
The L4Ka Vision

UweDannowski Kevin Elphinstone JochenLiedtke GerdLiefländer EspenSkoglund
VolkmarUhlig ChristianCeelen AndreasHaeberlen MarcusVölp

Universityof Karlsruhe
SystemArchitectureGroup
76128Karlsruhe,Germany

liedtke@ira.uka.de

Abstract

Microkernelsareminimal but highly flexible kernels. Both con-
ventionalandnon-classicaloperatingsystemscanbebuilt on top
or adaptedto runontopof them.Microkernel-basedarchitectures
shouldparticularlysupportextensibility andcustomizability, ro-
bustnessincluding reliability and fault tolerance,protectionand
security.

After desastrousresultsin the early 90’s, the microkernelap-
proachnow seemsto be promising,althoughit still bearsa lot
of researchrisks. Currently, Universityof Karlsruhe’s systemar-
chitecturegroupis definingthestateof theart in microkernelre-
search.

TheL4Ka researchprojectaimsatsubstantiatingandestablish-
ing anew methodologyfor systemconstructionthathelpsto man-
ageever-increasingOScomplexity andminimizeslegacy depen-
dence.Our vision is a microkerneltechnologythatcanbeandis
usedadvantageouslyfor constructingany generalor customized
operatingsystemincluding pervasive systems,deep-computing
systems,andhugeservers.

The technologyshould help to manageever-increasingOS
complexity, enablestepwiseinnovationsin OS technologywhile
preservinglegacy compatibility, and lead to a widely-accepted
foundationof systemarchitecture.

1 Status Quo

ManagingOS complexity is the challengefor OS technology.
Thecomplexity resultsfrom combiningsystemrequirementssuch
assecurity, reliability, configurability, customizability, quality-of-
serviceguarantees,and performance. The challengebecomes
even harderdue to (a) the ever-growing numberof servicesand
applicationsthat increasinglyinteractwith eachotherand(b) the
increasinghardwarecomplexity andparallelism.

OS researchfocusesthereforeon techniquesto structuresys-
temsdynamically, to isolatea system’s componentsfrom each
other, and to control interaction/communicationbetweenthose
components.Microkernels,extensiblekernels,and sandboxing
(e.g. through virtual machines)are relevant approachesin this
area. Microkernelsmight have the broadestandhighestimpact
onsystemstechnology— if they fly.

1.1 Client Projects

SomeprojectsalreadyuseL4Ka technology. Suchclient projects
are extremely important and useful for L4Ka. As our “cus-
tomers”, they constantlyevaluateour microkernelsand also in-
fluenceour researchthroughtheir requirements.Closelyrelated

client projects that have strongly influencedpreparatoryL4Ka
work areSawMill, Drops, andMungi.

SawMill is a joint project betweenthe IBM T. J.WatsonRe-
searchCenterin Yorktown Heights, NY, and the University of
Karlsruhe. SawMill is mainly funded through IBM Research.
SawMill aimsat a generalmethodologyfor constructinghighly-
configurablecomponent-basedmulti-server operatingsystems.

It complementsthecurrentL4Ka project: SawMill focuseson
how to constructefficient serversandcomponentson top of a mi-
crokernel. It doesnot only deal with constructionfrom scratch
but alsotriesto find principleshow to take existing systemsapart
into components.(The first subprojectis a multi-server Linux.)
Theprojectrequiresa robust,highly flexible, andextremelyper-
formantmicrokerneltechnology.

As such,it is a prominentcustomerof L4Ka. SawMill imposes
practicallyrelevantrequirementsontheL4Ka microkernels,andit
givesusanidealtestcasefor our technology.

“The DresdenReal-Time OperatingSystemsprojectDrops is
a researchprojectaiming at the supportof applicationswith
Quality-of-Servicerequirements. Although much research
hasbeendoneon networking supportfor continuous-media
applications,veryfew projectstacklerelatedoperatingsystem
issues,suchasschedulingandfile systemsupportfor bounded
responsetime. TheDrops projectattemptsto find designtech-
niquesfor theconstructionof distributedreal time operating
systemswhoseevery componentguaranteesa certainlevel of
serviceto applications.
A key componentis L

�
Linux, the Linux server on top of

the L4 microkernel; it servicesstandardLinux applications.
In addition, separatereal-time components,designedfrom
scratch,provide deterministicserviceto real-time applica-
tions. At themoment,anATM-basedreal-timeprotocoland
a real-timefile systemarebeingdeveloped.” [Dre]

“Mungi is an operatingsystembasedon the ideaof a single
addressspace,sharedby all processesandprocessorsin the
system.Theaim of theprojectis to show thatsucha single-
address-spaceoperatingsystem(SASOS)canwork on stan-
dardhardware,canbemadeassecureastraditionalsystems,
is not inherently lessefficient than traditional systems,and
deliversperformanceadvantagesover traditionalsystemson
someclassof importantapplications.
In addition, we are trying to build Mungi as a very pure
SASOS,that is all data(even the systems’)is in the single
addressspace,andno other IPC mechanismsaresupported
by the OS.A 64-bit Mungi kernelhasbeendeveloped. It is
implementedon top of theL4 microkernelandcurrentlyruns
on MIPS R4x00platforms. Critical to efficient operationof
Mungi is theimplementationof its capability-basedprotection
system,in particularthe protectiondomainextension(PDX)

mechanismusedto performprotected(cross-domain)proce-
durecalls.Extensivecachingof validationinformationis used
to ensurethatgoodperformance.” [Syd]

1.2 L4Ka Status Quo

The L4 microkernel for Intel’s x86 processorsis currentlyavail-
ablein two independentlydevelopedversions:

“ Lemon Pip” and “ Lime Pip” Kernels. TheoriginalL4 as-
semblerversionfor x86 (“Lemon Pip”) hasbeendeveloped1995-
98 at IBM ResearchandGMD. Basedon our JointStudyAgree-
mentwith IBM Research,it wasmaintainedandimprovedin Karl-
sruhe. The currentversionis highly efficient and stable. Most
microkernel-basedresearchand teachingactivities are basedon
this version.We expectopen-sourceavailability in fall 2000.

A derivative of Lemon Pip, the“Lime Pip” kernelhasbeende-
velopedin Karlsruheandcurrentlyservesasanexperimentalker-
nel in theSawMill project.

“ Hazelnut” Kernels. For years, we were convinced that
assembler-basedmicrokernelimplementationswerenecessaryfor
achieving ultimateperformance.High costsfor maintaining,port-
ing andadaptingsuchmicrokernelsareobviousdisadvantages.A
first C++ implementationof L4, Fiasco[Hoh], corroboratedthe
claim that higher-level-languageimplementationsoffer substan-
tially lessperformance.However, we starteda new approachthat
might resulta microkernel-implementationtechnologythat com-
bineshigher-level-languagebenefitsandperformance:

Hazelnut kernel have beendeveloped from scratchat Karl-
sruheUniversity over the past10 months. Implementationlan-
guagesareC++andassembler. Currently, prototypesareavailable
for x86 andARM processorsas OpenSourceunderGPL since
09/00).Furthermore,IBM Researchhasstartedto adaptHazelnut
to Power PC750.

Early performancemeasurementsof Hazelnut/x86 look very
promising.Exactlycomparablemicrobenchmarksshow IPC per-
formancewithin a 10%-rangeof the original Lime Pip kernel.
However, Hazelnut still lackssomeimportantfeatures,mostno-
tably the emulationof a taggedTLB on x86 which canimprove
IPC performanceby a factor of 3 or more. (For sake of fair-
ness,the above mentionedIPC comparisondid not usethat fea-
tureon the Lime Pip.) Implementingthatnecessaryoptimization
in Hazelnut might thus leadto worseresults. Anotherpotential
sourceof surprisemay be the cache. Indeed,cache-misscycles
todaydominatein many casesinstruction-executioncycles. Mi-
crokernel costsare thus determinedby both the raw execution
time andthe cacheworking set that is requiredfor IPC or other
primitives.Theold Lime Pip kernelhasanextremelysmallcache
working set, about2% of the L1 cachefor an IPC (short mes-
sage).We still do not know how smallcacheworking setscanbe
achieved for Hazelnut. It dependson theadditionalfeaturesstill
to be implementedin Hazelnut andon to be exploredcode/data
optimizationtechniquesthatcanbecombinedwith gcc.

If it turnsout thatwe succeedin makingthefull Hazelnut/x86
performcomparableto theLime Pip kernel,wewill probablydrop
the Pip line andcompletelyswitch to Hazelnut. Otherwise,we
have to includea very deepperformanceanalysiscomparingboth
versionsin detail. Eitherwe canthereafterfix theHazelnut prob-
lemsor have to keepthe Pip line in parallel,andadaptit to all
futurekerneldevelopments.

IDL
�
. Interface-definition-languages(IDL) arewell-known tools

from Corba’sworld of middleware.However, IDL compilers,,e.g.
Utah’sFlick compiler[EFF

�
97], arealsobeneficialfor intra-node

communication,particularlyclient/server interaction.
In a component-basedsystem,an IDL makes IPC (andRPC)

mechanismsconvenientlyavailablefor application-,component-
, and server-writers. Through interface specifications,e.g. in
CORBA [Obj] or DCOM [EE98] IDL, remotemethodscan be
calledaseasyaslocal methods.The IDL compilergeneratesall
necessarycodefor marshalling/unmarshallingparameters,method
selection,etc.Surprisingly, wefoundthatwith increasingIPCper-
formance,the IDL-generatedstubcodebecamea seriousbottle-
neck.Wehadto investin anexperimentongeneratingsufficiently
optimizedstubcode:

“As IPC mechanismsbecomefaster, stub-codeefficiency be-
comesa performanceissuefor local client/server RPCsand
inter-componentcommunication.Inefficient andunnecessary
complex marshallingcodecanalmostdoublecommunication
costs. We have developedan experimentalnew IDL com-
piler that producesnear-optimal stub code for gcc and the
L4 microkernel.ThecurrentexperimentalIDL

�
compilerco-

operateswith the gcc compiler and its x86 codegenerator.
Other compilersor target machineswould requiredifferent
optimizations. In mostcases,the generatedstubcodeis ap-
proximately3 times faster(andshorter)than the codegen-
eratedby a commonlyusedportableIDL compiler. Bench-
markshaveshown thatefficientstubscanincreaseapplication
performanceby morethan10percent.Theresultsareapplied
within IBM’ sSawMill projectthataimsattechnologyfor con-
structingmulti-server operatingsystems.” [HLP

�
00]

Currently, IDL
�

is anexperimentalcompiler. We planto improve
its flexibility andmake it widely usableasa standardtool for the
L4 API.

Real Time . Early work of the L4 group evaluatedprinciple
techniquesof OS-basedcache-partitioningto increasethe pre-
dictability of real-timecomponentsin systemsthat run a mixture
of real-timeandnon-real-timeapplications[LHH97]. Although
mostreal-timededicatedwork is donewith our partnergroupat
TU Dresden,theL4Ka groupconductedsomefurtherresearchon
real-timespecificarchitectures,e.g.how multiprocessorsystems
couldbeusedfor real-timeapplications.Thememorybusin such
a systemis a commonresourcefor all processorsandmakespre-
dictability andschedulingevenharderthancachesdo:

“Assumethat we have 4 job mixesthat canbe correctly
scheduledon 4 independentuniprocessors.What happensif
we put those4 job mixeson a 4-processorsystemwith a sin-
gle memorybus? Without any additionalschedulingprovi-
sions,the sharedmemorybus can,in the worst case,stretch
eachscheduleby a factorof 4. This is clearlyunacceptable.
In general,it would meanthatthereal-timecapacityof an � -
processorsystemis only ����� of thecapacityof auniprocessor
system.Multiprocessorswould beunusablefor real-timeap-
plications.

Therefore,memory-busschedulingis desirable.It should
enableusto give soft andperhapsevenhardguaranteesin re-
lation to memorybandwidthandlatency to real-timeapplica-
tions. For nonreal-timeapplications,it shouldhelpoptimize
asystem’s overall throughputand/orlatency.

Work in this areaseemsto berare.Theauthor’s areonly
awareof FrankBellosa’s work [Bel97].” [LVE00]

Persistence . Making dataandperhapseven active programs
persistent� might largely simplify programconstruction.Dataand
programsshould automaticallysurvive shutdowns and crashes
without that the programsexplicitly write all their internal data
into files all the time. Suchoperatingsystemshave beenaround
sincedecades[Lan92,Lie93, DdBF

�
94, SSF99]. Thepointthatis

extremelyinterestingto us is whetherorthogonalpersistencecan
be implementedeasilyandefficiently on top of the microkernel.
In otherwords:is themicrokernelsufficiently generalandflexible
thatpersistencedoesnot requirespecialkernelintegration?

“Orthogonalpersistenceopensup the possibility for a num-
ber of applications. We presentan approachfor easily en-
ablingtransparentorthogonalpersistence,basicallyon top of
a modern � -kernel. Not only areall dataobjectsmadeper-
sistent.Threadsandtasksarealsotreatedasnormaldataob-
jects,makingthethreadsandtaskspersistentbetweensystem
restarts.As such,the systemis fault surviving. Persistence
is achieved by the meansof a transparentcheckpointserver
running in user-level. The checkpointserver takes regular
snapshotsof all user-level memory in the system,and also
of the threadcontrol blocks inside the kernel. The execu-
tion of the checkpointingitself is completelytransparentto
the � -kernel,andonly a few recovery mechanismsneedto be
implementedinsidethekernelin orderto supportcheckpoint-
ing. During systemrecovery (after a crashor a controlled
shutdown), the consistency of threadsis assuredby the fact
that all their user-level state(usermemory)andkernel-level
state(threadcontrolblocks)will residein stablestorage.All
other kernel statein the systemcan be reconstructedeither
uponinitial recovery, or by standardpagefault mechanisms
duringruntime.” [SL00]

Security . For amicrokernel-basedsystemthatis built on inter-
processcommunication,IPC control, i.e. communicationinter-
ception,is a fundamentalconceptrequiredto implementsecurity
serversandsecuritypolicies.

Over thepastyears,we foundthatL4’soriginalconcept,Clans
& Chiefs [Lie92], wasnot sufficiently flexible andefficient. The
new Elphinstone-Jaeger redirectionmodel[JEL

�
99] avoidsmost

of theold model’sproblem(while beingupwardcompatibleto the
Clans& Chiefsmodel).

Furtherresearchactivities dealtwith how to build securityar-
chitectures,models,andpoliciesbasedonoursecurityprimitives.

IA-64 In orderto follow trendsin hardwarearchitecturedevel-
opmentandbroadenthe impactareaof microkernelsystems,the
L4 microkernelmustsupportupcoming64-bit architecturessuch
asIntel’s IA-64 andIBM’ sPower4. IA-64 hasbeenchosenasthe
main vehiclefor this research,andcurrentwork hasbeenpurely
theoretical,focusingon how to provide the right abstractionsfor
dealingwith EPIC,hugeregistersets,largeamountsof memory,
andmulti-level caches.

Work is now enteringa statewheremoreexperimentalstudies
areneededto propelresearchany further. Awaiting theavailabil-
ity of real hardware, Intel’s SoftSDV environment[UFG

�
99] is

beingusedto createapreliminaryversionof thekernel—enabling
accuratehardware timing measurementsto be madewithout the
underlyinghardware.

2 Goals

The L4Ka project aimsat substantiatingandestablishinga new
methodologyfor systemconstruction.Ourvision is amicrokernel

technologythatcanbeandisusedadvantageouslyfor constructing
any generalor customizedoperatingsystem.

The technologyshould help to manageever-increasingOS
complexity, enablestepwiseinnovationsin OS technologywhile
preservinglegacy compatibility, and lead to a widely-accepted
foundationof systemarchitecture.

Strategic Goals

At first, we describethestrategic goalswhy we wantto substanti-
ateandto establisha microkerneltechnology.

“ A FOUNDATION TO MANAGE OS COMPLEXITY.” Ever-
increasingcomplexity is a seriousproblemin OS construction.
It mightbethe key challengefor thenext decade.

Improvedcomplexity managementcouldhave strongresearch
and practical consequences.Researchand industry could deal
with morecomplex systemsand/orimprovesystemqualities.Fur-
thermore,industry might reducedevelopmentand maintenance
costs.

Our primary strategic goal, finding a usableway to manage
complexity, dominatesall furtherreasoning.Currently, themicro-
kernelroadlooksmostpromisingfrom this point of view. Never-
theless,our ideasof microkernelsmight substantiallychangeon
thatpath,perhapsevenbe replacedby new conceptsbeyondmi-
crokernels.

“ WEAKENING THE LEGACY DEPENDENCE.” Legacy soft-
wareand legacy systemsalways form a “bed of Prokrustes” for
research,development,and even customers.Innovative and in-
compatiblenew systemsarehard to establishas researchtopics
sincesuchsystemscannotcoexist with the“standard”(whichwill
sooneror later becomelegacy). Far too often, innovative ideas
canalsonot be exploredbecausethey would requireto build an
entirelynew OSwith full functionalitymoreor lessfrom scratch.
Thestorycontinuesat the industrialdevelopmentandat thecus-
tomerlevel: Legacy requirementsmakeit impossibleto developor
evenuseincompatible(sub)systemsand/orservicesconcurrently
to legacy systemsandservices.

Our vision is a technology that substantiallyweakens this
legacy dependence.OS researchshouldmore easily be able to
build principally new systemsandserviceswhile still usingexist-
ing OSservices.Typically, thenew system/servicewould extend
anexisting OSby addingservices,or modify it by replacingser-
vices,or coexist with theold OS.Microkernelarchitectureis not
a sufficient preconditionbut probablya necessaryone for such
models.

“ A SYSTEM-ARCHITECTURE FOUNDATION.” In contrastto
hardwarearchitectureandprogramminglanguages,westill donot
have a generalsetof low-level basicconceptsandparadigmsin
systemarchitecture.Most existing conceptsareeitheronly avail-
ablein theory, or they areof a toohigh level, or they aretoomuch
specialized.In particular, we arelacking conceptsthat orthogo-
nally fit togetherandcomplementeachother.

The bareavailability of sucha setof generalbasicparadigms
would boostsystemsin scienceandengineering— provided the
paradigmswereimplemented,performednicely, wouldbeflexible
andpowerful, andwould beconvenientto use.

Currently, the microkernel approachis one of very few ap-
proachesthat might have the potential to lead to sucha set of
orthogonal,general,andpracticallyavailableparadigms.

Tactical Goals

“ WIDE APPLICABIL ITY.” To substantiateandestablishmicro-
kerneltechnologyasa generalbasisfor systemconstruction,we
mustevaluatemicrokernelsfor all relevantclassesof systems,ap-
plications,andhardwarearchitectures.The goal is a technology
thatis asgenerallyapplicableas,e.g.,processors,i.e.for almostall
differenttypesof systemsandapplications,from pervasive com-
puting to deepcomputing(including classicalapplicationsand
systems).

Consequently, we needto make microkerneltechnologyavail-
ablefor (i) conventionalworkstationsandPCs,(ii) pervasive sys-
temsincludingreal-timesystems,(iii) hugeservers,(iv) anddeep-
computingsystemsincludingmassively parallelsystemsandclus-
ter systems.Fromapplication/systemperspective, the“same”mi-
crokernel (cum grano salis), i.e. the sameAPI, shouldbe used
in all cases.Having alsoa commoncodebasewould be benefi-
cial. However, its is still anopenquestionto which degreea uni-
form implementationapproachis possible.Differentarchitectures
might requiredifferentimplementationmethods.

Microkernelsshouldbe availablefor all relevant hardwarear-
chitectures,including not only the basic32-bit processorfami-
lies but alsoupcoming64-bit processorarchitectures,parallelar-
chitectures,andclusters. Only sucha broadavailability canen-
surethatmicrokernelsaresufficiently generalandoffer a single,
hardware-independentAPI. Also, availability on all major hard-
wareplatformsis necessaryto convincea largernumberof exter-
nal researchprojectsto usemicrokerneltechnologyasa platform
or a tool for theirown research.

“ OPEN BACKBONE PROJECT.” To get broadacceptancein
scientific and engineeringcommunitiesand to cometo a suffi-
ciently broadevaluation,we needcustomersfor our technology
andwe needto foster andsupportexternal experimentsand re-
searchparticipation.

CL IENT PROJECTS. Wehave to ensurethatwe dealwith prac-
tically relevantproblemsandoptimizationsanddonot loseourfo-
cus. We mustconstantlyevaluateL4Ka microkernelsin thecon-
text of “real” systemsandapplicationsrunningon top. Closely
relatedclient projectssuchasSawMill andDrops arevery effec-
tive in this context. They are“customers”of our technologyand
give ussteadyandquick feedback.More looselyrelatedexternal
researchusersshouldextendthesetof client projects.

EASY ACCESS AND PARTICIPATION. All L4Ka technology
mustbeeasilyaccessiblefor everyonewho wantsto useit (open
source). Also, the projectmustenableother researchgroupsto
participatein microkernelresearch.

STEADY STREAMLINING AND MAINTENANCE. Continuous
streamliningis requiredto achieve our strategic goalsandto meet
our optimality requirements,L4Ka hasto be steadily improved
andextended.This includesongoingefforts in validating,evalu-
ating,improving,andminimizingfundamentalkernelabstractions
andconceptsaswell assimplemaintenance.Correctness,perfor-
mance,robustness,supportfor applicationandOSeshave to be
improvedwhenever possible.Maintenancecomplementsstream-
lining andis necessaryto supportclient projectsandto improve
globalimpact.

Technical Goals

“ EVALUATING THE UPPER BOUNDS OF PERFORMANCE.”
For all classesof systemsandapplications,performancemustbe
“closeto infinity”. Ideally, no adequatelywritten programshould
be slower whenrunningon a microkernel thanwhenrunningon
any other systemarchitecture. Although this requirementcan
never be fulfilled in entiretyandwith full generality, we have to
drive performanceasfar aspossible.We operateon thearchitec-
turelevel andaim at wideapplicability. We mustthereforeunder-
standthat performanceof the primitivesdoesnot only influence
currentapplicationsbut also determinesthe applicability range,
i.e. flexibility andgenerality, of the architecture.Primitives like
IPC canin practiceonly beusedaslong astheir relative costsare
reasonableor, even better, negligible. Reducingcostsfrom 200
to 20 cyclesmight thenenablea wholenew classof applications
usingthementionedprimitive.

Therefore,finding andevaluatingthe upperboundsof perfor-
manceis themostcrucialpart to make thetechnologywidely ap-
plicable.

Evaluatingtheupperboundsof performanceis by farmorethan
simply try to make a “f ast” implementation. It requiresperfor-
manceanalyses(a priori anda posteriori) that let us understand
the reasonsfor the achieved performance,its limitations, andits
dependenciesfrom hardware andsoftware architecturalfeatures
anddetails.Sometimes,suchanalysestriggerinventive ideasthat
improve performanceandinvalidatetheoriginal analysis.Ideally,
this roadhasto befollowedasfar aspossible,practicallyonly as
far asreasonable.(Concludingwhenit becomesunreasonableis
thehardestpart.)

Sinceperformancetypicallydependsonmany architecturalfea-
turesandevendetailsof hardware,performanceanalysesandop-
timizationsarenecessaryfor all relevantclassesof hardwareplat-
forms. This wide approachwill mostlikely resultin goodsyner-
geticeffects.

X86. Intel’s x86 family (andcompatibleprocessorsfrom other
vendors)form thede facto standardfor PCsandworkstations.An
L4 implementationfor x86 is a preconditionfor microkernel re-
search:Many (if notmost)OSresearchanddevelopmentprojects
usethis architecture,and it is absolutelydominantfor classical
systemsandapplications.L4Ka’s successrelies to a a large de-
greeon theexistenceandon thequalitiesof anx86 microkernel,
particularly, becausemany externalprojects/partieswill first eval-
uatethe microkernel conceptson that basis. High performance
andgoodstability of this implementationareessential.

ARM. Many pervasive systemsarebuilt on low-power archi-
tecturessuchasARM processors.A correspondingmicrokernel
is thus requiredto evaluatemicrokernel conceptsfor cell-phone
OSesor otherthin pervasive systems.Sincethe mentionedlow-
powerplatformsareall basedonconventional32-bitarchitectures
with page-basedmemorymanagementchancesarehigh that the
x86, ARM, and. . . kernelscanall bespecializationsof thesame
32-bitmicrokernel.

IA-64 AND POWER4. Upcoming64-bitarchitecturesrequirea
new internalkerneldesignto efficiently handlenew processorar-
chitectures,suchasEPICandhugeregistersets,to handlecaches
of 3+ levels andGigabytecapacity, and to ensurescalability of
bothphysicalandvirtual memory. Thesearchitectureschallenge
microkernelAPI andimplementationmethodology. Correspond-
ing microkernelsareessentialfor evaluatingthefuturefirmnessof
microkerneltechnology.

MASSIVELY PARALLEL ARCHITECTURES. Clusters will
probablynot requirespecialmicrokernel featuresor implemen-
tations. Massively parallelNUMA machineshowever will need

a specialkernel implementation.For example,it hasto include
efficient handlingof the interconnect,NUMA memoryclasses,
andspecialcross-processorIPCimplementations.In collaboration
with thevendorof anMPPplatform,suchamicrokernelshouldbe
developed,if possiblebasedonanalreadyexistingmicrokernelfor
uniprocessorsandSMPs.

“ MAXIMIZING FLEXIBIL ITY AND GENERALITY.” Effective
widely applicable performancerequires general conceptsand
primitivesthatareextremelyflexible andsupportwide rangesof
policiesandcustomizations.For any system/applicationclass,the
microkernelmechanismsshouldenableadequateandefficient so-
lutions.

Fromthatperspective,flexibility andgeneralityarehigher-level
performanceprinciplesensuringperformanceof policies, algo-
rithms, and applicationsbasedon the microkernel mechanisms.
They have to be evaluatedin a similar processas describedfor
theperformance-evaluationgoal. Insteadof analyzingmechanism
performancedependingonhardwarearchitectures,wehave to an-
alyzepolicy performancedependingon operating-systemandap-
plicationarchitectures.

Anotherdimensionof flexibility is easeof modification,e.g.,
whenextending,customizing,or configuringa system.Evaluat-
ing this dimensioncanonly be donein collaborationwith client
projectssuchasSawMill.

CONVENTIONAL SYSTEMS. This is anobviouspoint, andwe
includeit only for reasonsof completeness.L

�
Linux hasshown

the principle usability of the microkernel approachfor classical
operatingsystems.Of course,any new microkernelAPI andim-
plementationhasto becheckedagainstL

�
Linux.

PERVASIVE SYSTEMS. Ubiquitous or pervasive computing
will beoneof thekey topicsof thecurrentdecade.FromtheOS
perspective, pervasive systemsareto a certaindegreeevolutions
from classicalsystems.For example,building systemshighly con-
figurableandbasedon componentsis crucial for pervasive sys-
tems(andniceto have for classicalsystems).Basedon L4 micro-
kernels,suchfundamentalresearchis, e.g.,donein the SawMill
project.However, pervasive systemsalsoincludenew functional-
ity thatdoesnotevolve from classicalsystems.Pervasive systems
are,e.g., real-timesystems,embeddedsystems,low-power sys-
tems,nomadicsystems,wireless-connectedsystems.Thesefunc-
tionality is partially evaluatedin our client projectsSawMill and
Drops. Furtherexternalclientsarenecessary.

HUGE SERVERS. Hugeservers imposevery hard robustness
requirements,e.g.7x24 availability, on the underlyinghardware
andmicrokernelarchitecture.Performanceproblemsarebasically
focusedonmemorymanagement,cachemanagement,andproces-
sor management.So far, we do not yet have an accordingclient
project.

SINGLE-ADDRESS-SPACE OS. Systemsbasedon the para-
digm of a singleglobaladdressspaceandmultiple protectiondo-
mainsimposeuntypicalrequirementson thevirtual-memorysys-
tem, e.g.efficient handlingof sparseaddressspaces.On IA-64
processors,they could alsobenefitfrom MMU mechanismsthat
especiallysupportprotectiondomains.It is still anopenquestion
whetherthisMMU mechanismscanbeefficiently usedwithout ex-
tendingthemicrokerneladdress-spaceparadigmandAPI. Client
projectin this context is UNSW’sMungi.

DEEP COMPUTING. Massively-parallelmachinesandclusters
run very specialoperatingsystemsandapplications.For clusters,
Karlsruhe’s Resh will beour clientproject.

3 Work Plan

Researchexploresthe unknown. Any workplan is thus more a
snapshotof our currentthinking thana plan that is likely to cor-
rectly predicttheprojectfuture. Unexpectedresearchresultsand
insightswill mostlikely modify theplansubstantially. Neverthe-
less,it is usefulto structureourresearchactivitiesfrom ourcurrent
point of view andfrom our currentunderstanding.(However, no-
bodyshouldreadit in 2003.)

To structurethe project,we group researchactivities under5
headlines.

“ GENERAL CONCEPTS AND ABSTRACTIONS” Basically,
this group comprisesall centraland commonscientific and en-
gineeringtopicsof L4Ka, suchasgeneralconcepts,abstractions,
mechanisms,methods,etc. It drivesandtriggersall othersubpro-
jectsthroughthe generalconceptsandAPI specificationsit pro-
duces.

Key is to ensurethattheconceptsandAPIs areorthogonaland
complementaryto eachother, that they aregeneralandflexible,
andthatthey have anarchitecturalperformance1 potentialashigh
aspossible.

“ PERVASIVE KERNEL ARCHITECTURES” Thegoal is to de-
liver microkernel technologyfor pervasive systems. An impor-
tantpoint is to designandconstructmicrokernelsandmicrokernel
familiesfor mostrelevantprocessorsin this field, e.g.x86,ARM,
SHx. Kernelsfor classicalPCsandworkstations— althoughnot
pervasive— arealsoincludedbecausepervasivekernelswill most
likely alsobebest-suitedfor PCsandworkstations.(It will notpay
to developworkstation-specializedkernels.)

Key criteria areperformanceandadaptability/portability. The
tradeoff betweenboth criteria shouldbe minimized. Ideally, the
highestpossibleperformanceshouldbecombinedwith reasonable
adaptability.

Furthermore,problemsspecific to pervasive systemsare in-
cluded,e.g.powercontrol,real-timeschedulingandcachecontrol,
SMP real-timesupport(busscheduling),memoryfootprint, sup-
portfor nomadicapplications,wirelesshigh-performancecommu-
nication,etc.

“ 64-BIT KERNEL ARCHITECTURES” The focus are micro-
kernelsfor upcoming64-bithigh-performanceprocessorarchitec-
tures,suchas Intel’s IA-64 and IBM’ s Power 4. We hopethat
the microkernelAPI will not needto be modified. However, to
achieve thehighestpossibleperformance,thekernelimplementa-
tion needsto be completelyredesignedfor thoseprocessorsbe-
causeof fundamentallynew hardwarefeaturessuchasEPIC.Fur-
thermore,activities dealingwith problemsspecificto large64-bit
systemsare included, e.g., multi-level cachecontrol, memory-
failurehandling,virtualizedprocessors,persistence,SASOSsup-
port,high 7x24reliability.

“ PARALLEL AND CLUSTER KERNEL ARCHITECTURES”
The challengeis to make microkernel technologyavailable for
deepcomputing,i.e. for massively parallel systemsand cluster
systems.NUMA architectures,fastinterconnects,andlow-latency

1Weusethetermarchitectural performance asopposedto implementa-
tion performance to expresstheperformancethatthespecifiedarchitecture
permitsfor the bestpossibleimplementation.Architecturalperformance
limits implementationperformance.

clusternetworkswill requirespecialkernelimplementations.Per-
haps,even conceptualAPI extensionsmight be needed.General
goal is to achieve optimal performancewith minimal conceptual
kernelextensions(but probablyveryspecializedkernelimplemen-
tations).

“ EVALUATION AND ANALYSIS” This headlinecomprisesall
activities that evaluateand analyzethe systemsthat result from
our L4Ka researchactivities. The evaluationis mainly basedon
macroandmicro benchmarks;theanalysisaimsat understanding
thebenchmarkresults.

	�

���

��� ��� �����
� �

� ������
��
� � �� �
���� ��!

" � �#!
$�
�%�

	&
���'

(*)#+-,/. 0 0
1&2�354%6
,/7�8�9�.
:�;�6�<
= ,?>�>A@

time

Experimental

Production

Conditional

Maintenance

Influence from design and spec

Influence from implementation and practical use

Influences from and to client project

Figure1: Main line activities.

Line Activities

Line activities for a longer time and typically result in a usable
“researchproduct”, i.e. an implementation. Most line activities
arevery likely to happenandto becompletedsuccessfully. Their
intendedgeneraloutcome(target), e.g. a microkernel for IA-64
processors,is usually relative clear from the beginning, but spe-
cific propertiesanddetailswill evolve over time. Typically, line
activities areheavily influencedby bubbleactivities andincorpo-
ratetheir researchresults.

Figure 1 shows the main line activities and their interaction.
Thetime axisexpresses“before” and“after” relationships.How-
ever, the lengthof an activity bar is not proportionalto the esti-

matedtime theactivity needs.Thefigurealsoshows connections
betweenactivities andtheir primary client projects. Note that is
relationshipis active for theentireactivity (althoughtheconnect-
ing arrow startsfrom theendof theactivity).

“ GENERAL CONCEPTS AND ABSTRACTIONS”

Version4 will be thenext major revision andredesignof L4’s
API. Version4 will incorporateresearchresultsand lessonswe
have learnedin thepastyears.Besidespurely technicalchanges,
Version4 will probablyincluderelevantconceptualmodifications.
Currently, Version4 is a moving target. We expectto have a first
experimentaldefinition at the endof this yearand the final API
definitionin 2001.

Since“Version4” is basicallythe synthesisandintegrationof
many researchresults,engineeringideas,hardware-relatedtech-
nical solutions,andlessonslearnedover thepastyears,andsince
Version4 is currentlya moving target,we will not describeit in
detail here. The interestedreadercanfind detailedtechnicalin-
formation in the currentversionof the L4 Version-4Reference
Manualwhich is attachedto this application.Unfortunately, this
documentfocusesonspecificationanddoesnotcontainmuchrea-
soningabout“why” and“how to use”. Thosequestionswill be
dealt with more deeply in the (to-be-written)SystemProgram-
mer’sManual.

Version-5 Kernel API (Gen/A) In 2002 or 2003, lessons
learnedandnew insightswill result in an API revision. A sen-
sitive topic for this revision maybeto introducethreadsasvirtual
objects(seebubbleactivity ??. Theaddressspace,wouldthenalso
includea task’s view of theexternaltasksandthreads;i.e., map-
ping would be the singlecontrolling primitive in the systemand
alsocontrol IPC. Work on Version4 will probablyfosterfurther
sensitive topicsfor Version5.

IDL
�

(Gen/B) The preliminary IDL
�

performanceresultsare
promising(seepage2). Remainingactivitiesare—

B Extendthecompilerto handleall datatypes.
B Add IDL

�
codegenerationfor ARM processors.

B Stabilizethe compiler so that it can be usedasa standard
tool.

B Make thecompilerVersion-4compliant.
B Extendthe IDL

�
compiler to generatealsopure IPC code.

This featurewill enableto combinenon-standardcommuni-
cationprotocols,e.g.on theserverside,with IDL interfaces.

B Evaluatewhetherandhow IDL
�

codegenerationcanbe in-
cludedin the Flick distribution. Include IDL

�
into Flick if

possiblewith reasonableeffort andwithout lossof perfor-
mance.

B Supportcode-generatormodificationsfor further processor
architecturesandtargetcompilers.(Currenttargetcompiler
is gcc.)

“ PERVASIVE KERNEL ARCHITECTURES”

The Hazelnut kernels have been developed from scratchat
KarlsruheUniversity over the past10 months. Implementation
languagesareC++ andassembler. Currently, prototypesareavail-
ableunderGPL for x86 andARM processors(seepage2).

So far, the Hazelnut prototypesdo not yet include the em-
ulationC of taggedTLBs. Both x86 and ARM processorsuse
untaggedTLBs (TranslationLookasideBuffers). Therfore,any
cross-address-spaceIPC hasto flushtheTLB which imposessub-
stantialTLB-refill overheadon the subsequentlyexecutedcode.
To avoid thatcosts,thePip kernelscanemulatetaggedTLBs for
a limited numberof addressspaces.Themechanismis described
in detail in [Lie95b] and [Lie95a]. This optimizationis crucial
for performance.For example,theTCPthroughputof SawMill’s
network stackincreasesby 25% on a Pentium166MHz through
this optimization.Evidently, thementionedtechniquemustbein-
cludedinto Hazelnut to make it competitive,eventhoughsubstan-
tial internalmodificationsof thekernelarerequired.

A secondpoint yet to be doneis measuringand minimizing
Hazelnut’s cacheworking sets.Effectively, a microkernel’s cache
working setis evenmoreimportantfor performancethanits exe-
cutioncycles. Thegoal for all performance-criticalHazelnut op-
erationsarecacheworking setswhich areroughlycomparableto
thoseof Lime Pip, e.g.2–3%of theL1 cachefor shortIPC.

Pistachio is the codenamefor a Version-4compliantkernel
that is basedon the Hazelnut technology. It shouldreplacethe
Hazelnut kernelsonall processors.

Basedon our pastexperiencesand on the ideasthat lead to
Version4, the Pistachio kernelwill internally largely differ from
Hazelnut. New internal structuresand methodsinclude partly
user-accessiblekernel thread-controlblocks,superfast IPC (??),
fine-granulartimeouts(??), and improved real-time-scheduling
support(??).

Orange Pip Kernel (Per/A) Orange Pip is thecodenamefor
a Version-4kernel for x86 processors.The kernelwill be based
on theexisting Pip technology, i.e. developedprocessorspecific,
mainly in assembler.

The experimentalOrange Pip kernel will serve as a vehicle
for experimentalimplementationof new version-4conceptsand
mechanisms.The activity is scheduledto run in parallel of the
correspondingPistachio/x86 implementationfor betterandeasier
explorationof new mechanismsandconcepts.

Although it seemsto be surprisingat a first glance,suchlow-
level architecturalexperimentsaresometimeseasierin anenviron-
mentthat is not restrictedby a compiler, its codingconventions,
andcode-generatorproperties.Architecturallyrelevantitemssuch
as cache-lineusage,instructionparallelism,kernel-stackreduc-
tion, andcontrollingspecialhardwarefeaturesstronglyinfluence
the achievable performance. Easeof modification is crucial in
this context to find the bestperformingmethods. Correspond-
ing experimentalimplementationsand evaluationsoften require
lesseffort in anunrestrictedassemblerenvironment.Furthermore,
avoiding to be biasedby unknown or unwantedcompiler/code-
generatorinfluences/optimizationsis easier.

For thedescribedexplorationmethod,experimentalandsome-
timesonly partial implementationsaresufficient. Oncethe opti-
mal solution is identified,a completeandstablesolutioncanbe
implementedin Pistachio. The experimentalassemblersolution
servesasa guidelineanddefinestheperformancegoal.

Fully-functional Orange Pip (Per/A.1) A fully functionaland
stableOrange Pip kernelwill only be developedif the Hazelnut
technologyturnsout not to performsufficiently well or if fixing
the Hazelnut problemswould take too muchtime andthusdelay
theavailability of a Version-4kernel. We hopethata fully func-
tional Orange Pip kernelwill notbeneeded.

“ 64-BIT KERNEL ARCHITECTURES”

Cashew kernelsaimat upcominghigh-performance64-bit pro-
cessorarchitecturessuchasIA-64 andPower4. They will evolve
asmuchaspossiblefrom Pistachio technologybut will needsub-
stantiallydifferentinternalalgorithms.Sofar, we have identified
thefollowing basicnew Cashew-relatedproblems:

Intel’s IA-64 platform is the first target for Cashew. Specific
IPC-performanceproblemsresult from Intel’s EPIC architecture
with its large numberof registersand its register stackengine.
In short,the largenumberof registerscontributesto a potentially
massivecontext (morethan2KB) to bestoredoneachthreadcon-
text switch.Thisaddedcontext switchoverheadmayprovefatalto
microkernelsystems.A combinedhardware/softwaresolutionis
thereforerequiredto reducetheamountof informationstored.An-
othersolutionmight be to weaken the trust-relationshipbetween
certainthreads,sothata threadmight beallowedto read,but not
modify, theregistercontentsof otherthreads.

Other problemsof the IA-64 architecturerelateto providing
policy freeabstractionsof thememorymanagementhardware,so
thatan OSpersonalitymayharnessthespecialhardwaremecha-
nismswhichenables,e.g.,aSASOSto beimplementedefficiently.

“ PARALLEL AND CLUSTER KERNEL

ARCHITECTURES”

Version-4kernelspecializedfor massively-parallelsystemsand
clusters.Currently, wediscusstwo alternative approaches:

B asinglemicrokernelthatrunsasonedistributedkernelonall
nodes,or

B amicrokernelpernode,complementedby asetof basicsys-
temservers.

Sofar, wefavor thesecondapproach.Thebasicserversthenman-
age inter-node communication,inter-node schedulingand load
balancing,cross-nodeaddressspaces,andcross-nodememoryac-
cess.Furthermore,they comprisespeciallow-latency driversfor
controllingtheinterconnectand/orspecializedmulti-gigabitinter-
nodenetworks.

We aim at building Grapestone kernelsbasedon their corre-
spondingCashew kernels.Ideally, Grapestone/IA-64, e.g.,should
consistof the Cashew/IA-64 kernel complementedby a Grape-
stone package.Oncethe first Grapestone kernel hasbeencon-
structedsuccessfullythis way, we shouldbeableto build Grape-
stone kernelsatrelatively low costsfor any Cashew hardwareplat-
form.

Wehopethatwe canbasicallyusethesameGrapestone kernel
for clustersystemsaswell asfor MPPs. Only somedrivers, in-
terconnect,etc.,will be different. However, this hopeis not yet
substantiated.

References

[Bel97] F. Bellosa. Processcruise control: Throttling mem-
ory accessin a soft real-time environment. Techni-
cal report, Dept. of Comp. Sci., University of Erlangen-
Nürnberg, 1997. Available: http://www4.informatik.uni-
erlangen.de/ELiTE/pub.html.

[DdBF
�

94] A. Dearle,R. di Bona,J.Farrow, F. Henskens,A. Lindström,
J.Rosenberg, andF. Vaughan.Grasshopper:anorthogonally
persistentoperatingsystem.Computing Systems, 7(3):289–
312,Summer1994.

[Dre] TU Dresden.Drops.http://os.inf.tu-dresden.de/drops.

[EE98]D G.EddonandH. Eddon.Inside Distributed COM. Microsoft
Press,1998.

[EFF
�

97] Eric Eide, Kevin Frei, Bryan Ford, JayLepreau,andGary
Lindstorm. Flick: A flexible, optimizingidl compiler. Pro-
ceedings of the ACM SIGPLAN ’97 Conference on Program-
ming Language Design and Implementation (PLDI), pages
44–56,June1997.

[HLP
�

00] A. Haeberlen,J. Liedtke, Y. Park, V. Uhlig, andL. Reuther.
Stub code performanceis becomingimportant. In First
Workshop on Industrial Experiences with Systems Software
(WIESS), SanDiego,CA, October2000.To appear.

[Hoh] M. Hohmuth. Fiasco. http: //os.inf.tu-dresden.de/fiasco
/doc.html.

[JEL
�

99] T. Jaeger, K. Elphinstone,J. Liedtke, V. Panteleenko, and
Y. Park. Flexible accesscontrol using ipc redirection. In
Hot Topics in Operating Systems (HotOS VII), Rio Rico,AZ,
March1999.

[Lan92] C. R. Landau. The checkpointmechanismin KeyKOS. In
Proceedings of the 2nd International Workshop on Persistent
Object Systmes (POS2), pages24–25,Paris,France,Septem-
ber1992.

[LHH97] J.Liedtke,H. Härtig,andM. Hohmuth.OS-controlledcache
predictability for real-timesystems(RTAS). In 3rd IEEE
Real-time Technology and Applications Symposium, pages
213–223,Montreal,May 1997.

[Lie92] J. Liedtke. Clans& chiefs. In 12. GI/ITG-Fachtagung Ar-
chitektur von Rechensystemen, pages294–305,Kiel, March
1992.Springer.

[Lie93] J. Liedtke. A persistentsystemin real use– experiences
of the first 13 years–. In 3 E�F International Workshop on
Object Orientation in Operating Systems (IWOOOS), pages
2–11,Asheville, NC, December1993.

[Lie95a] J. Liedtke. Improved address-spaceswitching on Pen-
tium processorsby transparentlymultiplexing useraddress
spaces. Arbeitspapiereder GMD No. 933, GMD — Ger-
manNationalResearchCenterfor InformationTechnology,
SanktAugustin,September1995.

[Lie95b] J. Liedtke. On � -kernel construction. In 15 G�H ACM Sym-
posium on Operating System Principles (SOSP), pages237–
250,CopperMountainResort,CO,December1995.

[LVE00] J. Liedtke, M. Völp, and K. Elphinstone. Preliminary
thoughts on memory-bus scheduling. In 9 G�H SIGOPS
European Workshop, pages207–210,Kolding, Denmark,
September2000.

[Obj] The Object ManagementGroup (OMG). The Complete
CORBA Services Book. http: //www.omg.org /library
/csindx.html.

[SL00] E. SkoglundandJ. Liedtke. Transparentorthogonalcheck-
pointing through user-level pagers. In I G�H International
Workshop on Persistent Object systems (POS9), Lilleham-
mer, Norway, September2000.SpringerLNCS. To appear.

[SSF99] J. S. Shapiro,J. M. Smith, andD. J. Farber. EROS: a fast
capabilitysystem. In 17th ACM Symposium on Operating
System Pronciples (SOSP), pages12–15,KiawahIslandRe-
sort,SC,December1999.

[Syd] UNSW Sydney. Mungi. http://www.cse.unsw.edu.au/J disy
/Mungi/.

[UFG
�

99] R. Uhlig, R. Fishtein,O. Gershon,I. Hirsh, andH. Wang.
SoftSDV: A presiliconsoftware developmentenvironment
for the IA-64 architecture. Intel Technology Journal, Q4,
1999.

