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Abstract

This paper presents the design, implementation and eval-
uation of “dBug” – a tool that leverages manual in-
strumentation for systematic evaluation of distributed
and concurrent systems. Specifically, for a given dis-
tributed concurrent system, its initial state and a work-
load, the dBug tool systematically explores possible or-
ders in which concurrent events triggered by the work-
load can happen. Further, dBug optionally uses the par-
tial order reduction mechanism to avoid exploration of
equivalent orders. Provided with a correctness check, the
dBug tool is able to verify that all possible serializations
of a given concurrent workload execute correctly. Upon
encountering an error, the tool produces a trace that can
be replayed to investigate the error.

We applied the dBug tool to two distributed systems –
the Parallel Virtual File System (PVFS) implemented in
C and the FAWN-based key-value storage (FAWN-KV)
implemented in C++. In particular, we integrated both
systems with dBug to expose the non-determinism due
to concurrency. This mechanism was used to verify that
the result of concurrent execution of a number of basic
operations from a fixed initial state meets the high-level
specification of PVFS and FAWN-KV. The experimental
evidence shows that the dBug tool is capable of system-
atically exploring behaviors of a distributed system in a
modular, practical, and effective manner.

1 Introduction

This paper addresses the problem of verification of dis-
tributed and concurrent systems. In the context of this
paper such systems are assumed to be pieces of com-
plex software, such as a distributed file system (e.g.
GFS [11], GPFS [20]), a distributed key-value storage
(e.g. BigTable [6], Dynamo [8]) or a distributed hash
table implementation (e.g. Chord [17], Pastry [19]).

The question answered by this paper is how to system-
atically explore all possible executions of a concurrent
workload of such a system from some initial state.

In a concurrent system, the worst-case number of
possible orders in which concurrent events can execute
grows exponentially with the number of the events. To
provide guarantees about the behavior of the system, the
system designers must verify all distinct orders. The first
criterion for successful verification in a concurrent set-
ting is thus the ability to evaluate the outcome of every
execution order. The next criterion is then the effective-
ness of automating the evaluation process, which should
avoid evaluation of redundant or infeasible orders.

Traditional approaches to evaluating correctness of
concurrent systems fail to meet these criteria. For ex-
ample, non-exhaustive approaches such as testing [10]
evaluate a system using a range of tests. Each test is
typically repeated many times with the intention to drive
the system into as many different situations as possible.
However, there is no guarantee that all possible execu-
tion orders of a given test are encountered. To overcome
these limitations, researchers developed exhaustive ap-
proaches such as theorem proving [5] or model check-
ing [7, 13]. Although these approaches have the poten-
tial to provide guarantees about all executions of a given
system, their practicality is often impeded by the abstrac-
tions introduced during modeling [2] or the need for ex-
pert knowledge to deploy the technique [16].

In recent years, we witnessed the creation of sev-
eral execution-based checkers such as Verisoft [12],
MaceMC [15], Chess [18], or MoDist [21]. Unlike test-
ing, these tools are able to inspect all possible execu-
tions of a given test and unlike model-based approaches,
they inspect the actual system using dynamic analysis. In
principle, the execution-based checkers are built around
the same idea: for a given non-deterministic system and
its initial state, systematically and automatically explore
all possible executions searching for errors. What differ-
entiates these tools from one another is:
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1. the range of systems they support

2. the sources of non-determinism they consider

3. the techniques used for exploring and reducing the
state space of possible executions

4. the type of errors they are able to detect

This paper presents the design and implementation
of the tool “dBug”, which falls into the category of
execution-based checkers. Unlike its predecessors, dBug
targets systematic evaluation of distributed concurrent
systems without imposing restrictions on the design plat-
form of the system or sources of non-determinism con-
sidered. This flexibility is achieved by deferring the re-
sponsibility to select the level of abstraction at which
non-determinism is exposed to the system developers.

Range of systems supported The dBug tool supports
a wide range of systems by decoupling the identification
of sources of non-determinism from the exploration of
different executions. Specifically, dBug offers a simple
interface for distributed and concurrent systems to com-
municate information to dBug. In this way, the dBug
tool can evaluate any system that can be linked with an
implementation of the required interface.

Sources of non-determinism considered The inter-
face offered by dBug can be used by system developers
to identify concurrent events of the system. These events
may include, but are not limited to, communication over
the network, issuing local I/O requests, acquiring and re-
leasing locks, or accessing shared data structures.

State space exploration technique The dBug tool
uses the interface implemented by the system in question
not just to identify the non-deterministic choice points,
but also to keep track of the set of processes that currently
run in the system and to control the execution of the sys-
tem. In other words, dBug maintains a global view of
the system and it uses this view to select an event to ex-
ecute next. In order to combat the state space explosion,
dBug optionally uses a standard technique [9] to exploit
the commutativity between transitions of the system.

Another unique feature of dBug is its use of virtual
machine infrastructure to run the system and to explore
different executions of a workload in the system. This
feature comes with several key benefits. First, when
an error in the system is encountered, dBug produces
a recording of the execution. Second, virtual machine
snapshots are used to revert to previously visited states
of the system. This feature enables the setup of initial
states with complex in-memory and on-disk state. Third,
the use of virtual machine infrastructure opens the possi-
bility to leverage computational power of heterogeneous
computing infrastructures.

Type of errors detected The dBug tool checks correct-
ness of tests that exercise some functionality of the sys-
tem. These tests are expected to be provided by a tester
as a binary. For example, in our experiments dBug was
typically used to test if a concurrent workload can drive
the system into an inconsistent state.

Contribution The contribution of the paper is twofold.
First, we present the design and implementation of dBug
– a publicly available tool that leverages manual instru-
mentations for systematic exploration of distributed and
concurrent systems. Second, we demonstrate the prac-
ticality of dBug through two case studies – the Parallel
Virtual File System (PVFS) [4] and the key-value stor-
age based on the FAWN architecture (FAWN-KV) [1].

The interface of dBug was used to expose the non-
determinism resulting from concurrent operations in
these systems. The number of lines of code needed to
integrate both system with dBug was less than 100. The
dBug tool was then used to systematically evaluate all
possible execution orders of several workloads in order
to verify correct operation of these systems. The dBug
tool found new concurrency bugs in both of the systems.

Related Work Various instances of the research
method implemented by dBug have been explored in
past. The Verisoft tool [12] implements this method
to control non-determinism in which threads of a con-
current program make calls to synchronization library.
The Chess tool [18] implements this method limiting
themselves to thread scheduling as the source of non-
determinism and Windows binaries as the target plat-
form. The MaceMC tool [15] implements this method
targeting programs written in the Mace language [14]
and non-determinism due to reordering of Mace trans-
actions. Most recently, the MoDist tool [21] implements
this method for non-determinism at the system call level
of the WinAPI.

Organization The rest of the paper is organized as fol-
lows. We describe the design (§2) and the implementa-
tion (§3) of the dBug tool, our experience with apply-
ing dBug to PVFS and FAWN (§4), and conclude with a
summary of the paper and plans for future work (§5).

2 dBug Design

In the remainder of this paper, a distributed concurrent
system is viewed as a set of agents that communicate and
coordinate through shared resources. An important char-
acteristic of an agent is that its execution is sequential,
and the concurrency in the system arises only from the
concurrent execution of multiple agents. For instance,
in a real system, agents represent either single-threaded
processes or threads of a multi-threaded process.
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While agents are an abstraction of the components of
the system, the shared resources are an abstraction of
the environment in which the system runs. Examples of
shared resources include local CPUs, volatile memories,
persistent storage, and the network. In practice, the ac-
cess to the shared resources is managed by a software
stack and an agent accesses the shared resources either
implicitly – for example, a process or a thread is sched-
uled for execution – or explicitly through a well-defined
interface – for example, making a system call to allocate
dynamic memory.

For deterministic computing platforms, it is the inter-
action with the environment that motivates us to view
concurrent systems as non-deterministic. Although these
systems are in fact often deterministic, it is bad practice
to make assumptions about the environment in which the
systems will run. If these assumptions are inaccurate, the
systems will act unexpectedly. Therefore, a good system
design assumes that the outcome of an interaction with
the environment is arbitrary. This is why good program-
mers always test return values of system calls.

Viewing the boundary between a distributed concur-
rent system and its environment as the divide between
the deterministic and the non-deterministic lays the foun-
dation for a method that systematically explores possi-
ble executions of a distributed concurrent system. The
premise of the method is that if we identify and control
all interactions of the system with the environment, we
can run the system deterministically by picking a partic-
ular order in which these interactions happen. Assuming
that we can repeatedly execute the system from the same
initial state, we can explore all possible orders in which
the interactions with the environment happen.

To combat the combinatorial explosion of the number
of possible serializations of concurrent interactions, one
may decide to ignore certain interactions. In other words,
the non-determinism of the system is resolved only par-
tially. Formally, the universe of all possible orders of
interactions is collapsed into equivalence classes implied
by some equivalence relation. The repeated execution
of the system then selectively explores only orders that
belong to different equivalence classes.

Arbiter

The dBug design introduces a centralized entity called
the arbiter that maintains a global view of the agents in
the system. It is assumed that every time a new agent en-
ters or exits the system, the arbiter is notified. Similarly,
an agent is assumed to contact the arbiter to request a
permission to perform selected interactions with the en-
vironment. Notably, the requests to the arbiter are not
considered to be interactions with the environment.

Assuming that the arbiter has a mechanism for iden-
tifying when all agents are done issuing requests to the

arbiter, the arbiter can explore arbitrary orders of inter-
actions of the system with the environment. Specifically,
the arbiter runs two loops: The first loop receives in-
formation from the agents and updates the global view
accordingly. The second loop repeatedly waits for all
agents to be done asking for permissions to perform an
interaction. When such a situation occurs, the arbiter
grants a permission to one of the agents to perform their
interaction.

Let us illustrate the dBug design on a scenario in
which two clients are trying to create the same object
in a distributed file system. For simplicity, let us assume
that both the clients and the servers are single-threaded
processes. Further, let the interactions controlled by the
arbiter be the messages sent between the nodes of the
system.

S1 Si Sn. . .. . .

arbiter

enter enter enter

Figure 1: Server processes enter the system and notify
the arbiter

S1 Si Sn. . .. . .

arbiterA B
1. request

3. create 3. create

2. permission

1. request

2. permission

Figure 2: Steps taken to send a message: 1) An agent re-
quests permission from the arbiter, 2) The arbiter grants
the permission, 3) The agent sends the message

Initially, the server nodes enter the system and send a
notification to the arbiter (Figure 1). Next, the two clients
enter the system and send a notification to the arbiter.
Under normal operation each client would then initiate
the create operation in the system. Depending on the
implementation of the distributed file system, the opera-
tion would require some number of communication mes-
sages. For simplicity, let us assume that there is only a
single message going from each client to the server man-
aging the object to be created followed by a single mes-
sage going from the server to each client. Before each
of the two clients proceed to sending the initial message,
they ask the arbiter for a permission to send the message
(Figure 2). The arbiter then decides, which of the two
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requests is serviced first. Similarly, the arbiter decides
in which order should the subsequent messages be sent.
When both clients receive a reply from the server, they
exit the system and the execution terminates. Note that
by following different strategies, the arbiter can trigger
any of the six possible behaviors of the system (Figure 3).

A to Si Si to A B to Si Si to B

A to Si B to Si Si to A Si to B

A to Si B to Si Si to B Si to A

B to Si Si to B A to Si Si to A

B to Si A to Si Si to B Si to A

B to Si A to Si Si to A Si to B

Figure 3: Six possible orders in which the four messages
can be serialized by the arbiter

Unfortunately, even when we limit ourselves to a spe-
cific type of interactions with the environment, the com-
binatorial explosion can still cause the number of possi-
ble orders of interactions to be astronomical. For exam-
ple, if each of the above client operations would always
require a sequence of 16 messages, there would be more
than 600 millions different orders in which the two client
operations could execute.

A to Si Si to A B to Si Si to B

A to Si B to Si Si to A Si to B

A to Si B to Si Si to B Si to A

B to Si Si to B A to Si Si to A

B to Si A to Si Si to B Si to A

B to Si A to Si Si to A Si to B

Figure 4: Two equivalence classes of message serializa-
tions. The gray events are independent of all events of
other agents. Note that in this case the equivalence class
is uniquely determined by the first message of the serial-
ization.

The dBug design addresses this problem by providing
an additional method that further collapses different exe-
cutions into equivalence classes. This method is an adap-
tation of the dynamic partial order reduction of Gode-
froid and Flanagan [9]. The key idea behind the method
is that interactions of different agents with the environ-
ment are inferred to be independent. If two orders of in-
teractions with the environment differ only in the order of

independent interactions, then they are considered equiv-
alent. For instance, applying this method to our earlier
example might infer that the replies sent from the server
to the two clients are independent of all interactions of
other agents. In that case, the universe of 6 executions
would collapse into 2 equivalence classes (Figure 4).

3 dBug Implementation

The dBug implementation consists of several compo-
nents. First, there is the arbiter component, which is re-
ferred to as the dBug server. Second, there is the imple-
mentation of the interface that a distributed concurrent
system uses to communicate information to dBug. The
implementation of the interface is referred to as the dBug
client. Third, there is the infrastructure for restoring an
initial state of the distributed concurrent system and ex-
ploring different orders of interactions with the environ-
ment.

dBug Server

The dBug server is as a multi-threaded program. The
handler thread of the server is responsible for listening
for connections on a socket. This socket is used by the
distributed concurrent system to communicate informa-
tion about the state of the system to dBug and to re-
quest permissions to interact with the environment. The
handler thread processes the messages received from the
distributed concurrent system and maps this information
into shared data structures of the server.

The explorer thread of the server periodically inspects
the shared data structures of the server and checks if a
request to interact with the environment can be serviced.
The dBug server can run in two modes – blind mode and
informed mode. The modes adopt different strategies to
decide when to service a request. Ideally, we would like
the dBug server to wait until it receives requests for all
interactions that could get reordered – a situation referred
to as the steady state. Unfortunately, as soon as there
is a single agent in the system that can run indefinitely
without requesting an interaction with the environment
that is controlled by the arbiter, the check for the steady
state becomes non-trivial.

The blind mode addresses the issue of detecting a
steady state using a timeout – the mode waits for some
fixed amount of time after receiving a request. If no other
request is received in that time window, the server as-
sumes that it has reached the steady state. The advantage
of this mode is that it does not require any additional
communication with the system. The problem with this
approach is that there are two contradicting requirements
on the length of the time window: The longer the time
window, the higher the chance the server reaches the ac-
tual steady state. The shorter the time window, the lower

4



the overhead of the exploration. The dBug tool by de-
fault uses a timeout of one second, while partially miti-
gating the performance overhead implied by the timeout.
Specifically, the dBug tool remembers the number of re-
quests at all steady states it has reached and uses this
information to accelerate exploration of subsequent exe-
cution orders that encounter some of these steady states.

The informed mode addresses the issue of detecting
a steady state by collecting additional information from
the agents. In particular, an agent is expected to inform
the arbiter when it reaches an idle state – a state in which
the agent is not going to interact with the environment
unless some event controlled by the arbiter happens. At
the same time, an agent is expected to inform the arbiter
when it transitions from an idle state to a progress state –
a state in which the agent might potentially interact with
the environment. The handler thread of the dBug server
collects this additional information about the agents in
the system and the explorer thread uses this information
to detect a steady state. In particular, a steady state is
detected when all agents have reached an idle state and at
least one agent visited a progress state since the previous
steady state.

dBug Client

The dBug client is currently implemented as a C and C++
library that can be linked to a distributed concurrent sys-
tem. The library implements the following interface:

• register(): Notifies the arbiter that an agent
is entering the system. The arbiter replies with a
unique agent identifier that is used for all subse-
quent communication between the agent and the ar-
biter.

• unregister(): Notifies the arbiter that an agent
is exiting the system.

• interaction(): A blocking call that contacts
the arbiter requesting a permission to interact with
the environment of the system.

• idle(): A non-blocking call that notifies the ar-
biter that the agent entered an idle state.

• progress(): A non-blocking call that notifies
the arbiter that the agent entered a progress state.

The interface provides for a range of instrumenta-
tions of a distributed concurrent system. The simplest
instrumentation of a system requires that every pro-
cess and thread creation issues the register()call
and every process and thread destruction issues the
unregister()call. Further, one needs to instru-
ment the system with interaction()calls to iden-
tify interactions with the environment (sources of non-
determinism) for the arbiter to control. For example, in

our experiments these interactions included sending mes-
sages between agents and acquiring and releasing locks
by an agent.

By default, the dBug tool runs in the blind mode.
Optionally, one may leverage the understanding of the
system in question and instrument the system with
idle()and progress()calls to notify the arbiter
about the transitions between the idle and the progress
state respectively. With these notifications in place, the
dBug tool can run in the informed mode.

Exploration Mechanism

The last part of the dBug tool is the infrastructure that
is used for restoring some initial state of a distributed
concurrent system so that different orders of interactions
with the environment for the same workload can be ex-
plored. Given the broad goals that dBug targets, we de-
cided to use a virtual machine environment to implement
this mechanism.

There are several advantages of using a virtual ma-
chine (VM) environment. First, a VM environment al-
ready supports a snapshot mechanism that can be used
to store and to load a particular system state. Second,
a VM infrastructure allows us to record the execution
of the system for further investigation of an unexpected
behavior. Third, a VM environment allows us to lever-
age the computational power of heterogeneous comput-
ing clouds, which account for a large part of current com-
putational resources.

However, the use of a VM environment comes with
certain disadvantages as well. First, the distributed con-
current system is assumed to function correctly in a vir-
tual machine environment. This is not necessarily true
for all distributed concurrent systems as some distributed
concurrent system might rely on a custom hardware sup-
port that is not available in a VM environment. Second,
the VM environment imposes a non-trivial overhead on
the execution time of the system. In particular, reverting
to a state of the system takes time on the order of sec-
onds. This overhead limits the number of orders that can
be explored within a given time budget.

Our original motivation for using a VM environment
was its ability to capture the complete state of the system.
Unlike previous tools [3, 22], we did not want to com-
mit to some subset of the in-memory and on-disk state
of the system. This design decision results in states of
size proportional to the size of dynamic memories used
in the system and space occupied on the persistent stor-
age of the system. This can easily be gigabytes. Given
the size of the states, the dBug tool implements a state-
less exploration. Specifically, for each order of interac-
tions explored, the dBug tool always starts anew from the
initial state of the system. Note that thanks to the use of
VM the initial state can capture a non-trivial state of both
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in-memory and on-disk data structures of the distributed
system being verified.

The program that systematically explores different or-
ders of interactions with the environment runs the fol-
lowing loop as long as there are orders to be explored:

1. Restore the initial state of the system

2. Generate a strategy for the arbiter based on past it-
erations

3. Start the arbiter with the strategy

4. Run the workload of the system

5. Store information collected by the arbiter for future
use

The steps 2 and 5 of this loop ensure that no order of
interactions is explored more than once.

A separate problem that dBug needs to address is that
of the combinatorial explosion. For instance, if at each
steady state except for the last one the arbiter has two
requests to select from, each execution takes approxi-
mately 5 seconds and each execution reaches 11 steady
states before finishing, then it takes 85 minutes to explore
all 210 possible orders of interactions with the environ-
ment. If instead, the number of steady states of each ex-
ecution would be 21, then the time needed to explore all
of the 220 possible orders of interaction with the environ-
ment would be approximately two months. To combat
the combinatorial explosion, the dBug tool implements a
variant of the dynamic partial order reduction of Gode-
froid and Flanagan [9]. In particular, the dBug tool uses
information collected by the arbiter to compute an inde-
pendence relation over the universe of interactions with
the environment. The key benefit of the independence
relation is that it identifies pairs of interactions that can
be reordered without changing some abstract behavior of
the execution. The second step of the loop above then
uses this information to avoid exploration of orders with
identical abstract behavior.

4 The dBug Experience

We have used dBug to systematically explore execution
orders of several workloads of two different systems:
the distributed file system Parallel Virtual File System
(PVFS) [4] implemented in C and the key-value storage
based on the FAWN architecture (FAWN-KV) [1] imple-
mented in C++. The following subsections describe the
high-level functionality of the two systems and give a
detailed account of both the process of integrating these
systems with dBug and the verification case studies. All
experiments were carried out on a Dual 2.26 Quad-Core
Intel Xeon machine with 6 GB of memory. The vir-
tual machine environment used in our experiments was
VMware Fusion running Ubuntu 10.4.

4.1 PVFS

The PVFS is a distributed file system that partitions
both data and meta-data across multiple servers. At
each server, data is managed by a local ext2 file system
and meta-data is managed by a Berkeley DB. Further,
file system operations are implemented using state ma-
chines. A state machine is a directed graph, with nodes
representing either a C function or a nested state machine
and labeled edges representing possible return values of
nodes. An edge from one node to another is taken upon
a match of the return value of the node with the label
of the edge. A PVFS server is a single-threaded process
that does cooperative multitasking over a set of state ma-
chines.

Interaction with PVFS is possible through a number of
interfaces including virtual file system interface or cus-
tom MPI I/O libraries. In our experiments, we used the
user-level implementation of PVFS file system opera-
tions provided as part of the PVFS distribution. In this
context, each file system operation maps to a client pro-
cess that executes a sequence of state machines that carry
out the desired operation. Naturally, some of the client
state machines can message a PVFS server to trigger ex-
ecution of a server state machine.

Several steps were necessary to integrate PVFS with
dBug. First, we extended the PVFS build process with
access to the dBug client object file. Second, we added
the register() and atexit(unregister) func-
tion calls to the beginning of the main() function of
each client and server process to notify the arbiter about
creation and destruction of these processes. Third, we
extended the messaging mechanism of PVFS so that
each message sent is delayed until a permission from
the arbiter arrives. This modification was probably the
most involved as the send operations in PVFS are non-
blocking. To correctly emulate this behavior we wrote
a wrapper for the send operation, that spawns a slave
thread to handle the send operation, while the master
thread returns immediately. The slave thread registers at
the arbiter, waits for the permission to issue the send, is-
sues the send, unregisters at the arbiter, and returns. The
three steps taken to integrate PVFS with dBug required
less than 80 lines of code and enabled exploration of dif-
ferent serializations of concurrent send operations.

However, the basic instrumentation had two deficien-
cies. First, with these instrumentation in place, the dBug
server could run only in the blind mode – limiting both
the speed of the exploration and the guarantees one can
infer from the exploration. Second, the dBug server had
only a limited chance to infer that two send operations
are independent, resulting in a state space explosion.

To overcome the first deficiency, we instrumented both
the client and the server processes to inform the arbiter
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about the idle/progress state of the respective node. Al-
though this instrumentation in the end required only 10
lines of code, it was arguably more complicated than all
the previous instrumentations put together. In order to
correctly instrument the processes, we needed to inspect
the design of PVFS to identify the proper way to check
for the idle/progress state. In other words, while the pre-
vious instrumentations could be in principle automated
with almost no understanding of the system, automating
the instrumentation of idle/progress notification is infea-
sible as it – in the general case – requires solving the
halting problem.

To battle the state space explosion, we used an ab-
straction of the system state. In particular, we instru-
mented the PVFS code so that each operation that up-
dated the meta-data state of the system was treated as
an non-commutative operation and all other operations
were treated as commutative operations. Any two com-
mutative operations were then treated as independent. By
adopting this abstraction we were able to guide the state
space exploration towards the serializations that differ
in the order of update operations. This instrumentation
again required only 10 lines of code. Note that it is not
necessarily true that two operations that are independent
in the abstract domain are independent in the concrete
domain. Consequently, this approach should be thought
of as a search heuristic rather than a sound method for
collapsing the state space.

Experiment Mode POR Orders Time Bug
ls Blind No 2520 43157 No
ls Informed No 2520 20469 No
ls Informed Yes 1 8 No

cr + cr Blind No 4e15∗ 1.3e17∗ N/A
cr + cr Informed No 4e15∗ 6.7e16∗ N/A
cr + cr Informed Yes 407 4619 No
ls + cr Blind Yes 932 28677 No

ls + cr + rm Blind Yes 2271 86400+ No
∗ Back of the envelope estimate. + Timed out after 24 hours.

Table 1: PVFS Experiments

Table 1 details the experiments carried out with PVFS
version 2.8.1. The system was configured with four
PVFS servers with both data and meta-data partitioned
across all of the servers. The EXPERIMENT column iden-
tifies the name of the experiment, the MODE column
identifies the mode in which dBug was ran, the POR
column identifies if partial order reduction was used, the
ORDERS column identifies the number of serializations
explored, the TIME column identifies the time in seconds
taken by the exploration, and the BUG column identifies
if an error was encountered. First, a single ls operation
was evaluated using the blind mode and the informed
mode both with and without the partial order reduction.

The ls operation results in 2520 possible message se-
rializations because the implementation of ls concur-
rently communicates with all four servers. The exper-
iment demonstrated that the informed mode halves the
runtime necessary to explore all of these serializations
and, unsurprisingly, partial order reduction collapses all
serializations into one equivalence class. Second, two
concurrent create operations were evaluated. With-
out employing partial order reduction, there would be on
the order of 1015 different serializations to explore. With
partial order reduction in place, 407 different serializa-
tions were sampled from the state space, representing
executions with distinct abstract behavior. Finally, to test
the scalability of the approach we evaluated workloads
that concurrently list a directory and modify its contents
using one or two operations.

4.2 FAWN-KV

The key-value storage based on the FAWN architecture
partitions the dataset across a ring of back-end nodes us-
ing the technique of consistent hashing. The complexity
of the back-end node is hidden behind front-end nodes
that expose a simple put/get interface. The front-end
nodes both route traffic between the clients and the back-
end nodes and manage the ring of back-end nodes. The
implementation of both front-end and back-end nodes
consists of a single multi-threaded process. The system
specification states the following consistency guarantee:
a get operation on a key will return the result of the latest
acknowledged put operation on the same key.

The implementation has several important sources of
concurrency that are tightly linked to the consistency
guarantee. Firstly, a back-end node stores its portion
of the dataset in a local log-structured store to avoid the
need for random writes. Periodically, a sequential scan
of the store is used to compact the on-disk representa-
tion by removing obsolete entries. Secondly, when a
new back-end node joins the system, it is assigned a por-
tion of the key range to manage, possibly receiving exist-
ing data from the previous manager. Thirdly, to achieve
fault tolerance the dataset can be optionally replicated
on a number of back-end nodes, migrating data as ex-
isting nodes fail or new nodes join the system. For per-
formance reasons, all of these operations happen on the
background while incoming put and get requests are be-
ing serviced. As a result of these requirements the im-
plementation uses a non-trivial amount of both local and
distributed coordination (locks and RPC respectively) to
strike a balance between correctness and performance.

Similarly to PVFS, we first extended the FAWN-KV
build process with access to the dBug client object file.
Next, we added instrumentation to notify the arbiter
about creation and destruction of the client and server
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processes. Specifically, we added the register() and
atexit(unregister) function calls to the begin-
ning of the main() function of both front-end and back-
end nodes and wrote a wrapper for each thread creation.
Third, we extended the locking mechanism of FAWN-
KV – the pthread library – and the RPC mechanism of
FAWN-KV – the Apache Thrift library – so that each co-
ordination event is delayed until a permission from the
arbiter arrives. The modifications to the pthread library
were implemented via interposition, while the modifica-
tions to the Apache Thrift library were implemented at
the source code level. The total number of lines required
for all these instrumentations was less than 100.

Unlike for PVFS, we did not instrument FAWN-KV
with the idle/progress notifications. The reason for
this was both the complexity of the code base and the
marginal performance gain of the informed mode over
the blind mode experienced with PVFS. To combat the
state space explosion, we decided to use an abstraction
that assumes that two events are independent as long
as they do not acquire conflicting locks. This abstrac-
tion represents a trade-off between precision and perfor-
mance overhead.

Experiment POR Orders Time Bug
rewrite No 5562 86400+ No
rewrite Yes 11 221 No

rewrite-bug Yes 11 221 Yes
join No 173 3107 Yes

+ Timed out after 24 hours.

Table 2: Fawn Experiments

The dBug tool was used to verify correctness of 1) the
“rewrite” operation which cleans up the log-structured
store of a back-end node, and 2) the “join” operation
which introduces a new back-end node into the ring. Ta-
ble 2 details the experiments carried out with a version of
FAWN-KV made available to us by the FAWN team. The
EXPERIMENT column identifies the name of the experi-
ment, the POR column identifies if partial order reduc-
tion was used, the ORDERS column identifies the num-
ber of serializations explored, the TIME column identi-
fies the number of seconds taken by the exploration, and
the BUG column identifies if an error was encountered.
First, the rewrite operation was run concurrently with
a put followed by a get on the same key. The purpose of
this experiment was to evaluate if any order of concurrent
events at the back-end node can lead to an inconsistent
state, that is a situation in which the get operation re-
turns an incorrect value. Without partial order reduction
dBug explored 5562 orders and timed out after running
for 24 hours. With partial order reduction, 11 orders were
sampled from the state space. In both cases, FAWN-KV
was found to be working correctly. The same experiment
was also ran on a code base into which the FAWN-KV

developers introduced a data race error. This error was
detected by dBug running both with and without partial
order reduction. Finally, we set up a test that introduced
a new node into the ring of back-end nodes, while doing
a put followed by a get on the same key. Again, the goal
was to see if the system can be driven to an inconsis-
tent state. This time, in less than one hour dBug discov-
ered an error that the FAWN-KV developers suspected
might have existed, but had not encountered it even after
months of experimentation. The reason for this might be
the corner case nature of the error. The error occurs only
when FAWN-KV is run with no replication and only two
out of the 173 inspected orders actually lead to the error.

Download The experimental results and binaries of
dBug are available for download from the web-site
http://www.cs.cmu.edu/˜jsimsa/dbug.

5 Conclusions

In this paper we have presented dBug – a tool that lever-
ages manual instrumentation for systematic evaluation of
concurrent and distributed systems. The tool belongs
to the same category of verification tools as its prede-
cessors Verisoft [12], Chess [18], MaceMC [15], and
MoDist [21]. Together with MoDist it represents the only
tool that targets systematic evaluation of distributed sys-
tem written in general purpose programming languages.
Unlike MoDist, the tool is publicly available and uses
manual instrumentation that provides for different levels
of abstraction.

Our initial experience with dBug showed that dBug is
capable of enumerating thousands of different orders in
which concurrent events triggered by a distributed sys-
tem workload can execute. We used dBug to evaluate
correctness of a number of tests for the PVFS and the
FAWN-KV systems and found concurrency bugs in one
of them.

The experimental evaluation demonstrated a consid-
erable runtime overhead of using dBug. This overhead
stems from two sources. First, it is the use of virtual ma-
chine environment. This overhead can be addressed by
using more lightweight mechanism for restoring an ini-
tial state, such as a custom initialization function. Sec-
ond, it is the performance penalty of detecting a steady
state. Optimizing the detection of a steady state is one of
our future goals.

Another aspect of dBug that yields itself to improve-
ments is the degree to which integration with dBug per-
turbs the original system. Potential avenues for future
work here are the use of the virtual machine environ-
ment to freeze agents that are waiting for a permission
from dBug, or to control the system time of the agents.
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The transparent verification of distributed systems is
an emerging research area and there are many interest-
ing research questions still to be asked and answered.
The next question we would like to answer is when to
use manual instrumentation over automated one. Our
initial experience with both methods suggests that each
approach comes with certain advantages and disadvan-
tages. We plan to integrate both approaches inside of
dBug and carry out a detailed comparison of the two.
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