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1 INTRODUCTION
This paper addresses a growing challenge in processing video: The
scaling challenge presented by the combination of an increasing
number of video sources (cameras) and an increasing number of
heavy-weight DNN-based applications (which we term “queries”)
to be run on each source. As a running example, we draw from an
environmental and traffic monitoring deployment at CMU, one feed
from which is depicted at right. This feed supports applications
such as car and pedestrian counting, open parking spot detection,
train detection (in support of an environmental monitoring research
project attempting to determine locomotive emissions), and observ-
ing if building lights are left on. These cameras are deployed using a
mix of the high-speed campus network, and a lower-speed/higher-
cost cable modem deployment on power poles in the area.

Cost constraints motivate us to be parsimonious with band-
width on the wide-area deployment (and planned future wirelessly-
connected nodes), and, in general, of our CPU/GPU processing
budgets. The high cost of truck rolls to install and upgrade nodes
motivates us to put multiple state-of-the-art 4K vision cameras
on the nodes to flexibly support future applications, but we lack
the bandwidth to backhaul the full feeds. At the same time, both
current and future applications may wish to run one or more state-
of-the-art DNNs to perform image classification [6, 17], object de-
tection [7, 13, 14], and video understanding [3, 19].

In this paper, we assume that cameras are fixed (e.g., traffic mon-
itoring). Most applications are interested in possibly-overlapping
subsequences of frames (e.g., frames containing cars, or trains, or
with people moving), and can express a notion of that importance
using a query. Frames that match a query are sent back to the dat-
acenter for further processing. Each application defines its own
queries and submits them to the edge node. Our system is responsi-
ble for efficiently executing a multitude of queries at the edge node
with low false positives (to avoid wasting resources) and low false
negatives (to preserve application fidelity).

While an abstract query could be a black-box DNN that takes
a frame as input and outputs a binary forward/discard decision,
such an approach scales poorly as the number of queries executed
on each stream grows. Instead, we develop an idea called micro-
classifiers, which are small classifiers taking as input a subset of
the activations of a known, standard convolutional neural network
(such as MobileNet [5]). Each query is represented using a unique
microclassifier, which specifies both its own internal DNN structure,
as well as identifying which (small) subset of the reference CNN
activations it accepts as input. Microclassifiers enable an edge node
to serve tens of queries or more with high accuracy by amortizing
the cost of the CNN activations, adding only a small cost per query.

Dataset. We evaluate the microclassifier approach on a novel
dataset containing 83.5 hours of footage from a camera overlooking
train tracks, sampled at 1fps, for a total of 290,758 frames, as shown

Figure 1: Regions A and B, corresponding to the Train and
Car datasets respectively.

in Figure 1. We use the first 100,000 frames as a training set and
the remainder as the test set. We created two sets of labeled data
by annotating frames in which (a) a train appears in Region A (the
Train dataset); and (b) a car appears in Region B (the Car dataset).
There are 2,777 frames that contain images of 21 different trains,
and 16,070 frames that contain images of 1296 different vehicles.
Our goal is for this dataset to be a simple yet representative example
of a typical traffic monitoring workload.

2 SCALABLE VIDEO QUERIES AT THE EDGE
Transfer Learning Doesn’t WorkWell. In our preliminary eval-
uations, traditional transfer learning—fine-tuning the last n layers
of a CNN—yielded poor results [Table 2]. There are two contribut-
ing factors. First, the frames (and by extension, the features) from
a fixed-view camera are generally quite similar, which makes it
easy for a fine-tuned MobileNet to overfit (as evidenced by fast
training convergence and poor test results). Second, because many
events in this setting occur in a spatially constrained part of the
frame, globally pooled features have weak discriminative ability.
Cropping the image to cover only the spatially relevant portion is
not scalable nor sufficiently general because cropping (a) cannot
handle non-rectangular inputs, (b) distorts non-square inputs, and
(c) requires the network to be run separately for each image crop.

Use Shared CNN Feature Maps Instead. CNNs trained on
image classification tasks produce nonlinear hierarchical features
that offer a trade-off between spatial localization and semantic in-
formation. Selective processing of these features has been used
successfully in tasks such as object region proposals, segmentation,
and tracking [2, 4, 10, 14], as well as video action classification [16].
Our approach uses a single pretrained CNN that runs on every
frame in a multi-task fashion. We allow all of our query models
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Figure 2:Car andTrain feature cropswith highest ROCAUC
scores overlaid on the original image.

(described below) to share the entire CNN feature hierarchy. Doing
so gives each model flexibility to choose its degree of spatial local-
ization and enables a single resource-constrained edge node to run
more application queries.

For our experiments, we use feature maps from MobileNet-
224 [5] trained on ImageNet [15]. MobileNet layers are referred
using the layer names of the Caffe port [11]. While MobileNet fea-
tures were sufficient for the tasks that we investigated, we plan to
consider training a CNN on multiple tasks to obtain feature maps
that generalize better across many domains.

Input Selection Beats Microclassifier Structure. Our results
show that the flexibility for a microclassifier to draw from arbi-
trary activations from the reference CNN is more important to their
accuracy than the exact structure of the microclassifier. Table 3
shows that both SVMs, KNN, and simple multilayer perceptrons
(MLP)s perform well when using a well-chosen feature map from
one internal layer of MobileNets. Both the linear SVM and MLP are
comparatively cheap to execute (about 10K multiply-adds dot prod-
uct for the SVM, and the MLP requiring about 2M multiply/adds).

In contrast, the choice of reference network activations (feature
sets) has a much larger effect. Table 1 shows the effect of using
different layers and crops of layers from MobileNet as input to the
microclassifier.

As shown above, basic transfer learning (which uses the last
pooling layer as its feature set) performs particularly poorly. Choos-
ing the best random crops of conv6/sep and conv5_6/sep (the last
and second-to-last feature maps) yielded better results but was not
significantly better than using a cropped image’s pool6 features.
We obtained much better FP and FN rates using the best crops of
an earlier layer of the network (conv4_2/sep) [Figure 2].

As expected, the best performing crops came from regions that
overlapped with the event regions. These results are somewhat
intuitive for the spatially-segregated tasks we evaluated, but the
order of magnitude of the improvement was large, and, we believe,
particularly applicable for the monitoring applications we consider.

Automated Feature Search. Given that a key feature of micro-
classifiers is their flexibility to draw from internal activations in a
reference CNN, how can we “train” a microclassifier such that it
does so effectively?

As a proof-of-concept, we implemented a search procedure that
randomly samples and evaluates crops of a given feature map as
a first step towards a more general automated solution. (Random
search is competitive baseline for hyperparameter optimization [1].)
Our procedure first samples (in normalized coordinates between
0 and 1) the center of the crop box from a truncated Gaussian

Task Features Accuracy (%) FP (%) FN (%)

car pool6 66.41 34.36 21.42
car pool6 (cropped image) 74.42 26.64 8.72
car conv4_2/sep (2:6, 7:12) 85.37 14.73 13.04
train pool6 98.04 1.26 65.27
train pool6 (cropped image) 97.75 2.06 19.57
train conv4_2/sep (9:10, 4:12) 98.84 1.07 9.47

Table 1: A comparison of 2-layer MLP microclassifier accu-
racy across different feature sets. Featuremap crop notation
is given by (x_start:x_end, y_start:y_end), end coordinates
are inclusive.

Setup Iterations Accuracy (%) FP (%) FN (%)

From scratch 100 51.56 51.05 44.98
Fine tune last 2 layers 100 74.23 25.52 48.89
Fine tune last layer 100 84.37 14.53 57.25

Table 2: Transfer learning results using MobileNet-224 on
the Train dataset. On all three setups, the training loss had
already converged after 100 training iterations.

Classifier Accuracy (%) FP (%) FN (%)

Linear SVM (C=1e-3) 99.76 0.009 21.49
Linear SVM (C=1) 97.47 2.448 10.00
Linear SVM (C=1

cost class balance=0.1:1) 98.20 1.715 9.47
KNN (k=10, >= 2 positive examples) 99.50 0.104 36.38
2-layer MLP (200 hidden

units, ReLU activation) 99.75 0.141 10.48
Table 3: Microclassifier architecture accuracies on the Train
dataset using the optimal feature crop as input.

with mean 0.5, standard deviation 0.2, and range [0.1, 0.9]. The
box dimensions are then (independently) sampled from a second
truncated Gaussian with mean 0, standard deviation 0.2, and range
[0.1, 0.5] (out of range box coordinates are clipped to the edges
of the image). This results in crops of intermediate size that tend
towards the center.

While this basic search shows that the general technique is feasi-
ble, we plan several improvements upon this basic procedure: First,
rather than flattening the input features and thus discarding its
spatial relationships, can we pass them directly into CNNmicroclas-
sifiers with learned attention mechanisms [18] that can use those
relationships? In addition, because the events we are interested in
generally consist of a short, contiguous collection of frames, we
may also consider creating microclassifiers that operate across mul-
tiple frames, and capture interesting video segments rather than
just individual frames.

Second, we plan to broaden the scope of the feature search to
cover non-contiguous parts of the feature map and to pull from
multiple layers simultaneously. We would also like to explore bet-
ter feature selection strategies. Some mechanisms for accomplish-
ing the former include introducing regularization that encourages
block-sparsity [8, 12] or devising an evolutionary procedure that
effectively searches the feature space. Another way of exploring the
feature space could involve asking the user to specify the regions
of interest in the image and then using the network’s receptive
field [9] to create a sampling distribution.
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