Poster Abstract: BUFS: Towards Bottom-Up Foundational Security for Software in
the Internet-of-Things

Jiagi Tan, Rajeev Gandhi, Priya Narasimhan
Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Email: tanjiaqi@cmu.edu, rgandhi@ece.cmu.edu, priya@cs.cmu.edu

I. INTRODUCTION

The Internet-of-Things (IoT) is a rapidly growing phe-
nomenon. While IoT-enabled objects can provide rich fea-
tures that can improve users’ lives, security failures can
lead to severe consequences, particularly in safety-critical
domains such as medical devices and automobiles. In addi-
tion, IoT-enabled objects are often connected to the Internet,
increasing their risk for external attacks. Thus, it is important
for IoT systems to have strong security guarantees. Some
of the security challenges IoT systems face include the
need for lightweight cryptographic algorithms and secure
communications protocols. In practice, security mechanisms
are implemented in a software stack on IoT devices. This
software stack needs to (i) provide security mechanisms cor-
rectly, and (ii) faithfully execute application logic, without
being circumvented by attackers. Software vulnerabilities
may allow external attackers to circumvent these security
measures: over 250 vulnerabilities were discovered in the
top 10 IoT devices in use today in a recent study [1].

We propose BUFS, a bottom-up and foundational ap-
proach for verifying the security of the software stack in
an IoT system, to provide guarantees for how the software
is secure. BUFS is a secure-by-construction approach that
verifies that IoT software is secure in a bottom-up and
foundational way. By bottom-up, we mean that the security
of software needs to be established at every level of ab-
straction: at the OS, implementation, and functional design
levels. By foundational, we mean that the security of IoT
software should be verified using formal techniques, and
that the artifacts that are verified should be the actual ones
in use, rather than high-level designs. The BUFS approach
provides tools for aiding and automating parts of the soft-
ware development and verification process for programmers,
and is intended for safety-critical domains, where high-
assurance is required. Current techniques for achieving high-
assurance in software are piecemeal and not bottom-up: they
verify security properties at single levels of abstraction (e.g.,
verifying the correctness of a single protocol implementation
[2] while assuming implementation-level security properties
such as Control-Flow Integrity (CFI) [3]). In BUFS, we plan
to verify the security of the actual (source and machine) code
that will run on IoT devices.

II. THREAT MODEL

AR

App Logic

Implementation ——
0s

Public/Private Clouds
(e.g., utility provider)

App Logic
AT Exchange of data
and computation
between cloud and
< T 7ot devices™

Trusted
Domain
. App Logic

IoT Hub :
= 0s

Devices

loT
Devices

App Logic
[Implementation |

App Logic
|Implementation |
[oF]

Sensors

Figure 1. Threat Model: Green = trusted domain; Yellow = can be secured
with other techniques; Red = untrusted components we need to secure.
Trusted and untrusted components may communicate with each other.

Figure 1 illustrates our threat model for a typical IoT
system, which consists of: (i) a trusted domain with sensors
and IoT devices under a single administrative domain (e.g.,
in a single home, or in a single automobile), and (ii) an un-
trusted domain connected via the public Internet, including
any cloud-based provider. We assume that physical security
holds in the trusted domain, where: (i) IoT devices connect
to sensors (e.g., embedded devices), (ii) IoT hub devices
consolidate data from other IoT devices, e.g., smartphones,
and may form a compute fog [4] or edge-cloud [5], and (iii)
the gateway device provides connectivity to the Internet. The
IoT software stack consists of the OS, the implementation of
the application logic, and the application logic itself. Note
that we consider the application logic to be separate from its
implementation: while the design of the application logic can
be separately verified, vulnerabilities can still be introduced
due to implementation bugs. We assume the OS is secure,
as there are verified microkernels [6] we can leverage.

While IoT hub devices and IoT devices are trusted in
our threat model, IoT systems are likely to interact with
the cloud (e.g., utility company or software provider). Even
if IoT devices are not addressable externally (e.g., they
have local IP addresses), the software on IoT devices may
receive commands from application logic in the cloud. These
inputs may be malicious or malformed, which may allow IoT
applications in the trusted domain to be hijacked.

III. BOTTOM-UP SOFTWARE SECURITY

orrectness ies to Artifacts to prove properties for
be proved

Functional Access Control
Correctness C

‘
1
1
1
1
1
Protocol Correctness / Security !
1
1
1
1
1
1

v

]]

Protocol implementations, e.g.,
OpenSSL

App level

Protocol level

Implementation T y A 1

level Control-Flow Integrity : :

T ! !

P VN .t H] .

+ Proofs of L R fl

e s eeesessssssesesftcacscascsacew=
Figure 2. Bottom-up construction of security properties (left), and how

these properties are proved in the software artifacts (right).

Figure 2 illustrates the bottom-up aspect of our BUFS
approach, with examples of security properties at each level
of abstraction. We break down the high-level goal of soft-
ware security for IoT into specific security properties at each
level of abstraction. In this example, at the implementation
level, the machine-code needs to have Control-Flow Integrity
[3] so that the software’s execution cannot be circumvented
by malicious or malformed inputs. At the protocol level,
implementations of secure communications protocols, such
as SSL, must behave according to the protocol specification
(assuming that the protocol is secure). Finally, at the applica-
tion level, the application and its access control mechanisms
must correctly perform their intended functions.

Proofs of security for protocol implementations comprise
of both proofs of implementation-level properties such as
CFI, as well as protocol correctness. Proofs of security
for application code must comprise implementation-level
properties, and functional and access control correctness.
Thus, BUFS ensures that the security guarantees at each
level of abstraction are built up in a bottom-up manner.

IV. FOUNDATIONAL AND COMPOSITIONAL SECURITY

Source- Protocol Functional Access Control
code with Extract C C C

in-lined specs. Specification Specification Specification

specs.

E.g., assert statements, finite state machines
NI L ~ J
: Proof of Proof of Proof of |\
i me::::) %J;:?&":;Z:L‘Y} LPrntoct!l% :unclional
Machine Eg, Predicate E.g, Software E o 4
code abstraction Model Checkeg = = = - e == e -) >
] Order of verification
Automated Proof of AN 1
\/-\ CFI Proof CFI Safety o
Interactive Theorem Prover
(with proof automation)
Figure 3. Achieving bottom-up security foundationally from software

artifacts (“Specs” = specifications).

Figure 3 illustrates the foundational aspect of our BUFS
approach. First, at the implementation level, automated
proofs of CFI are generated given the machine-code of the
software using interactive theorem proving (ITP), augmented
with proof automation. Then, at the protocol and appli-
cation levels, specifications of properties such as protocol

correctness, functional correctness of the application logic,
and correctness of applications’ access control mechanisms,
are extracted from the software artifact, such as via in-lined
assertion statements, or constructed manually using models
such as finite state machines. Next, a model of the software’s
behavior is extracted from its source-code, and techniques
such as software model checking (SMC) are used to verify
that the software’s specifications are met by its source-
code implementation. BUFS aims to provide tools at the
implementation-level for automated CFI proofs of machine-
code via ITP, and tools at the source-code level for model
extraction and property verification via SMC.

V. INITIAL RESULTS AND FUTURE WORK

We have developed a logic framework for automatically
proving safety properties [7] such as CFI in ARM machine-
code using the HOL4 theorem prover that also supports
realistic embedded software features e.g., hardware I/O and
system calls [8]. We have also developed a technique for
enforcing CFI using source-code safety-checks [8] that can
be proved automatically using our logic framework.

In future, we plan to: (i) develop techniques for program-
mers to specify program properties such as functional cor-
rectness and access control correctness in their source-code
for automatic extraction, and (ii) adapt current SMC verifica-
tion techniques for programs with source-code specifications
inserted using our technique. We plan to demonstrate the
foundational aspect of BUFS by verifying our security
properties in a bottom-up way on the actual deployed source-
code/machine-code artifacts of IoT software.

REFERENCES

[1] “HP Study Reveals 70 Percent of Internet of Things Devices
Vulnerable to Attack,” 2014, http://bit.1y/2943Cyp.

[2] S. Chaki and A. Datta, “ASPIER: An Automated Framework
for Verifying Security Protocol Implementations,” in [EEE
CSF, 2009.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow Integrity,” in ACM CCS, 2005.

[4] F. Bonomi et al., “Fog Computing and Its Role in the Internet
of Things,” in ACM SIGCOMM MCC, 2012.

[5] U. Drolia et al., “The Case for Mobile Edge Clouds,” in /EEE
UIC, Dec 2013.

[6] G. Klein et al., “sel.4: Formal verification of an OS kernel,”
in SOSP, Oct 2009.

[7]1 J. Tan, H. Tay, R. Gandhi, and P. Narasimhan, “AUSPICE:
Automatic Safety Property Verification for Unmodified Exe-
cutables,” in VSTTE, 2015.

[8] J. Tan, H. Tay, U. Drolia, R. Gandhi, and P. Narasimhan, “PC-
FIRE: Towards Provable Preventative Control-Flow Integrity
Enforcement for Realistic Embedded Software,” in EMSOFT,
2016.

