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Abstract There has been much recent work on summarization and

Given a large stream of users clicking on web sites, hd@ttern discovery for web-click data. We formulate the web-
can we find trends, patterns and anomalies? We h&ligk data as a collection of time stamped entries, (Lser-
developed a novel methodyindMine and its fine-tuning id, url, timestamp. The goal is to find anomalies, patterns,
sibling, WindMine-part to find patterns and anomalies irand periodicity for such datasets in a systematic and siealab
such datasets. Our approach has the following advanta§é®. Analyzing click sequences can help practitioners in
(a) itis effective in discovering meaningful “building lks” Many fields: (a) ISPs would like to undertake provisioning,
and patterns such as the lunch-break trend and anomafiélacity planning and abuse detection by analyzing histori
(b) it automatically determines suitable window sizes, a@! traffic data; (b) web masters and web-site owners would
(c) it is fast, with its wall clock time linear on the duratiorlike to detectintrusions or target designed advertisesieyt
of sequences. Moreover, it can be made sub-quadratic®¢estigating the user-click patterns.
the number of sequenceaaindMine-par}, with little loss of A common approach to analyzing the web-click tuples
accuracy. is to view them as multiple event sequences, one for each
We examine the effectiveness and scalability by p&@mmon URL. For example, one event sequence could be
forming experiments on 67 GB of real data (one billion click{Alice, 1), (Bob,2), ... }, i.e., Alice hits ur} attime 1 sec.,
s for 30 days). Our proposatlindMinedoes produce con-and Bob at 2 sec. Instead of studying this at the individual
cise, informative and interesting patterns. We also sha tglick level, our approach is designed to find patterns at the
windMine-partcan be easily implemented in a parallel grggregation level to allow us to detect common behavior
distributed setting, and that, even in a single-machine @t repeated trends. Formally, these event sequences are
ting, it can be an order of magnitude faster (up to 70 timedygregated into multiple time series faz websites (or

than the plain version. URLs). Each of them counts the number of hits (clicks)
per At = 1 minute and has an aligned duration of
1 Introduction Given such a dataset with multiple time series, we would

Many real applications generate log data at different tirH%e to Ifjevellzop a metrlwodhtolf;nd mterlest-mg[;:.patterlnshand
stamps, such as web click logs and network packet lo meab'esl'.- kor exa:jm};) et ebe tmostpot n ,'gu_:_i j oyvsd
At every time stamp, we might observe a set of logs, ea web-click records from a business news site. The desire

consisting of a set of events, or time stamped tuples. qﬁtternsforthls particular datainclude (a) the adapywtes

many applications the logging rate has increased gre ﬁyg at a daily or a wgekly level); (b) the spikes in th?
r&grnmg and at lunch time that some sequences exhibit;

with the advancement of hardware and storage technology. _

One big challenge when analyzing these logs is to hangféd (c) the fact that these spikes are only found on week-
such large volumes of data at a very high logging rate. S For a few number of sequenlces (eng. = 5), a
example, a search web could generate millions of IoggiH man could eye-ball them, and derive the above patterns.

entries every minute, with information of users and URL; € mining .task IS even mor((aj challlerll_lglng if the number cif h
As an illustration, we will use the web-click data as a rumﬁequences Increases tremendously. How can we accomplis

target scenario, however, our proposed method will work fgps task arL)Jt\c/)vmatl_tlzlalg folr tthotl;]se:nds or evendm|II|ton of
general datasets as we demonstrate experimentally. sequences< Ve will show fater that our proposed System can
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Figure 1: lllustration of trend discovery. (a) Original welick sequence (access count from a business news sitg). (b
Weekly trend, which shows high activity on weekdays for hass purposes. (c) Weekday trend, which increases from
morning to night and reaches peaks at 8:30 am, noon, and 810 Weekend trend, which is different from the weekday
trend pattern.

automatically identify these patterns all at once, and How i Dimensionality reduction for time-series data: Sin-
solves scalably. gular value decomposition (SVD) and principal component
analysis (PCA) [7, 28] are commonly used tools to discov-
Contributions Our main contribution is the proposal okr hidden variables and low rank patterns from high dimen-
WindMine which is a novel method for finding patterns in g8ional data. In contrast to the traditional SVD for batch da-
large collection of click-sequence datdindMineautomat- ta, Yi et al. [30] proposed an online autoregressive model to
ically detects daily periodicity (unsurprisingly), hugeth- handle multiple sequences. Gilbert et al. [4] used wavelet-
time spikes for news-sites as shown in Figure 1 (reasonaklép compress the data into a fixed amount of memory by
in retrospect), as well as additional, surprising patteAts keeping track of the largest Haar wavelet coefficients. Pa-
ditional contributions are as follows: padimitriou et al. [17] proposed the SPIRIT method to dis-

) . cover linearly correlated patterns for data streams, witnere
1. Effective We applyWindMineto several real datasets,in idea was to calculate the SVD incrementally. Sun et

spanning 67 GB. Our method finds both expected agd (23] took a step forward by extending SPIRIT to handle
surprising patterns, completely on its own. data from distributed sources, so that each node or sensor
2. Adaptive We propose a criterion that allows Us Qeyice could calculate local patterns/hidden variabléschy
choose the best window size of trend patterns from thg, ey summarized later at a center node. Our proposed
sequence dataset. The choice of window sizes is dajngmine is related to a scheme for partitioning the data,
driven and fully automatic. o ~ calculating them individually and finally integrating thém
3. Scalable The careful design oiVindMinemakes it e eng. Moreover, our method could detect patterns and
linear on the number of time-ticks in terms of wall clock , s malies even more effectively.
time. In fact, it is readily parallelizable, which means Indexing and representation: Our work is also re-
that it can also scale well with a large number of sit§geq 10 the theories and methods for time-series reprasent
m. tion [15, 14, 22], and indexing [8, 21, 9, 2]. Various methods
The rest of the paper is organized as follows: Sectionhgve begn proposed for. representing t|.me—ser|(.es data using
. . ) .. shapes, including velocity and shape information for seg-
discusses related work. Section 3 introduces preliminary " . . L
enting trajectory [15]; symbolic aggregate approxinatio

concepts that are relevant to an understanding of this paEI T _ . ) . ; .
Sections 4 presents our proposed method, and Sectio §%X) [14] and its generalized version for indexing massive

introduces some useful applications of our method a%@ounts of data (ISAX) [22]. Keogh [8] proposed a search
evaluates our algorithms based on extensive experi}ne gthod for dynamic time warping (DTW). [21] proposed the
Section 6 concludes the paper E W method with successive approximations, refinements
' and additional optimizations, to accelerate “whole segaén
2 Related work matching under the DTW distance. Keogh et al. used unifor-
) m scaling to create an index for large human motion databas-
There are several pieces of work related to our approach,ég-[gl_ [2] presented SPIRAL, a fast search method for HM-

f:luding (@) dimensionglity reduction; (b,) time series imdeM datasets. To reduce the search cost, the method efficiently
ing; (c) pattern/trend discovery and outlier detection.



prunes a significant number of search candidates by apply-

ing upper bounding approximations when estimating likeli-

hood. Tensor analysis is yet another tool for modeling mul- Symbol Definition

tiple streams. Related work includes scalable tensor decom

position [10] and incremental tensor analysis [25, 24, 26].
Pattern/trend discovery: Papadimitriou et al. [18]

proposed an algorithm for discovering optimal local patter

s, which concisely describe the multi-scale main trends] [2

proposed BRAID, which efficiently finds lag correlations be-

tween multiple sequences. SPRING [19] efficiently and ac-

curately detects similar subsequences without deterigninin

window size. Kalman filters are also used in tracking pattern

s for trajectory and time series data [27, 13]. Other remote-

ly related work includes the classification and clusterifig o

time-series data and outlier detection. Gao et al. [3] psefdo

an ensemble model to classify time-series data with skewed

class distributions, by undersampling the dominatingsclas

and oversampling or repeating the rare class. Lee et al. [&8khn-D data pointk; := [€i1 ... i) with k-D projection

proposed the TRAOD algorithm for identifying outliers i;; = [bTx;...bI'x;]7, then this representation minimizes

a trajectory database. In their approach, they first pantitithe squared erroy, ||xi — %i||?. Furthermore, the princi-

the trajectories into small segments and then use both st directions are orthogonal, so the principal components

tance and density to detect abnormal sub-trajectoriess T@El,, 1 < j < k are, by construction, uncorrelated, i.e., if

paper mainly focuses on web-click mining as an applicatigi/) .— [y1.j,---,i,]T is the sequence of thieth principal

of our method, thus, our work is also related to topic discogomponent, thefy )Ty () = 0if j £ k.

ery for web mining. There has been a large body of work on

statistical topic models [5, 1, 16, 29], which uses a muking.2 Independent component analysisTo find the direc-

mial word distribution to represent a topic. These techesjuions of minimal entropy the well known fastICA algorith-

are also useful for web-click event analysis while our focus [6] requires us to transform the dataset into white space,

is to find local components/trends in multiple numerical sge., the dataset must be centered and normalized so that it

Table 1: Symbols and definitions.

Duration: number of time-ticks
Number of sequences
Window size
Number of subsequences
Number of components
Data sequence of length
Value of X attimet=1,...,n
Window matrix of X

= [a;;] Mixing matrix
Independent component

v CEM score ofw

O ok x>z 3=

quences. has unit variance in all directions. This may be achieve from
the eigenvalue decomposition of the covariance matrix (i.e
3 Background V- A-VT .= ¥ whereV is an orthonormal matrix con-
In this section we briefly introduce some necessary bagdlisting of the eigen vectors, ardis a diagonal matrix{ =
ground material. Table 1 is a list of symbols and their definfiag(A1, . .., A¢)). The matrixA~*/2 is a diagonal matrix
tions. with the elementd —'/2 = diag(\/1/X;, ..., /1/Xq). The

fastICA algorithm then determines a matiikthat contains
3.1 Principal component analysisGiven a collection of the independent components. This matrix is orthonormal in
n-dimensional vectorg; € R, ¢ = 1,2,...,m, the first white space but not in the original space. FastICA is an iter-

principal directiorb; € R" is the vector that minimizes theative method that find® = (b4, ...,bq) by optimizing the
sum of squared residuals, i.e., vectorsb; using the following updating rule:
(3.1)by := argmin|p_; Y _ |Ixi — (bb")xi[. (82) bi == E{y-g(b] -y)} — E{g'(b] -v)} - bs

i=1
The projection ofx; on by is the first principal componentwhere g(s) is a non-linear contrast function (such as
(PC)y;1 :=bi'x;,i=1,...,m. Note that, sincéby || = tanh(s)) andg’(s) = 4 4(s) is its derivative. We denote
1, we have(blblT)xi = (blTxi)bl = y;1b1 = Xi, the expected value witi{...}. After each application of
wherex; is the projection ofy; ; back into the originah-D the update rule t@;, ..., b,, the matrixB is orthonormal-

space. That isx; is a reconstruction of the original meaized. This is repeated until convergence. The de-mixing ma-
surements from the first PG ;. More generally, PCA will trix A~!, which describes the overall transformation from
producek vectorsby, bs, . .., by, such that, if we representthe original data space to the independent components, can



be determined as | PC1 ) 4

° A b IC1
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and, sincel” and B are orthonormal matrices, the determi-  o° oo of oo
nant of A~ is simply the determinant of /2, i.e, o 8°° b oo
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(3.4) det(A™) = [ V1/x
; A pc2
1<i<d
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4 Proposed Method

4.1 Problem definition Web-log data consist of tuples of 19uré 2: PCA vs ICA. Note that PCA vectors go through
the form (user-id, url, timestamp) We turn them into emPty space;_ICA/WmdMlne components snap on the natu-
sequencex, ..., X.,, one for each URL of interest. Weral lines (leading to sparse encoding).

compute the number of hits pést= 1 minute (or second),

and thus we haven sequences of duratiom. One of the

sequencesy, is a discrete sequence of numbérs,, ..., 4.2 Multi-scale local component analysis~or a few time
Zt, ..., T, }, Wherez, is the most recent value. sequences, a human could eye-ball them, and derive the

Our goa| is to extract the main Components of C|icﬁbove patterns. But, how can we accompIiSh this automat-

sequences, to discover common trends, hidden pattei¢ally for thoqsa_nds of sequences? The first idea would be
and anomalies. As well as the components of the entifeperform principal component analysis (PCA) [7], as em-
sequences, we focus on components of lengto capture Ployed in [11]. However, PCA and singular value decom-

local trends. We now define the problems we are trying @sition (SVD) have pitfalls. Given a cloud efD points
solve and some fundamental Concepts_ (Sequences withe time-tiCkS), PCA will find the best line

that goes through that cloud; and then the second best line
PROBLEM 1. (LOCAL COMPONENT ANALYSIS) Given m (orthogonal to the first), and so on. Figure 2 highlights this
sequences of duration and window sizew, find the sub- pitfall: If the cloud of points looks like a pair of scissors,
sequence patterns of lengtihthat represent the main com-then the first principal component will go in tieenptyarea
ponents of the sequences. marked "PC1", and the second principal component will be
on the equally empty area that is perpendicular to the first
The window sizew is given in Problem 1. However,PC.

with real datauw for the component analysis is not typical-

ly known in advance. Thus the solution has to handle sd%PPROACHl' We introduce independent component analy-
sequences of multiple window sizes. This gives rise to akv (ICA) for data mining of numerical sequences.

important question: whenever the main components of the |nstead of using PCA, we propose employing ICA [6],
‘best’ window size are extracted from the sequences, we g¥o known aglind source separatian ICA will find the
pect there to be many other components of multi-scale Wifirections marked IC1 and IC2 in Figure 2 exactly, because
dows, which could potentially flood the user with useless ifi-qoes not require orthogonality, but needs a stronger con-
formation. How do we find the best window size automaigition, namely, independence. Equivalently, this comoditi
cally? The full problem that we want to solve is as followsyesults in sparse encoding: the points of our initial cloud
will have a sparse representation in the new set of (non-

PROBLEM 2. (CHOICE OF BEST WINDOW SIZ§ GiVen m  grthogonal) axes, that is, they will have several zeros.
sequences of duration, find the best window size and

the subsequence patterns of lengtthat represent the main EXAMPLE 1. Figure 3 shows an example of component
components of the sequences. analysis. The sample dataset includes three sequences:
(1) sinusoidal waves with white noise, (2) large spikes
An additional question relates to what we can do in tlvdth noise, and (3) a combined sequence. We compute
highly likely case that the users need an efficient solutitimee components each for PCA and ICA, from the three
while in practice they require high accuracy. Thus, owriginal sequences. Unlike PCA, which is confused by
final challenge is to present a scalable algorithm for thieese components, ICA recognizes them successfully and
component analysis. separately.



window approach. We propo$&indMinefor local compo-
nent analysis.

-

DEFINITION 2. (WindMing Given m sequences of dura-
tion n, and a window sizev, the local independent com-
Source #1 Source #2 Source #3 ponents are computed from thé x w window matrix of the
m sequences, whefd = m - [n/w].

The size of the local components typically depends on
the given datasets. Our methdfindMine handles multi-
scale windows to analyze the properties of the sequences.

L
i

Sequence #1 Sequence #2 Sequence #3
(Sources #1 & #3) (Sources #2 & #3) (Mix of all 3 sources) APPROACH3. We introduce a framework based on multi-
scale windows to discover local components.

Starting with the original sequenc¢sXy, ..., X,, },
we divide each one into subsequences of lengtbonstruct
their window matrixX,,, and then compute the local compo-
nents fromX,,. We vary the window sizev, and repeatedly
extract the local componenis, with the mixing matrixA4,,
for various window sizes.

PC1

EXAMPLE 2. Figure 4 illustrates multi-scale local compo-
nent analysis usingVindMine. The total duration of a se-
guenceX is m = 8. We have four disjoint windows each of
lengthw = 2, thus X, is a4 x 2 matrix. We extract two local
IC1 IC2 IC3 components fow = 2 in this figure.

S

Figure 3: Example of PCA and ICA components. Top row:3 CEM criterion: best window size selectionThus far,
sources; second row: sequences that are linear combisatip8 have assumed that the window size was given. The
of the three sources; 3rd row: the sources recovered by P%ﬁéstion we address here is how to estimate a good window
4th row: the sources recovered by ICA. Notice how mudze automatically when we have multiple sequences. We
more clear is the separation of sources that ICA achievgguld like to obtain a criterion that will operate on the
PCA suffers from the 'PCA confusion’ phenomenon. collection of subsequences, and dictate a good number of
subsequence lengthfor the local component analysis. This
criterion should exhibit a spike (or dip) at the “correctlva
In the preceding discussion we introduced ICA araf w. Intuitively, our observation is that if there is a trend of
showed how to analyze entire full length sequences to obtkngthw that frequently appears in the given sequences, the
their ‘global’ components. We then describe how to find ttemmputed local component is widely used to represent their
local components using ICA. window matrixX,,. We want to find the “sweet spot” fas.
. . We therefore propose using the mixing matry, to
APPROACH2. We propose applying a short-window apgqomnte the criterion for selecting the window size. Notice
proach to ICA, which is a more powerful and flexible agp ¢ straightforward approaches are unsuitable, bechaye t
proach for component analysis. are greatly affected by specific, unpopular components. For

DEFINITION 1. (WINDOW MATRIX) Given a sequence example, if we summed up the weight values of each column
—{n 2, } and a window sizev, the window matrix of the mixing matrix and then chose the component with the
- LRSS | n 1

of X, X isa Mn/w] x w matrix, in which thei-th row is { hig_he_st value, the component would be used to r_epresent
a limited number of subsequences. Our goal boils down
to the following question:What function ofw reaches an
When we haven sequences, we can locally analyzextreme value when we hit the 'optimal’ number of window
their common independent components using the shaizesw,,:? It turns out that ‘popular’ (i.e., widely used)

I(i—l)w+l! e Tiw }
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Figure 4: lllustration ofVindMinefor window sizew = 2. It creates a window matrix of 4 disjoint windows, and themléin
their two major trends/components.

components are suitable for selection as local components Once we obtair,, for every window size, the final step
that capture the local trends of the sequence set. is to choosew,,;. Thus, we propose

APPROACH4. We introduce a criterion for window size(4.8) Wopt = argmax C.
selection, which we compute from the entropy of the weight v

values of each component in the mixing matrix. 4.4 Scalable algorithm: WindMine-part In this subsec-

o L . tion we tackle an important and challenging question, name-
We propose a criterion for estimating the optimal num- .
Iy how do we efficiently extract the best local component

ber ofw for a given sequence set. The idea is to compute Q‘Pr%m large sequence sets? In Section 4.2 we present our first

probability histogram of the weight parameters of each com-

tin the mixi i dth e th ; a§proach for multi-scale local component analysis. We call
g?gzzh |:Omz(;1r11|;<|nr;g matrix, and then compute the entropy. approachVindMine-plait.

The details are as follows: For a window sizewe pro-
vide the mixing matrix4,, = [a; ;] ( =1,..,M;j=1...k)
of given sequences, whefeis the number of components
and M is the number of subsequences. Optionally, we nor-

Algorithm 1 WindMine-parfw, { X1, ..., X:n})
for eachsequenceX; do

Divide X; by [m/w] subsequences

Append the subsequences to the window makfix

malize the weight values for each subsequence. end for
for levelh = 1to H do
2 ~
(4.5) aj ;= i/ Z Qg Initialize X ew
J

Divide the subsequence set&finto [M/g] groups
for group numbey = 1to [M/g] do
Create thej-th submatrixS; of X
Compute the local components 6f with their mixing
matrix A
Compute the CEM score of each component frdm
Append the best local component(s)XQ,c.,
Intuitively, P; shows the size of thgth component’s contri- end for
bution to each subsequence. Since we need the most popularX = Xnew
component among components, we propose using the en- M =[M/g]
tropy of the probability histogram for each component. end for )
Therefore, our proposed criterion, which we call com- Report the best local component(s)An
ponent entropy maximization (CEM), or the CEM score, is

We then compute the probability histogran®; =
{p1,j,---,pm,;} for thej-th component.

(4.6) Pij = Haé,jl\/z a1

given by Although important, this approach is insufficient to
) provide scalable processing. What can we do in the highly

4.7) Cuj= _szi,j log pi.j, likely case that the users need an efficient solution for
v large datasets while in practice they require high acciracy

whereC,, is the CEM score of thg-th component for the To reduce the time needed for local component analysis

window sizew. We want the best local component of length
w that maximizes the CEM score, that(s,, = max; C,, ;. TWe use WindMiné as a general term for our method and its variants.



and overcome the scalability problem, we present a névil Effectiveness
algorithm,WindMine-part

5.1.1 Mining Web-click sequencedn this subsection we
APPROACHS5. We introduce a partitioning approach forgescribe some of the applications for whishindMine
analyzing a large number of subsequences hierarchicallyoves useful. We present case studies of real web-click
which yields a dramatic reduction in the computation costgatasets to demonstrate the effectiveness of our approach i

. . . iscovering the common trends for each sequence.
Specifically, instead of computing local components dq 9 g

rectly from the entire set of subsequences, we propose %%'demand TVThis dataset is from th&ndemand T\&er-

titioning the original window matrix into submatrices, and. . .
. . Vice of 13,231 programs that users viewed in a 6-month pe-
then extracting local components each from the submatrlcr(iegd (from May 14th to November 15th, 2007). The data
DEFINITION 3. (MATRIX PARTITIONING) Given awindow "€cordthe use ddndemand Ty 109,474 anonymous user-
matrix X, and an integery for partitioning, thej-th sub- S- It contains a list of attributes (e.g., content ID, theedhe
matrix of X is formed by taking rows frorfyj — 1)g + 1 to user watched the content, and the ID of the user who watched
; the content).
Figure 5 (a) shows the original sequence on@hele-
Our partitioning approach is hierarchical, which meamsand T\dataset. It exhibits a cyclic daily pattern. There are
that we reuse the local components of the lower level fanomaly spikes each day at about lunch time. Figure 5 (b)-
local component analysis on the current level. (c) show thatWindMine successfully captures the weekly
. . . ~and daily patterns from the dataset. It can be easily used
DEFINITION 4. (WindMine-par} Given a window matrix 14 canture information for arbitrary time scales. For compa
on theh-.th level, we extrack local components from eaChison, Figure 5 (d)-(e) show the best local patterns using the
submatrix that hag local components of the¢h — 1)-th  pca technique. As shown in these figures, it is not robust a-

level. Thus, the window matrix -on theth level includes gainst noise and anomaly spikes, and it cannot produce good
M - (k/g)"~* local components (i.eM - (k/g)"~! rows).  rasyits.

After extracting the local components from the origin . . . .
9 P 9 %ebCIlckTms dataset consists of the web-click records

window matrix on the first leveh = 1, we create a new . . .
. . from www.goo.ne.jpobtained over one month (from April
window matrix from the components Af= 1 on the second . . .
1st to 30th, 2007). It contains one billion records with 67 GB
level (» = 2), and then compute the local components .
. . of storage. Each record has 3 attributes: user ID (2,582,252
h = 2. We repeatedly iterate this procedure for the upper
. : . o nonymous users), URL group ID (1,797 groups), and the
levels. Algorithm 1 provides a high-level description o . .
WindMine-part time stamp of the click. There are various types of URLS,
P such as “blog”, “news”, “health”, and “kids”.
Figures 6, 7 and 8 show the effectiveness of our method.

) ] ) _ Specifically, Figures 6 and 7 show the local components
To evaluate the effectiveness BfindMine we carried out of the Q & A site and job-seeking site. The left, middle

experiments on real datasets. We conplucted our experim%ﬁﬁ fight columns in Figure 6 show the weekly, daily, and
on an Int.el Cpre 2 Duo 1.86GHz with 4GB of MeMONYyeekend patterns, respectively. Our method identifies the
and run.mng. LII’IUX: Note that all components/patterns pr&é”y period, which increases from morning to night and
se-nted.ln this sect!on are generated by t.he scalable VerS8ches a peak. This trend appears strongly, especially on
WindMine-part while both versions provide useful resultgqqends. In contrast, Figure 7 describes “business” srend
for the applications. _ Starting from Monday, the daily access decreases as the
The experiments were designed to answer the followiR@ueyend approaches. At 9:00 am, workers arrive at their

questions: office, and they look at the job-seeking website during atshor
1. How successful ivindMinein local component analy- Preak. Additionally, the right figure shows that there is a

Jg-

5 Experimental Results

sis? large spike during the lunch break.
2. DoeswindMinecorrectly find the best window size for ~ Figure 8 shows the local patterns of other websites. We
mining locally patterns? can observe interesting daily trends according to various

3. How doeswindMinescale with the number of subselifestyles.
quencesn in terms of computational time? (a) Dictionary: Figure 8 (a) shows the daily trend of the
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Figure 5: Original sequence and weekly and daily comporfen®ndemand TV(b) Note the daily periodicity, with NO

dist
and

inction between weekdays and weekends. (c) The maliy paftern agrees with our intuition: peaks in the morning
larger peaks in the evening, with low activity during thght. In contrast, PCA discovers trends that are not ag,clea

which suffer from the 'PCA confusion’ phenomenon.

(b)

(©

(d)

dictionary site. The access count increases from 8:(0@) Health: This is the main result of the healthcare site.
am and decreases from 11:00 pm. We consider this The result shows that the users rarely visit website late
site to be used for business purposes since this trend in the evening, which is indeed good for their health.

is strong on weekdays. . - . . .
¢ y () Diet: This is the main daily pattern of an on-line

Kids: Our method discovered a clear trend from an magazine site that provides information about diet,
educational site for children. From this figure, we can nutrition and fitness. The access countincreases rapidly
recognize that they visit this site after school at 3:00 pm.  after meal times. We also observed that the count is still
high in the middle of the night. We think that perhaps a

Baby: This figure shows the daily pattern of the website ) . : _
healthy diet should include an earlier bed time.

as regards pregnancy and baby nursery resources. The
access pattern shows the presence of several peaks yntil L _ .
p- S P , p . gfz Generalization of WindMine We demonstrate the
late evening, which is very different from the kids site. ) - .
o . L effectiveness of our approach in discovering the trends for
This is probably because the kids site is visited bt or tvpes of SeqUENces
elementary school children whereas the main users olf' yp qu '

) . . -
the baby site will be their parents, rather than bables'AutomobiIeThis dataset consists of automobile traffic count

Weather news: This website provides official weathfar a large, west coast interstate. The top row of Figure 9 (a)
observations, weather forecasts and climate informehibits a clear daily periodicity. The main trend repea a
tion. We observed that the users typically check thigindow of approximately 4000 timestamps. Also, during
site three times a day. We can recognize a patterneaich day there is another distinct pattern of morning and
behavior. They visit this site in the early morning andfternoon rush hours. However, these peaks have distinctly
at noon before going outside. In the early evening, thdifferent shapes: the evening peak is more spread out, the
check their local weather for the following day. morning peak is more concentrated and slightly sharper.
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Figure 6: Frequently used components for the Q & A sitévebClick (a) Major weekly trend/component, showing similar
activity during all 7 days of the week. (b) Major daily trendete the low activity during sleeping time, as well as the dip
at dinner time. (c) Major weekday pattern - note the spikeénduunch time.
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Figure 7: Frequently used components for the job-seekirgéWebClick (a) Major weekly trend, showing high activity
on weekdays. (b) Major daily pattern. (c) Daily pattern, gbhis mainly applicable to weekdays.

The bottom row of Figure 9 (a) shows the output unspotsWe know that sunspots appear in cycles. The top
WindMinefor the Automobiledataset. The common trendow of Figure 9 (c) indicates the number of sunspots per
seen in the figure successfully captures the two peaks dagt. For example, during one 30-year period within the so-
also their approximate shape. called “Maunder Minimum?”, only about 50 sunspots were

observed, as opposed to the normal 40,000-50,000 spots.
TemperatureWe used temperature measurements (degr&ée average number of visible sunspots varies over time,
Celsius) in the Critter data set, which comes from smatlcreasing and decreasing in a regular cycle of between 9.5
sensors within several buildings. In this dataset there aied 11 years, averaging about 10.8 yéars
some missing values, and it exhibits a cyclic pattern, with WindMinecan capture bursty sunspot periods and iden-
cycles lasting less than 2000 time ticks. This is the sanify the common trends in thBunspotlataset. The bottom
dataset that was used in our previous study [20]. row in Figure 9 (c) shows that our method provides an accu-

Our method correctly captures the right window for theate picture of what typically happens within a cycle.
main trend and also an accurate picture of the typical dai-
ly pattern. As shown in Figure 9 (b), there are similar pa-2 Choice of best window sizé/Ne evaluate the accuracy
terns that fluctuate significantly with the weather condisio of the CEM criterion for window size selection. Figure 10
(which range from 17 to 27 degrees). ActuaWindMine (a) presents the CEM score f@ndemand TVfor various
finds the daily trend when the temperature fluctuates betwegndow sizes. This figure shows th@tindMinecan deter-
cool and hot.

Zhttp://csepl0.phys.utk.edu/astr162/lect/sun/ssdytie
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Figure 10: CEM scores fadndemand TYAutomobile TemperatureandSunspat

mine the best window size by using the CEM criterion. As  method for breaking sequences into a few, fundamen-
expected, our method indeed suggests that the best window tal ingredients (e.qg., spikes, cycles).
is daily periodicity. It identifieav = 1430 as the best win-
dow size, which is close to the one-day duratien£ 1440).
Due to the window size estimation, we can discover the daily
pattern forOndemand T\{see Figure 5 (c)).

Figure 10 (b)-(d) show the CEM scores per window el-3. We proposed a criterion that allows us to choose the best
ement forAutomobile TemperatureandSunspatrespective- window sizes from the data sequences.
ly. Note that theTemperaturedataset includes missing val-
ues and th&unspotataset has time-varying periodicity. As
shown in these figured)VindMine successfully detects the
best window size for each dataset, which corresponds to the
duration of the main trend (see the figures of the bottom row
in Figure 9).

2. We described a partitioning version, which has the same
accuracy, but scaldimearly over the sequence duration,
and near-linearly on the number of sequences.

4. We appliedWindMineto several real sets of sequences
(web-click data, sensor measurements) and showed
how to derive useful information (spikes, differentiation
of weekdays from weekends)WindMineis fast and
practical, and requires only a few minutes to process
67 GB of data on commodity hardware.

5.3 Performance We conducted experiments to evaluate
the efficiency of our method. Figure 11 compandadMine-
plain and the scalable versiolyindMine-part in terms of
computation time for different numbers of subsequencefé] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
The wall clock time is the processing time needed to captu aliocétion.'Jo;Jrn.al of, Machin;e Learnind Research:993—
the trends of subsequences. Note that the vertical axis is 1022, 2003.

logarithmic. We observed thavindMine-partachieves a B

) C o ) . 2] Y. Fujiwara, Y. Sakurai, and M. Yamamuro. Spiral: Effiote
dramatic reduction in computation time that can be upto 70" ;4 exact model identification for hidden markov models.

times faster than the plain method. In KDD Conference pages 247-255, Las Vegas, Nevada,
Figure 12 shows the wall clock time as a function of  August 2008.

durationn. The plots were generated usiigebClick Al-  [3] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu. Classifyingda
though the run-time curves are not so smooth due to the con- streams with skewed class distributions and concept drifts
vergence of ICA, they reveal the almost linear dependence Internet Computing12(6):37—49, 2008.

of the durationn. As we expectedyWindMine-partidenti- [4] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Stissi
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