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Outline
• Background: Clusters, scheduling, inter-job dependence

• Inter-job dependencies and the problems they bring

• The Wing inter-job dependency profiler
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• Conclusion: Inter-job dependencies are important!
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Problems when not considering deps
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Inter-job dependencies pervade data lakes,
but are ignored in resource management

Missed deadlines, wasted resources,
and untapped opportunities



Towards addressing inter-job deps
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Scheduling and predicting the future
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Better prediction of future jobs

Better planning for future jobs when scheduling

Better results

Recurring dependencies can
help improve predictions
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• Wing analyzes the aggregate value (impact) of jobs
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YARN, Cosmos, and value scheduling
• YARN: A resource management framework

• Back-end of Cosmos resource management
• Default scheduler: Resource decisions based on priorities

• Value scheduling
• Complete jobs in a timely manner to achieve value
• State-of-the-art: Considers each job independently
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Inter-job dependencies
to achieve more value



Wing-Agg: Wing-guided scheduling
• Exploit job + dependency recurrence to attain value

• Wing-Agg: YARN’s prio-based sched + Wing-guidance
• Prioritize recurring jobs with high aggregate value efficiency
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Wing-Agg
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Experimental setup
• Trace-driven simulations on real cluster traces

• Preserves inter-job dependencies and properties

• Goal: Attain more value from the same workload

• Value metric: Total file output downloads attained

• Experiments at various cluster sizes (capacities)

• To simulate resource-constrained clusters

25



Value-attainment
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• Wing-Agg: Prio as historical agg value / agg compute
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Value-attainment
• Wing-Agg: Prio as historical agg value / agg compute
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Takeaways
• Inter-job dependencies prevalent in real clusters

• But, can be predictable with recurrence

• Inter-job dependencies need to be addressed

• To ensure jobs meet their deadlines, reduce resource 

wastage, and improve value attained in shared clusters
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Thank you!


