
i.e. flexibility andgenerality of the architecture.Primitiveslike
IPC canin practiceonly be usedaslong astheir relative costsare
reasonabl®r, even better negligible. Reducingcostsfrom 200
to 20 cyclesmight thenenablea whole new classof applications
usingthe mentionedprimitive.

Therefore finding and evaluatingthe upperboundsof perfor
manceis the mostcrucial partto make thetechnologywidely ap-
plicable.

Evaluatingtheupperboundsof performancés by farmorethan
simply try to malke a “fast” implementation. It requiresperfor
manceanalysega priori anda posteriori) thatlet us understand
the reasondor the achieved performanceits limitations, andits
dependenciefrom hardware and software architecturaffeatures
anddetails. Sometimessuchanalysedriggerinventive ideasthat
improve performanceandinvalidatethe original analysis.Ideally,
this roadhasto befollowed asfar aspossible practicallyonly as
far asreasonable(Concludingwhenit becomesinreasonablés
thehardespart.)

Sinceperformanceaypically depend®n mary architecturafea-
turesandeven detailsof hardware, performanceanalysesandop-
timizationsarenecessaryor all relevantclasse®f hardwareplat-
forms. This wide approachwill mostlikely resultin goodsyner
geticeffects.

x86. Intel's x86 family (andcompatibleprocessorérom other
vendors)Yorm the de facto standardor PCsandworkstations An
L4 implementatiorfor x86 is a preconditionfor microkernelre-
searchMarny (if not most)OSresearclanddevelopmentprojects
usethis architectureandit is absolutelydominantfor classical
systemsand applications. L4Ka’s successeliesto a a large de-
greeon the existenceandon the qualitiesof an x86 microkernel,
particularly becausenary externalprojects/partiesvill first eval-
uatethe microkernel conceptson that basis. High performance
andgoodstability of thisimplementatiorareessential.

ARM. Marny penasive systemsarebuilt on low-power archi-
tecturessuchas ARM processorsA correspondingnicrokernel
is thusrequiredto evaluatemicrokernel conceptsor cell-phone
OSesor otherthin penasive systems.Sincethe mentionedow-
power platformsareall basedn corventional32-bitarchitectures
with page-basedhemorymanagementhancesre high thatthe
x86, ARM, and... kernelscanall be specialization®f the same
32-bitmicrokernel.

IA-64 AND POWER4. Upcoming64-bitarchitecturesequirea
new internalkerneldesignto efficiently handlenew processoar
chitecturessuchasEPIC andhugeregistersetsto handlecaches
of 3+ levels and Gigabytecapacity andto ensurescalability of
both physicalandvirtual memory Thesearchitecturechallenge
microkernel APl andimplementatiormethodology Correspond-
ing microkernelsareessentiafor evaluatingthefuturefirmnessof
microkerneltechnology

MASSIVELY PARALLEL ARCHITECTURES. Clusters will
probably not require specialmicrokernel featuresor implemen-
tations. Massvely parallelNUMA machineshowvever will need

a specialkernelimplementation. For example, it hasto include
efficient handling of the interconnect NUMA memory classes,
andspeciakross-processdPCimplementationsln collaboration
with thevendorof anMPP platform,suchamicrokernelshouldbe
developed|f possiblebasednanalreadyexisting microkernelfor
uniprocessorandSMPs.

“MAXIMIZING FLEXIBILITY AND GENERALITY.” Effective
widely applicable performancerequires general conceptsand
primitivesthat are extremelyflexible and supportwide rangesof
policiesandcustomizationsFor ary system/applicatioolassthe
microkernelmechanismshouldenableadequat@andefficient so-
lutions.

Fromthatperspectie, flexibility andgeneralityarehigherlevel
performanceprinciples ensuringperformanceof policies, algo-

rithms, and applicationsbasedon the microkernel mechanisms.

They have to be evaluatedin a similar processas describedfor
theperformanceaaluationgoal. Insteadof analyzingmechanism
performancelependingn hardwarearchitecturesye have to an-
alyzepolicy performancalependingn operating-systerandap-
plicationarchitectures.

Another dimensionof flexibility is easeof modification,e.qg.,
whenextending,customizing,or configuringa system. Evaluat-
ing this dimensioncan only be donein collaborationwith client
projectssuchasSawMill.

CONVENTIONAL SYSTEMS. Thisis anobvious point, andwe
includeit only for reasonof completenessL?Linux hasshavn
the principle usability of the microkernel approachfor classical
operatingsystems.Of courseary new microkernel APl andim-
plementatiorhasto bechecled against_*Linux.

PERVASIVE SYSTEMS. Ubiquitousor penasive computing
will be oneof the key topicsof the currentdecade.Fromthe OS
perspectie, penasive systemsareto a certaindegreeevolutions
from classicakystemsFor example building systemsighly con-
figurableand basedon componentss crucial for penasie sys-
tems(andniceto have for classicakystems)Basedon L4 micro-
kernels,suchfundamentatesearchs, e.g.,donein the SawMill
project. However, penasie systemsalsoincludenew functional-
ity thatdoesnot evolve from classicakystemsPenasie systems
are, e.g., real-time systems embeddedsystems Jow-power sys-
tems,nomadicsystemsyireless-connectesystems Thesefunc-
tionality is partially evaluatedin our client projectsSawMill and
Drops. Furtherexternalclientsarenecessary

HUGE SERVERS. Huge senersimposevery hard robustness
requirementse.g. 7x24 availability, on the underlyinghardware
andmicrokernelarchitecturePerformancgroblemsarebasically
focusedbn memorymanagementachemanagemengndproces-
sor managementSo far, we do not yet have an accordingclient
project.

SINGLE-ADDRESS-SPACE OS. Systemsbasedon the para-
digm of a singleglobaladdresspaceandmultiple protectiondo-
mainsimposeuntypicalrequirement®n the virtual-memorysys-
tem, e.qg. efficient handlingof sparseaddressspaces.On |A-64
processorsthey could alsobenefitfrom MMU mechanismshat
especiallysupportprotectiondomains.lt is still anopenquestion
whetheithisMMU mechanismsanbeefficiently usedwithout ex-
tendingthe microkerneladdress-spagearadigmand API. Client
projectin this contect is UNSW’s Mungi.

DEeep COMPUTING. Massiely-parallelmachinesaandclusters
run very specialoperatingsystemsandapplications.For clusters,
Karlsruhes Resh will beour clientproject.

3 Work Plan

Researctexploresthe unknavn. Any workplanis thus more a
snapshobf our currentthinking thana planthatis likely to cor
rectly predictthe projectfuture. Unexpectedresearchresultsand
insightswill mostlikely modify the plan substantially Neverthe-
less,it is usefulto structureourresearchactvities from ourcurrent
point of view andfrom our currentunderstanding(However, no-
bodyshouldreadit in 2003.)

To structurethe project, we group researchactivities under5
headlines.

“GENERAL CONCEPTS AND ABSTRACTIONS” Basically
this group comprisesall centraland commonscientificand en-
gineeringtopicsof L4Ka, suchasgeneralconceptsabstractions,
mechanismanethodsetc. It drivesandtriggersall othersubpro-
jectsthroughthe generalconceptsand API specificationst pro-
duces.

Key is to ensurehatthe conceptsandAPIs areorthogonaland
complementaryto eachother thatthey are generalandflexible,
andthatthey have anarchitecturaperformancé potentialashigh
aspossible.

“PERVASIVE KERNEL ARCHITECTURES” Thegoalisto de-
liver microkerneltechnologyfor penasive systems. An impor-
tantpointis to designandconstrucimicrokernelsandmicrokernel
familiesfor mostrelevantprocessorin this field, e.g.x86, ARM,
SHx. Kernelsfor classicalPCsandworkstations— althoughnot
penasive — arealsoincludedbecaus@enasie kernelswill most
likely alsobebest-suitedor PCsandworkstations (It will notpay
to developworkstation-specializekernels.)

Key criteria are performanceand adaptability/portability The
tradeof betweenboth criteria shouldbe minimized. Ideally, the
highestpossibleperformancehouldbecombinedwith reasonable
adaptability

Furthermore,problemsspecificto penasive systemsare in-
cluded,e.g.powercontrol,real-timeschedulingandcachecontrol,
SMP real-timesupport(bus scheduling) memoryfootprint, sup-
portfor nomadicapplicationswirelesshigh-performanceommu-
nication,etc.

“64-BIT KERNEL ARCHITECTURES” The focus are micro-

kernelsfor upcoming64-bithigh-performance@rocessoarchitec-
tures,suchas Intel’s IA-64 and IBM’s Power 4. We hopethat
the microkernel API will not needto be modified. However, to

achieve the highestpossibleperformancethe kernelimplementa-
tion needsto be completelyredesignedor thoseprocessorde-
causeof fundamentallynev hardwarefeaturessuchasgPIC.Fur-

thermore activities dealingwith problemsspecificto large 64-bit
systemsare included, e.g., multi-level cachecontrol, memory-
failure handling,virtualizedprocessorspersistenceSASOSsup-
port, high 7x24 reliability.

“PARALLEL AND CLUSTER KERNEL ARCHITECTURES”
The challengeis to malke microkernel technologyavailable for
deepcomputing,i.e. for massiely parallel systemsand cluster
systemsNUMA architecturesiastinterconnectsandlow-lateng

1we usethetermarchitectural performance asopposedo implementa-
tion performance to expresgheperformancehatthespecifiedarchitecture
permitsfor the bestpossibleimplementation.Architecturalperformance
limits implementatiorperformance.

clusternetworkswill requirespecialkernelimplementationsPer
haps,even conceptualAPI extensionsmight be needed.General
goalis to achieve optimal performancevith minimal conceptual
kernelextensiongbut probablyvery specializedkernelimplemen-
tations).

“EVALUATION AND ANALYSIS” This headlinecomprisesall
actvities that evaluateand analyzethe systemsthat resultfrom
our L4Ka researchactiities. The evaluationis mainly basedon
macroandmicro benchmarksthe analysisaimsat understanding
thebenchmarkesults.

Ver 4

Orange
Pip Pistachio

SawMill
Drops
Mungi ¢

Resh <
“MPP”

T Influence from design and spec [Experimental
R S - Influence from implementation and practical use [Production
4J Influences from and to client project Conditional
[] Maintenance

Figurel: Main line actiities.

Line Activities

Line actities for a longertime andtypically resultin a usable
“researchproduct”, i.e. animplementation. Most line actvities
arevery likely to happerandto be completedsuccessfully Their
intendedgeneraloutcome(target), e.g. a microkernel for 1A-64
processorsis usuallyrelative clearfrom the beginning, but spe-
cific propertiesanddetailswill evolve over time. Typically, line
actvities areheaily influencedby bubbleactiities andincorpo-
ratetheir researchresults.

Figure 1 shavs the main line actiities and their interaction.
Thetime axis expressesbefore” and“after” relationshipsHow-
ever, the length of an actwity baris not proportionalto the esti-

matedtime the activity needs.Thefigure alsoshavs connections
betweenactiities andtheir primary client projects. Note thatis
relationshipis active for the entireactiity (althoughthe connect-
ing arrow startsfrom the endof the actiity).

“GENERAL CONCEPTS AND ABSTRACTIONS”

Version4 will bethe next majorrevision andredesigrof L4’s
API. Version4 will incorporateresearchresultsand lessonswe
have learnedin the pastyears. Besidespurely technicalchanges,
Versiond will probablyincluderelevantconceptuamodifications.
Currently Version4 is a moving target. We expectto have a first
experimentaldefinition at the end of this yearandthe final API
definitionin 2001.

Since“Version4” is basicallythe synthesisandintegration of
mary researctresults,engineeringdeas,hardware-relatedech-
nical solutions,andlessondearnedover the pastyears,andsince
Version4 is currentlya moving target, we will not describeit in
detail here. The interestedreadercanfind detailedtechnicalin-
formationin the currentversionof the L4 Version-4Reference
Manualwhich is attachedo this application. Unfortunately this
documenfocuseson specificatioranddoesnot containmuchrea-
soningabout“why” and“how to use”. Thosequestionswill be
dealtwith more deeplyin the (to-be-written) SystemProgram-
mer's Manual.

Version-5 Kernel APl (Gen/A) In 2002 or 2003, lessons
learnedand new insightswill resultin an API revision. A sen-
sitive topic for this revision maybeto introducethreadsasvirtual
objectg(seebubbleactivity ??. Theaddresspacewouldthenalso
includeatasks view of the externaltasksandthreadsj.e., map-
ping would be the single controlling primitive in the systemand
alsocontrol IPC. Work on Version4 will probablyfosterfurther
sensitve topicsfor Version5.

IDL* (Gen/B) The preliminary IDL? performanceresultsare
promising(seepage?). Remainingactiities are—

e Extendthecompilerto handleall datatypes.
o Add IDL* codegeneratiorfor ARM processors.

e Stabilizethe compiler so thatit canbe usedasa standard
tool.

o Make thecompilerVersion-4compliant.

e Extendthe IDL* compilerto generatealso pure IPC code.
This featurewill enableto combinenon-standardommuni-
cationprotocolse.g.onthesener side,with IDL interfaces.

o Evaluatewhetherandhow IDL* codegeneratiorcanbein-
cludedin the Flick distribution. Include IDL* into Flick if
possiblewith reasonableffort and without loss of perfor
mance.

e Supportcode-generatomodificationsfor further processor
architecturesndtargetcompilers. (Currenttargetcompiler
isgcc.)

“PERVASIVE KERNEL ARCHITECTURES”

The Hazelnut kernels have beendeveloped from scratchat
KarlsruheUniversity over the past10 months. Implementation
languagesreC++andassemblerCurrently prototypesareavail-
ableunderGPL for x86 andARM processor¢seepage?).

So far, the Hazelnut prototypesdo not yet include the em-
ulation of taggedTLBs. Both x86 and ARM processorsuse
untaggedTLBs (TranslationLookasideBuffers). Therfore,ary
cross-address-spatfeC hasto flushthe TLB whichimposessub-
stantial TLB-refill overheadon the subsequentlyexecutedcode.
To avoid thatcosts,the Pip kernelscanemulatetaggedTLBs for
alimited numberof addresspacesThe mechanisnis described
in detail in [Lie95b] and[Lie95d]. This optimizationis crucial
for performance For example,the TCP throughputof SawMill’s
network stackincreasedy 25% on a Pentium166 MHz through
this optimization.Evidently the mentionedechniquemustbein-
cludedinto Hazelnut to make it competitive, eventhoughsubstan-
tial internalmodificationsof thekernelarerequired.

A secondpoint yet to be doneis measuringand minimizing
Hazelnut’s cacheworking sets.Effectively, a microkernel’s cache
working setis even moreimportantfor performancehanits exe-
cution cycles. The goalfor all performance-criticaHazelnut op-
erationsarecacheworking setswhich areroughly comparablego
thoseof Lime Pip, e.g.2-3%of theL1 cachefor shortIPC.

Pistachio is the codenamefor a Version-4compliantkernel
that is basedon the Hazelnut technology It shouldreplacethe
Hazelnut kernelson all processors.

Basedon our pastexperiencesand on the ideasthat lead to
Version4, the Pistachio kernelwill internally largely differ from
Hazelnut. New internal structuresand methodsinclude partly
useraccessible&ernel thread-controblocks, superést IPC (??),
fine-granulartimeouts (??), and improved real-time-scheduling
support(??).

Orange Pip Kernel (Per/A) Orange Pip isthecodenamefor

a Version-4kernelfor x86 processors.The kernelwill be based
on the existing Pip technologyi.e. developedprocessospecific,
mainlyin assembler

The experimentalOrange Pip kernelwill sene as a vehicle
for experimentalimplementationof new version-4conceptsand
mechanisms.The actvity is scheduledo run in parallel of the
correspondingPistachio/x86 implementatiorfor betterandeasier
explorationof new mechanismandconcepts.

Althoughit seemdo be surprisingat a first glance,suchlow-
level architecturakxperimentaresometimegasietin anerviron-
mentthatis not restrictedby a compiler its coding conventions,
andcode-generatgroperties Architecturallyrelevantitemssuch
as cache-lineusage,instruction parallelism,kernel-stackreduc-
tion, andcontrolling specialhardvware featuresstronglyinfluence
the achiezable performance. Easeof modificationis crucial in
this context to find the best performing methods. Correspond-
ing experimentalimplementationsand evaluationsoften require
lesseffort in anunrestrictecassembleenvironment.Furthermore,
avoiding to be biasedby unknavn or unwantedcompiler/code-
generatoinfluences/optimizationis easier

For the describedexplorationmethod experimentalandsome-
timesonly partialimplementationsre suficient. Oncethe opti-
mal solutionis identified, a completeand stablesolutioncanbe
implementedn Pistachio. The experimentalassemblesolution
senesasa guidelineanddefinesthe performanceyoal.

Fully-functional Orange Pip (Per/A.1) A fully functionaland
stableOrange Pip kernelwill only be developedif the Hazelnut
technologyturnsout not to performsuficiently well or if fixing
the Hazelnut problemswould take too muchtime andthusdelay
the availability of a Version-4kernel. We hopethata fully func-
tional Orange Pip kernelwill notbeneeded.

“64-BIT KERNEL ARCHITECTURES”

Cashew kernelsaim at upcominghigh-performancé&4-bit pro-
cessomarchitecturesuchaslA-64 andPawver4. They will evolve
asmuchaspossiblefrom Pistachio technologybut will needsub-
stantiallydifferentinternalalgorithms. Sofar, we have identified
thefollowing basicnew Cashew-relatedproblems:

Intel's IA-64 platform is the first tamget for Cashew. Specific
IPC-performanceroblemsresultfrom Intel’s EPIC architecture
with its large numberof registersand its register stackengine.
In short,thelarge numberof registerscontritutesto a potentially
massie contet (morethan2KB) to bestoredon eachthreadcon-
text switch. Thisaddedcontext switchoverheadnayprove fatalto
microkernelsystems.A combinedhardware/softvare solutionis
thereforerequiredto reducegheamountof informationstored.An-
othersolutionmight be to wealen the trust-relationshibetween
certainthreadssothatathreadmight be allowed to read,but not
modify, theregistercontentwf otherthreads.

Other problemsof the I1A-64 architecturerelateto providing
policy free abstraction®f the memorymanagemerhardware,so
thatan OS personalitymay harnesghe specialhardware mecha-
nismswhichenablese.g.,aSASOSto beimplementedfficiently.

“PARALLEL AND CLUSTER KERNEL
ARCHITECTURES”

Version-4kernelspecializedor massiely-parallelsystemsand
clusters.Currently we discusgwo alternatve approaches:

e asinglemicrokernelthatrunsasonedistributedkernelonall
nodespor

e amicrokernelpernode,complementety a setof basicsys-
temseners.

Sofar, we favor thesecondapproachThebasicsenersthenman-
age inter-node communication,inter-node schedulingand load
balancingcross-nodeaddresspacesandcross-nodenemoryac-
cess.Furthermorethey comprisespeciallow-lateny driversfor
controllingtheinterconnectnd/orspecializednulti-gigabitinter
nodenetworks.

We aim at building Grapestone kernelsbasedon their corre-
spondingCashew kernels.ldeally, Grapestone/lA-64, e.g.,should
consistof the Cashew/IA-64 kernel complementedy a Grape-
stone package. Oncethe first Grapestone kernel hasbeencon-
structedsuccessfullythis way, we shouldbe ableto build Grape-
stonekernelsatrelatively low costsfor ary Cashew hardwareplat-
form.

We hopethatwe canbasicallyusethe sameGrapestone kernel
for clustersystemsaswell asfor MPPs. Only somedrivers,in-
terconnectgetc., will be different. However, this hopeis not yet
substantiated.

References
[Bel97] F. Bellosa. Processcruise control: Throttling mem-
ory accessin a soft real-time ervironment. Techni-
cal report, Dept. of Comp. Sci., University of Erlangen-
Nirnbeg, 1997. Available: http://www4.informatik.uni-
erlangen.de/ELITE/pubtml.

[DdBFt94] A. DearleR.diBona,J.Farron, F. Henslens,A. Lindstrom,
J.Rosenbag, andF. VaughanGrasshoppetanorthogonally
persistenbperatingsystem. Computing Systems, 7(3):289—
312,Summer1994.

[Dre]
[EE98]

[EFFt97]

[HLP+00]

[Hoh]

[JELt99]

[Lan92]

[LHH97]

[Lie92]

[Lie93]

[Lie95a]

[Lie95b]

[LVEOO]

[Obj]

[SLOO]

[SSF99]

[Syd]

[UFG*99]

TU Dresden.Drops. http://os.inf.tu-dresden.de/¢gre.

G. EddonandH. Eddon.Inside Distributed COM. Microsoft
Press1998.

Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau,and Gary
Lindstorm. Flick: A flexible, optimizingidl compiler Pro-

ceedings of the ACM SIGPLAN ' 97 Conference on Program-

ming Language Design and Implementation (PLDI), pages
44-56,Junel997.

A. Haeberlen,). Liedtke, Y. Park, V. Uhlig, andL. Reuther
Stub code performanceis becomingimportant. In First

Workshop on Industrial Experiences with Systems Software

(WIESS), SanDiego, CA, October2000. To appear

M. Hohmuth. Fiasco. http: //os.inf.tu-dresden.dffiasco
/doc.html.

T. Jager, K. Elphinstone,J. Liedtke, V. Panteleen&, and
Y. Park. Flexible accesscontrol usingipc redirection. In

Hot Topicsin Operating Systems (HotOSVII), Rio Rico,AZ,

March1999.

C. R. Landau. The checkpointmechanismin KeyKOS. In

Proceedings of the 2nd International Workshop on Persistent

Object Systmes (PO2), page4-25 Paris,France Septem-
ber1992.

J.Liedtke, H. Hartig,andM. Hohmuth.OS-controlleccache
predictability for real-time systems(RTAS). In 3rd IEEE

Real-time Technology and Applications Symposium, pages
213-223Montreal,May 1997.

J. Liedtke. Clans& chiefs. In 12. GI/ITG-Fachtagung Ar-

chitektur von Rechensystemen, pages294—-305Kiel, March
1992.Springer

J. Liedtke. A persistentsystemin real use— experiences
of the first 13 years—. In 3¢ International Workshop on

Object Orientation in Operating Systems (IWOOOQS), pages
2-11,Asheville, NC, Decembetl993.

J. Liedtke. Improved address-spacswitching on Pen-
tium processordy transparentlymultiplexing useraddress
spaces. Arbeitspapiereder GMD No. 933, GMD — Ger

man NationalResearciCenterfor Information Technology
SanktAugustin,Septembefl995.

J. Liedtke. On p-kernel construction. In 15t ACM Sym-
posium on Operating System Principles (SOSP), page237—
250, CopperMountainResort,CO, Decembet1995.

J. Liedtke, M. Volp, and K. Elphinstone. Preliminary
thoughts on memory-lus scheduling. In 9t* SIGOPS
European Workshop, pages207-210,Kolding, Denmark,
SeptembeR000.

The Object ManagementGroup (OMG). The Complete
CORBA Services Book. http: //www.omg.og /library
/esindx.html.

E. SkoglundandJ. Liedtke. Transparenbrthogonalcheck-
pointing through userlevel pagers. In 9t International
Workshop on Persistent Object systems (POS9), Lilleham-
mer, Norway, SeptembeR000.SpringerLNCS. To appear

J. S. Shapiro,J. M. Smith,andD. J. Farber EROS: a fast
capability system. In 17th ACM Symposium on Operating
System Pronciples (SOSP), pagesl2—-15 Kiawah IslandRe-
sort,SC,Decembe 999.

UNSW Sydneg. Mungi. http://wwwcse.unsvedu.autdisy
/Mungi/.

R. Uhlig, R. Fishtein,O. Gershon,l. Hirsh, andH. Wang.
SoftSDV: A presiliconsoftware developmentenvironment
for the 1A-64 architecture. Intel Technology Journal, Q4,
1999.

