
Ripple: Profile-Guided Instruction Cache
Replacement for Data Center Applications

Tanvir Ahmed Khan∗ Dexin Zhang† Akshitha Sriraman∗ Joseph Devietti‡

Gilles Pokam§ Heiner Litz¶ Baris Kasikci∗
∗University of Michigan †University of Science and Technology of China ‡University of Pennsylvania

§Intel Corporation ¶University of California, Santa Cruz
∗{takh, akshitha, barisk}@umich.edu †zhangdexin@mail.ustc.edu.cn
‡devietti@cis.upenn.edu §gilles.a.pokam@intel.com ¶hlitz@ucsc.edu

Abstract—Modern data center applications exhibit deep soft-
ware stacks, resulting in large instruction footprints that fre-
quently cause instruction cache misses degrading performance,
cost, and energy efficiency. Although numerous mechanisms have
been proposed to mitigate instruction cache misses, they still
fall short of ideal cache behavior, and furthermore, introduce
significant hardware overheads. We first investigate why existing
I-cache miss mitigation mechanisms achieve sub-optimal perfor-
mance for data center applications. We find that widely-studied
instruction prefetchers fall short due to wasteful prefetch-induced
cache line evictions that are not handled by existing replacement
policies. Existing replacement policies are unable to mitigate
wasteful evictions since they lack complete knowledge of a data
center application’s complex program behavior.

To make existing replacement policies aware of these eviction-
inducing program behaviors, we propose Ripple, a novel software-
only technique that profiles programs and uses program context
to inform the underlying replacement policy about efficient
replacement decisions. Ripple carefully identifies program con-
texts that lead to I-cache misses and sparingly injects “cache line
eviction” instructions in suitable program locations at link time.
We evaluate Ripple using nine popular data center applications
and demonstrate that Ripple enables any replacement policy to
achieve speedup that is closer to that of an ideal I-cache. Specif-
ically, Ripple achieves an average performance improvement of
1.6% (up to 2.13%) over prior work due to a mean 19% (up to
28.6%) I-cache miss reduction.

I. INTRODUCTION

Modern data center applications are becoming increasingly
complex. These applications are composed of deep and complex
software stacks that include various kernel and networking
modules, compression elements, serialization code, and remote
procedure call libraries. Such complex code stacks often
have intricate inter-dependencies, causing millions of unique
instructions to be executed to serve a single user request.
As a result, modern data center applications face instruction
working set sizes that are several orders of magnitude larger
than the instruction cache (I-cache) sizes supported by today’s
processors [13, 46].

Large instruction working sets precipitate frequent I-cache
misses that cannot be effectively hidden by modern out-of-
order mechanisms, manifesting as glaring stalls in the critical
path of execution [60]. Such stalls deteriorate application
performance at scale, costing millions of dollars and consuming
significant energy [13, 95]. Hence, eliminating instruction

misses to achieve even single-digit percent speedups can yield
immense performance-per-watt benefits [95].

I-cache miss reduction mechanisms have been exten-
sively studied in the past. Several prior works proposed
next-line [9, 89, 92], branch-predictor-guided [60, 61, 82], or
history-based [25, 26, 31, 51, 59, 70, 77, 83] hardware instruction
prefetchers and others designed software mechanisms to
perform code layout optimizations for improving instruction
locality [17, 64, 67, 74–76]. Although these techniques are
promising, they (1) require additional hardware support to
be implemented on existing processors and (2) fall short of
the ideal I-cache behavior, i.e., an I-cache that incurs no
misses. To completely eliminate I-cache misses, it is critical
to first understand: why do existing I-cache miss mitigation
mechanisms achieve sub-optimal performance for data center
applications? How can we further close the performance gap
to achieve near-ideal application speedup?

To this end, we comprehensively investigate why existing
I-cache miss mitigation techniques fall short of an ideal I-
cache, and precipitate significant I-cache Misses Per Kilo
Instruction (MPKI) in data center applications (§II). Our
investigation finds that the most widely-studied I-cache miss
mitigation technique, instruction prefetching, still falls short
of ideal I-cache behavior. In particular, existing prefetchers
perform many unnecessary prefetches, polluting the I-cache,
causing wasteful evictions. Since wasteful evictions can be
avoided by effective cache replacement policies, we study
previous proposals such as the Global History Reuse Predictor
(GHRP) [7] (the only replacement policy specifically targeting
the I-cache, to the best of our knowledge) as well as additional
techniques that were originally proposed for data caches, such
as Hawkeye [40]/Harmony [41], SRRIP [43], and DRRIP [43].

Driven by our investigation results, we propose Ripple, a
profile-guided technique to optimize I-cache replacement policy
decisions for data center applications. Ripple first performs an
offline analysis of the basic blocks (i.e., sequence of instructions
without a branch) executed by a data center application,
recorded via efficient hardware tracing (e.g., Intel’s Processor
Trace [19, 58]). For each basic block, Ripple then determines
the cache line that an ideal replacement policy would evict
based on the recorded basic block trace. Ripple computes
basic blocks whose executions likely signal a future eviction

for an ideal replacement policy. If this likelihood is above a
certain threshold (which we explore and determine empirically
in §III), Ripple injects an invalidation instruction to evict the
victim cache line. Intel recently introduced such an invalidation
instruction — CLDemote, and hence Ripple can readily be
implemented on upcoming processors.

We evaluate Ripple in combination with I-cache prefetching
mechanisms, and show that Ripple yields on average 1.6%
(up to 2.13%) improvement over prior work as it reduces I-
cache misses by on average 19% (up to 28.6%). As Ripple is
primarily a software-based technique, it can be implemented on
top of any replacement policy that already exists in hardware.
In particular, we evaluate two variants of Ripple. Ripple-Least
Recently Used (LRU) is optimized for highest performance and
reduces I-cache MPKI by up to 28.6% over previous proposals,
including Hawkeye/Harmony, DRRIP, SRRIP, and GHRP. On
the other hand, Ripple-Random is optimized for lowest storage
overhead, eliminating all meta data storage overheads, while
outperforming prior work by up to 19%. Ripple executes only
2.2% extra dynamic instructions and inserts only 3.4% new
static instructions on average. In summary, we show that Ripple
provides significant performance gains compared to the state-of-
the-art I-cache miss mitigation mechanisms while minimizing
the meta data storage overheads of the replacement policy.

In summary, we make the following contributions:
• A detailed analysis of why existing I-cache miss mitigation

mechanisms fall short for data center applications
• Profile-guided replacement: A software mechanism that uses

program behavior to inform replacement decisions
• Ripple: A novel profile-guided instruction cache miss mit-

igation mechanism that can readily work on any existing
replacement policy

• An evaluation demonstrating Ripple’s efficacy at achieving
near-ideal application speedup.

II. WHY DO EXISTING I-CACHE MISS MITIGATION
TECHNIQUES FALL SHORT?

In this section, we analyze why existing techniques to
mitigate I-cache misses fall short, precipitating high miss
rates in data center applications. We first present background
information on the data center applications we study (§II-A).
We then perform a limit study to determine the maximum
speedup that can be obtained with an ideal I-cache for
applications with large instruction footprints (§II-B). Next,
we evaluate existing prefetching mechanisms, including next-
line prefetcher and FDIP [82], to analyze why these techniques
achieve sub-optimal performance (§II-C). Finally, we analyze
existing cache replacement policies, including LRU, Harmony,
DRRIP, SRRIP, and GHRP, to quantify their performance gap
with the optimal replacement policy (§II-D). This analysis
provides the foundation for Ripple, a novel prefetch-aware I-
cache replacement policy that achieves high performance with
minimal hardware overheads.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

20

40

Sp
ee

du
p

(%
)

Fig. 1: Ideal I-cache speedup over an LRU baseline without
any prefetching: These data center applications can gain on
average 17.7% speedup with an ideal I-cache with no misses.

A. Background on evaluated applications

We study nine widely-used real-world data center appli-
cations that suffer from substantial I-cache misses [55]—
these applications lose 23-80% of their pipeline slots due
to frequent I-cache misses. We study three HHVM applica-
tions from Facebook’s OSS-performance benchmark suite [5],
including drupal [103] (a PHP content management system),
mediawiki [104] (a wiki engine), and wordpress [105] (a
popular content management system). We investigate three
Java applications from the DaCapo benchmark suite [16],
including cassandra [1] (a NoSQL database used by compa-
nies like Netflix), kafka [102] (a stream processing system
used by companies like Uber), and tomcat [2] (Apache’s
implementation of Java Servlet and Websocket). From the Java
Renaissance [79] benchmark suite, we analyze Finagle-Chirper
(Twitter’s microblogging service) and Finagle-HTTP [3] (Twit-
ter’s HTTP server). We also study Verilator [4, 10] (used by
cloud companies for hardware simulation). We describe our
complete experimental setup and simulation parameters in §IV.

B. Ideal I-cache: The theoretical upper bound

An out-of-order processor’s performance greatly depends on
how effectively it can supply itself with instructions. Therefore,
these processors use fast dedicated I-caches that can typically
be accessed in 3-4 cycles [93]. To maintain a low access
latency, modern processors typically have small I-cache sizes
(e.g., 32KB) that are overwhelmed by data center applications’
multi-megabyte instruction footprints [11, 13, 46, 76] incurring
frequent I-cache misses. To evaluate the true cost of these
I-cache misses as well as the potential gain of I-cache
optimizations, we explore the speedup that can be obtained for
data center applications with an ideal I-cache that incurs no
misses. Similar to prior work [13, 55], we compute the speedup
relative to a baseline cache configuration with no prefetching
and with an LRU replacement policy. As shown in Fig. 1, an
ideal I-cache can provide between 11-47% (average of 17.7%)
speedup over the baseline cache configuration.

C. Why do modern instruction prefetchers fall short?

Prior works [13, 24, 55, 82] have proposed prefetching
techniques to overcome the performance challenge induced
by insufficiently sized I-caches. Fetch Directed Instruction

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

20

40

Sp
ee

du
p

(%
) FDIP+LRU FDIP+Ideal

Fig. 2: Fetch directed instruction prefetching (FDIP) speedup
over an LRU baseline without any prefetching: FDIP provides
13.4% mean speedup with LRU replacement policy. However,
with an ideal cache replacement policy FDIP can provide 16.6%
average speedup which is much closer to ideal cache speedup.

Prefetching (FDIP) [82] is the state-of-the art mechanism that is
implemented on multiple real-world processors [32, 78, 85, 97]
due to its performance and moderate implementation complex-
ity. Fig. 2 shows FDIP’s speedup over the baseline I-cache
configuration without any prefetching. Both FDIP and baseline
configurations use the LRU replacement policy. As shown,
FDIP+LRU provides between 8-44% (average of 13.4%)
speedup over the baseline. This represents a 4.3% performance
loss over the ideal cache speedup (17.7%).

To analyze why FDIP falls short of delivering ideal per-
formance, we equip the I-cache with a prefetch-aware ideal
replacement policy. In particular, when leveraging a revised
version of the Demand-MIN prefetch-aware replacement pol-
icy [41], we find that the speedup increases to on average 16.6%
falling short of the ideal cache by just 1.14%. In other words,
FDIP with prefetch-aware ideal replacement policy outperforms
FDIP with LRU by 3.16%. This observation highlights the
importance of combining state-of-the-art I-cache prefetching
mechanisms with better replacement policies.

To confirm the generality of our observation, we repeat
the above experiment with a standard Next-Line Prefetcher
(NLP) [92]. We find that the combination of NLP prefetching
with ideal cache replacement results in a 3.87% speedup over
the NLP baseline without a perfect replacement policy.

To understand the key reasons behind the near-ideal speedups
provided by the prefetch-aware ideal replacement policy, we
first briefly describe how the policy works and then summarize
the key reasons for near-ideal speedups [41]. We also quantify
the speedups that an ideal replacement policy can provide for
the data center applications we evaluate.
Prefetch-aware ideal replacement policy. Our ideal prefetch-
aware replacement policy is based on a revised version of
Demand-MIN [41]. In its revised form, Demand-MIN evicts
the cache line that is prefetched farthest in the future if there
is no earlier demand access to that line. If there exists no such
prefetch for a given cache set, Demand-MIN evicts the line
whose demand access is farthest in the future. We now detail
and quantify two observations that were originally made by
Demand-MIN: (1) evicting inaccurately prefetched cache lines

reduces I-cache misses and (2) not evicting hard-to-prefetch
cache lines reduces I-cache misses.
Observation #1: Early eviction of inaccurately prefetched
cache lines reduces I-cache misses. The ideal replacement
policy can evict inaccurately prefetched cache lines (i.e., ones
that will not be used) early, improving performance. Like most
practical prefetchers, FDIP inaccurately prefetches many cache
lines as its decisions are guided by a branch predictor, which
occasionally mispredicts branch outcomes. However, the ideal
replacement policy has knowledge of all future accesses, so
it can immediately evict inaccurately prefetched cache lines,
minimizing their negative performance impact. Across our nine
data center applications, the ideal cache replacement policy
combined with FDIP, provides 1.35% average speedup (out of
3.16% total speedup of FDIP+ideal over FDIP+LRU) relative
to an LRU-based baseline replacement policy (also combined
with FDIP) due to the early eviction of inaccurately-prefetched
cache lines.
Observation #2: Not evicting hard-to-prefetch cache lines
reduces I-cache misses. An ideal replacement policy can keep
hard-to-prefetch cache lines in the cache while evicting easy-to-
prefetch lines. Cache lines that cannot be prefetched with good
accuracy or at all, are considered hard-to-prefetch cache lines.
For example, FDIP is guided by the branch predictor. A cache
line that will be prefetched based on the outcome of a branch,
may not be prefetched if the predictor cannot easily predict
the branch outcome (e.g., due to an indirect branch)—in that
case, the line is hard-to-prefetch. Easy-to-prefetch cache lines
are cache lines that the prefetcher is often able to prefetch
accurately. For example, a cache line that FDIP can prefetch
based on the outcome of a direct unconditional branch is
an easy-to-prefetch cache line. Since the ideal replacement
policy has knowledge of all accesses and prefetches, it can (1)
accurately identify hard-to-prefetch and easy-to-prefetch lines
for any given prefetching policy and (2) prioritize the eviction
of easy-to-prefetch lines over hard-to-prefetch lines. Across
our nine data center applications, the ideal cache replacement
policy combined with FDIP, provides 1.81% average speedup
(out of 3.16% total speedup of FDIP+ideal over FDIP+LRU)
relative to an LRU-based baseline replacement policy (also
combined with FDIP) due to not evicting hard-to-prefetch lines.
Summary: Exploiting the above observations for an optimized
prefetch-aware replacement policy requires knowledge about
future instruction sequences that are likely to be executed. We
find that this information can be provided by the static control-
flow analysis based on execution profiles and instruction traces.
As described in §IV, Ripple leverages these analysis techniques
and performs well-informed replacement decisions in concert
with the prefetcher, to achieve near-ideal performance.

D. Why do existing replacement policies fall short?

In the previous section, we demonstrated that a prefetch-
aware ideal cache replacement policy can provide on average
3.16% speedup relative to a baseline LRU replacement policy.
In this section, we explore the extent to which existing
replacement policies close this speedup gap. As there exist

TABLE I: Storage overheads of different replacement policies
for a 32KB, 8-way set associative instruction cache that has
64B cache lines.

Replacement Policy Overhead Notes
LRU 64B 1-bit per line
GHRP 4.13KB 3KB prediction table, 64B predic-

tion bits , 1KB signature, 2B history
register

SRRIP 128B 2-bits× associativity
DRRIP 128B 2-bits× associativity
Hawkeye/Harmony 5.1875KB 1KB sampler (200 entries), 1KB

occupancy vector, 3KB predictor,
192B RRIP counters

only few works on I-cache replacement policies apart from
GHRP [7], we also explore data cache replacement policies
such as LRU [69], Hawkeye [40]/Harmony [41], SRRIP [43],
and DRRIP [43] applied to the I-cache.

GHRP [7] was designed to eliminate I-cache and Branch
Target Buffer (BTB) misses. During execution, GHRP populates
a prediction table indexed by control flow information to predict
whether a given cache line is dead or alive. While making
replacement decisions, GHRP favors evicting lines that are
more likely to be dead. Every time GHRP evicts a cache line,
it uses a counter to update the predictor table that the evicted
cache line is more likely to be dead. Similarly, GHRP updates
the predictor table after each hit in the I-cache to indicate that
that the hit cache line is more likely to be alive. GHRP uses
4.13KB extra on-chip metadata for a 32KB I-cache to primarily
store this prediction table.

Hawkeye/Harmony [40] was designed for the data cache,
specifically for the Last Level Cache (LLC). By simulating the
ideal cache replacement policy [15] on access history, Hawkeye
determines whether a Program Counter (PC) is “cache-friendly”
or “cache-averse”, i.e., whether the data accessed while the
processor executes the instruction corresponding to this PC
follows a cache-friendly access pattern [42] or not. Cache
lines accessed at a cache-friendly PC are maintained using
the LRU cache replacement policy, while lines accessed by
a cache-averse PC are marked to be removed at the earliest
opportunity. Harmony [41] is a state-of-the-art replacement
policy that adds prefetch-awareness to Hawkeye. It simulates
Demand-MIN [41] on the access history in hardware to further
categorize PCs as either prefetch-friendly or prefetch-averse.

SRRIP [43] was mainly designed to eliminate the adverse
effects of the scanning [14] cache access pattern, where a
large number of cache lines are accessed without any temporal
locality (i.e., a sequence of accesses that never repeat). SRRIP
assumes that all newly-accessed cache lines are cache-averse
(i.e., scans). Only when a cache line is accessed for a second
time, SRRIP promotes the status of the line to cache-friendly.

DRRIP [43] improves over SRRIP by considering thrashing
access patterns, i.e., when the working set of the application
exceeds the cache size [20]. DRRIP reserves positions for both
cache-friendly and cache-averse lines via set-dueling [80].

Fig. 3 shows the performance for different cache replacement
policies over the LRU baseline with FDIP. Tab. I shows the

metadata storage overheads induced by each replacement policy.
As shown, none of the existing replacement policies provide
any performance or storage benefits over LRU even though
the ideal cache replacement policy provides 3.16% average
speedup over LRU. We now explain why each of these prior
replacement policies do not provide any significant benefit.

GHRP classifies cache lines into dead or alive based on the
prediction table, to inform eviction decisions. One issue with
GHRP is that it increases the classification confidence in the
prediction table after eviction even if the decision was incorrect
(e.g., evicted a line that was still needed). We modified GHRP
so that it decreases the confidence in the prediction table after
each eviction. With this optimization, GHRP outperforms LRU
by 0.1%.

Hawkeye/Harmony predicts whether a PC is likely to access
a cache-friendly or cache-averse cache line. This insight works
well for D-caches where an instruction at a given PC is
responsible for accessing many D-cache lines that exhibit
similar cache-friendly or cache-averse access patterns. However,
for I-cache, an instruction at a given PC is responsible for
accessing just one cache line that contains the instruction itself.
If the line has multiple cache-friendly accesses followed by a
single cache-averse access, Hawkeye predicts the line as cache-
friendly. Therefore, Hawkeye cannot identify that single cache-
averse access and cannot adapt to dynamic I-cache behavior.
For I-cache accesses in data center applications, Hawkeye
predicts almost all PCs (more than 99%) as cache friendly and
hence fails to provide performance benefits over LRU.

SRRIP and DRRIP can provide significant performance
benefits over LRU if the cache accesses follow a scanning
access pattern. Moreover, DRRIP provides further support
for thrashing access patterns [20]. For the I-cache, scanning
access patterns are rare and hence classifying a line as
a scan introduces a penalty over plain LRU. We quantify
the scanning access pattern for our data center applications
by measuring the compulsory MPKI (misses that happen
when a cache line is accessed for the first time [34]). For
these applications, compulsory MPKI is very small (0.1-0.3
and 0.16 on average). Moreover, both SRRIP and DRRIP
arbitrarily assume that all cache lines will have similar access
patterns (either scan or thrash) which further hurts data center
applications’ I-cache performance. Consequently, SRRIP and
DRRIP cannot outperform LRU for I-cache accesses in data
center applications.

We observe that data center applications tend to exhibit
a unique reuse distance behavior, i.e., the number of unique
cache lines accessed in the current associative set between two
consecutive accesses to the same cache line, or the re-reference
interval [43] of a given cache line varies widely across the
program life time. Due to this variance, a single I-cache line
can be both cache-friendly and cache-averse at different stages
of the program execution. Existing works do not adapt to this
dynamic variance and hence fail to improve performance over
LRU. We combine these insights with our observations in §II-C
to design Ripple, a profile-guided replacement policy for data
center applications.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

−2

0

2

4
Sp

ee
du

p
(%

)

Harmony DRRIP GHRP SRRIP Ideal

Fig. 3: Speedup for different cache replacement policies over an LRU baseline with FDIP at the L1 I-cache: None of the
existing policies outperform LRU, although an ideal replacement policy provides on average 3.16% speedup.

III. THE RIPPLE REPLACEMENT MECHANISM

As we show in our analysis, an ideal cache replacement
policy provides on average 3.16% speedup over an LRU I-cache
for data center applications. Moreover, we find that existing
instruction and data cache replacement policies [7, 40, 41, 43]
fall short of the LRU baseline, since they are ineffective at
avoiding wasteful evictions due to the complex instruction
access behaviors. Hence, there is a critical need to assist
the underlying replacement policy in making smarter eviction
decisions by informing it about complex instruction accesses.

To this end, we propose augmenting existing replacement
mechanisms with Ripple—a novel profile-guided replacement
technique that carefully identifies program contexts leading to
I-cache misses and strives to evict the cache lines that would
be evicted by the ideal policy. Ripple’s operation is agnostic
of the underlying I-cache replacement policy. It sparingly
injects “cache line eviction” instructions in suitable program
locations at link time to assist an arbitrary replacement policy
implemented in hardware. Ripple introduces no additional
hardware overhead and can be readily implemented on soon-to-
be-released processors. Ripple enables an existing replacement
policy to further close the performance gap in achieving the
ideal I-cache performance.

Fig. 4 shows Ripple’s design components. First, at run time
(online), Ripple profiles a program’s basic block execution
sequence using efficient hardware-based control flow tracing
support such as Intel PT [58] or Last Branch Record (LBR) [21]
(step 1 , §III-A). Ripple then analyzes the program trace offline
using the ideal I-cache replacement policy (step 2 , §III-B)
to compute a set of cue blocks. A cue block is a basic block
whose execution almost always leads to the ideal victim cache
line to be evicted. The key idea behind Ripple’s analysis is
to mimic an ideal policy that would evict a line that will
be used farthest in the future. During recompilation, Ripple
then injects an instruction in the cue block that invalidates
the victim line (step 3 §III-C). Consequently, the next time
a cache line needs to be inserted into the cache set that the
victim line belongs to, the victim line will be evicted. In
contrast to prior work [7, 40, 41, 43], Ripple moves the compute-
intensive task of identifying the victim line from the hardware

10110
01011
10010

Release binary
Basic block trace

101101
010110
100101

Updated binary

Offline

Eviction
analysis

1

23

Online

Invalidation
injection

Data center

Ripple
aware
servers

Runtime
Profiling

T/NT Address

T

T

NT

0x4040

0x5010

-

Fig. 4: High-level design of Ripple

to the software, thereby reducing hardware overheads. We now
describe Ripple’s three components.

A. Runtime Profiling

Ripple profiles data center applications at run time using Intel
PT [58] to collect a trace of the dynamically-executed basic
blocks. As shown in Fig. 4, the collected program trace includes
two pieces of information for each control-flow instruction
in the program. The first bit (T/NT), denotes whether the
branch in question was taken (T) or the fall-through path was
followed (NT). If the program follows the taken path of an
indirect branch, the program trace also includes the address of
the next instruction on the taken path. Ripple leverages this
program execution trace, to perform (1) eviction analysis and
(2) invalidation injection offline at link-time. During eviction
analysis, Ripple identifies the I-cache lines that will be touched
(omitting speculative accesses) in real hardware based on the
execution trace. Ripple’s eviction analysis does not require
recording the I-cache lines that will be evicted in hardware.

Ripple leverages Intel PT [58] to collect the precise basic
block execution order with low runtime performance overhead
(less than 1% [48, 109]). Ripple uses Intel PT since it is efficient
in real-world production scenarios [19, 28, 49, 50].

A

A

A

A

A

A

Eviction
window

Last access
to the

cache line

Eviction by
the ideal

policy

B C B

D E D

D E D

B C B

B C B

B C B

1

2

3

4

5

6

(a) Cache line A’s eviction window includes all basic blocks executed
since A’s last execution until A’s eviction by the ideal cache
replacement policy.

Basic
block

Total
executed

of eviction windows
where basic block is

executed at least once

P(Eviction |
Basic block)

B 16 4 0.25

C 8 4 0.5

D 6 2 0.33

E 3 2 0.66

(b) How Ripple calculates the conditional probability of the eviction
of the cache line A, given the execution of a particular basic block.

Fig. 5: An example of Ripple’s eviction analysis process

B. Eviction Analysis

The goal of Ripple’s eviction analysis is to mimic an ideal
replacement policy, which would evict cache lines that will
not be accessed for the longest time in the future. The basic
block trace collected at run time allows Ripple to retroactively
determine points in the execution that would benefit from
invalidating certain cache lines to help with cache replacement.

Eviction analysis determines a cue block, whose execution
can identify the eviction of a particular victim cache line with
high probability, if an ideal cache replacement policy were used.
To determine the cue block in the collected runtime profile,
Ripple analyzes all the blocks in the eviction window of each
cache line, i.e., the time window spanning between the last
access to that cache line to the access that would trigger the
eviction of the same line, given an ideal replacement policy.

Fig. 5a shows examples of eviction windows for the cache
line, A. In this example, the cache line A gets evicted six
times by the ideal cache replacement policy over the execution
of the program. To compute each eviction window, Ripple
iterates backward in the basic block trace from each point
where A would be evicted by an ideal replacement policy until
it reaches a basic block containing (even partially) the cache
line A. Ripple identifies the basic blocks across all eviction
windows that can accurately signal the eviction as candidate
cue blocks (described further in Sec. III-C), where it can insert
an invalidation instruction to mimic the ideal cache replacement

behavior. In this example, Ripple identifies basic blocks, B, C,
D, and E as candidate cue blocks.

Next, Ripple calculates the conditional probability of a cache
line eviction given the execution of each candidate cue block.
Fig. 5b shows an example of this probability calculation for the
cache line, A. To calculate this conditional probability, Ripple
calculates two metrics. First, it computes how many times
each candidate cue block was executed during the application’s
lifetime. In this example, the candidate cue blocks B, C, D,
and E are executed 16, 8, 6, and 3 times respectively. Second,
for each candidate cue block, Ripple computes the number
of unique eviction windows which include the corresponding
candidate cue block. In our example, basic blocks B, C, D,
and E are included in 4, 4, 2, and 2 unique eviction windows,
respectively. Ripple calculates the conditional probability as
the ratio of the second value (count of windows containing the
candidate cue block) to the first value (execution count of the
cue block). For instance, P((Eviction, A)|(Execute, B)) = 0.25
denotes that for each execution of B, there is a 25% chance
that the cache line A may be evicted.

Finally, for each eviction window, Ripple selects the cue
block with the highest conditional probability, breaking ties
arbitrarily. In our example, Ripple will select basic blocks C and
E as cue blocks for 4 (windows 1, 4, 5, 6) and 2 (windows 2,
3) eviction windows, respectively. If the conditional probability
of the selected basic block is larger than a threshold, Ripple
will inject an explicit invalidation request in the basic block
during recompilation. Next, we describe the process by which
the invalidation instructions are injected as well as the trade-off
that is associated with this probability threshold.

C. Injection of Invalidation Instructions

Based on the eviction analysis, Ripple selects the cue basic
block for each eviction window. Next, Ripple inserts an explicit
invalidation instruction into the cue block to invalidate the
victim cache line. Ripple’s decision to insert an invalidation
instruction is informed by the conditional probability it
computes for each candidate cue block. Specifically, Ripple
inserts an invalidation instruction into the cue block only if the
conditional probability is higher than the invalidation threshold.
We now describe how Ripple determines the invalidation
threshold and the invalidation granularity (i.e., why Ripple
decides to inject invalidation instructions in a basic block to
evict a cache line). We then give details on the invalidation
instruction that Ripple relies on.
Determining the invalidation threshold. Ripple considers
two key metrics when selecting the value of the invalidation
threshold: replacement coverage and replacement accuracy.
We first define these metrics and then explain the trade-off
between them.

Replacement-Coverage. We define replacement-coverage as
the ratio of the total number of replacement decisions performed
by a given policy divided by the total number of replacement
decisions performed by the ideal replacement policy. A policy
that exhibits less than 100% replacement-coverage omits some

invalidation candidates that the optimal replacement policy
would have chosen for eviction.

Replacement-Accuracy. We define replacement-accuracy as
the ratio of total optimal replacement decisions of a given policy
divided by the replacement decisions performed by the ideal
replacement policy. Therefore, if Ripple induces x invalidations
over a program’s lifetime, and y of those invalidations do not
introduce any new misses over the ideal cache replacement
policy, then Ripple’s accuracy (in percentage) is: 100∗y

x . A policy
that exhibits less than 100% replacement-accuracy will evict
cache lines that the ideal cache replacement policy would not
have evicted.

Coverage-Accuracy Trade-off. Replacement-coverage and
replacement-accuracy represent useful metrics to measure a
cache replacement policy’s optimality. A software-guided policy
with a low replacement-coverage will frequently need to revert
to the underlying hardware policy suffering from its sub-optimal
decisions. On the other hand, a policy with low replacement-
accuracy will frequently evict lines that the program could
still use. As shown in Fig. 6, Ripple leverages the invalidation-
threshold to control the aggressiveness of its evictions, allowing
to trade-off coverage and accuracy. Although this figure presents
data from a single application (i.e., finagle-http), we
observe similar trends across all the data center applications
that we evaluate.

At a lower threshold (0-20%), Ripple has almost 100%
coverage, because all the replacement decisions are made by
Ripple’s invalidations. At the same time, Ripple’s accuracy
suffers greatly because it invalidates many cache lines that
introduce new misses over the ideal cache replacement policy.
Consequently, at a lower threshold, Ripple does not provide
additional performance over the underlying replacement policy.

Similarly, at a higher threshold (80-100%), Ripple achieves
near-perfect accuracy as cache lines invalidated by Ripple
do not incur extra misses over the ideal replacement policy.
However, Ripple’s coverage drops sharply as more replacement
decisions are not served by Ripple-inserted invalidations.
Therefore, Ripple’s performance benefit over the underlying
hardware replacement policy declines rapidly.

Only at the middle ground, i.e., when the invalidation
threshold ranges from 40-60%, Ripple simultaneously achieves
both high coverage (greater than 50%) and high accuracy
(greater than 80%). As a result, Ripple provides the highest
performance benefit at this invalidation threshold range. For
each application, Ripple chooses the invalidation threshold that
provides the best performance for a given application. Across
9 applications, this invalidation threshold varies from 45-65%.
Invalidation granularity. Ripple injects invalidation instruc-
tions at the basic block granularity while invalidation instruc-
tions evict cache lines. In practice, we find that Ripple does not
suffer a performance loss due to this mismatch. In particular,
Ripple provides a higher speedup when evicting at the basic
block granularity than when evicting at the cache line or
combination of basic block and cache line granularity.
The Invalidation instruction. We propose a new invalidation
instruction, invalidate that takes the address of a cache line

0 20 40 60 80 100
Invalidation threshold (%)

0

20

40

60

80

100

Pe
rc

en
ta

ge
(%

) % of ideal MPKI reduction
Replacement-Coverage (%)
Replacement-Accuracy (%)

Fig. 6: Coverage vs. accuracy trade-off of Ripple for
finagle-http. Other applications also exhibit a similar
trade-off curve. The invalidation threshold providing the best
performance across the 9 data center applications we studied
varies between 45-65%.

as an operand and invalidates it if the cache line resides in the I-
cache. Our proposed invalidate instruction exhibits one key
difference compared to existing cache line flushing instructions
(e.g., the clflush instruction on Intel processors) in that it
does not invalidate the cache line from other caches in the
cache hierarchy. Instead, our proposed invalidate instruction
invalidates the cache line only in the local I-cache, thereby
avoiding costly cache-coherency transactions and unnecessary
invalidations in remote caches. Furthermore, the invalidate

instruction has low latency as it does not have to wait for the
potentially dirty cache line to be written back to the lower
cache levels. Instead, invalidate can be regarded as a hint
that can be freely reordered with fences and synchronization
instructions. Intel recently introduced [98] such an invalidation
instruction called (cldemote) slated to be supported in its
future servers, and hence Ripple will be readily implementable
on such upcoming processors.

IV. EVALUATION

In this section, we first describe our experimental methodol-
ogy and then evaluate Ripple using key performance metrics.
Trace collection. We collect the execution trace of data center
applications using Intel Processor Trace (PT). Specifically, we
record traces for 100 million instructions in the application’s
steady-state containing both user and kernel mode instruc-
tions as Intel PT allows to capture both. We find that for
most applications, the percentage of kernel mode instruction
induced I-cache misses is small (< 1%). However, for drupal,
mediawiki, and wordpress, kernel code is responsible for
15% of all I-cache misses.
Simulation. At the time of this writing, no commercially-
available processor supports our proposed invalidate instruc-
tion, even though future Intel processors will support the
functionally-equivalent cldemote instruction [101]. To simu-
late this invalidate instruction, we evaluate Ripple using simu-
lation. This also allows us to evaluate additional replacement
policies and their interactions with Ripple. We extend the ZSim
simulator [86] by implementing our proposed invalidate

instruction. We list several important parameters of the trace-

TABLE II: Simulator Parameters
Parameter Value
CPU Intel Xeon Haswell
Number of cores per socket 20
L1 instruction cache 32 KiB, 8-way
L1 data cache 32 KiB, 8-way
L2 unified cache 1 MB, 16-way
L3 unified cache Shared 10 MiB per socket, 20-way
All-core turbo frequency 2.5 GHz
L1 I-cache latency 3 cycles
L1 D-cache latency 4 cycles
L2 cache latency 12 cycles
L3 cache latency 36 cycles
Memory latency 260 cycles
Memory bandwidth 6.25 GB/s

driven out-of-order ZSim simulation in Table II. We implement
Ripple on the L1 I-cache in our experiments.
Data center applications and inputs. We use nine widely-
used data center applications described in §II to evaluate Ripple.
We study these applications with different input parameters
offered to the client’s load generator (e.g., number of requests
per second or the number of threads). We evaluate Ripple using
different inputs for training (profile collection) and evaluation.

We now evaluate Ripple using key performance metrics on
all nine data center applications described in Sec. II. First,
we measure how much speedup Ripple provides compared to
ideal and other prior cache replacement policies. Next, we
compare L1 I-cache MPKI reduction (%) for Ripple, ideal, and
other policies for different prefetching configurations. Then,
we evaluate Ripple’s replacement-coverage and replacement-
accuracy as described in Sec. III-C. Next, we measure how
much extra static and dynamic instructions Ripple introduces
into the application binary. Finally, we evaluate how Ripple
performs across multiple application inputs.
Speedup. We measure the speedup (i.e., percentage improve-
ment in instructions per cycle [IPC]) provided by Ripple over an
LRU baseline. We also compare Ripple’s speedup to speedups
provided by the prefetch-aware ideal replacement policy as well
as four additional prior cache replacement policies including
Hawkeye/Harmony, DRRIP, SRRIP, and GHRP, whose details
were discussed in §II. To show that Ripple’s speedup is not
primarily due to the underlying hardware replacement policy,
we also provide Ripple’s speedup with two different underlying
hardware replacement policies (random and LRU). Finally, we
measure the speedups for all replacement policies by altering
the underlying I-cache prefetching mechanisms (no prefetching,
NLP, and FDIP).

Fig. 7 shows the speedup results. Ripple, with an underlying
LRU-based hardware replacement policy (i.e., Ripple-LRU in
Fig. 7), always outperforms all prior replacement policies across
all different prefetcher configurations. In particular, Ripple-LRU
provides on average 1.25% (no prefetching), 2.13% (NLP),
1.4% (FDIP) speedups over a pure-LRU replacement policy
baseline. These speedups correspond to 37% (no prefetching),
55% (NLP), and 44% (FDIP) of the speedups of an ideal
cache replacement policy. Notably, even Ripple-Random, which
operates with an underlying random hardware replacement

policy (which itself is on average 1% slower than LRU),
provides 0.86% average speedup over the LRU baseline across
the three different I-cache prefetchers. In combination with
Ripple, Random becomes a feasible replacement policy that
eliminates all meta-data storage overheads in hardware.

The performance gap between Ripple and the ideal cache
replacement policy stems from two primary reasons. First, Rip-
ple cannot cover all eviction windows via software invalidation
as covering all eviction windows requires Ripple to sacrifice
eviction accuracy which hurts performance. Second, software
invalidation instructions inserted by Ripple introduce static and
dynamic code bloat, causing additional cache pressure that
contributes to the performance gap (we quantify this overhead
later in this section).
I-cache MPKI reduction. Fig. 8 shows the L1 I-cache
miss reduction provided by Ripple (with underlying hardware
replacement policies of LRU and Random) and the prior work
policies. As shown, Ripple-LRU reduces I-cache misses over all
prior policies across all applications. Across different prefetch-
ing configurations, Ripple can avoid 33% (no prefetching), 53%
(NLP), and 41% (FDIP) of I-cache misses that are avoided
by the ideal replacement policy. Ripple reduces I-cache MPKI
regardless of the underlying replacement policy. Even when
the underlying replacement policy is random (causing 12.71%
more misses in average than LRU), Ripple-Random incurs 9.5%
fewer misses on average than LRU for different applications
and prefetching configurations.
Replacement-Coverage. As described in §III-C, Ripple’s
coverage is the percentage of all replacement decisions (over the
program life time) that were initiated by Ripple’s invalidations.
Fig. 9 shows Ripple’s coverage for all applications. As shown,
Ripple achieves on average more than 50% coverage. Only
for three HHVM applications (i.e., drupal, mediawiki, and
wordpress), Ripple’s coverage is lower than 50%, as for these
applications Ripple does not insert invalidate instructions
on the just-in-time compiled basic blocks. Just-in-time (Jit)
compiled code may reuse the same instruction addresses for
different basic blocks over the course of an execution rendering
compile-time instruction injection techniques challenging. Nev-
ertheless, even for these Jit applications there remains enough
static code that Ripple is able to optimize.
Accuracy. In Fig. 10, we show Ripple’s replacement-accuracy
(as defined in §III-C). As shown, Ripple achieves 92% accuracy
on average (with a minimum improvement of 88%). Ripple’s
accuracy is on average 14% higher than LRU’s average accuracy
(77.8%). Thanks to its higher accuracy, Ripple avoids many
inaccurate replacement decisions due to the underlying LRU-
based hardware replacement policy (which has an average
accuracy of 77.8%), and, therefore, the overall replacement
accuracy for Ripple-LRU is on average 86% (8.2% higher than
the LRU baseline).
Instruction overhead. Fig. 11 and 12 quantify the static and
dynamic code footprint increase introduced by the injected
invalidate instructions. The static instruction overhead of Ripple
is less than 4.4% for all cases while the dynamic instruction
overhead is less than 2% in most cases, except for verilator.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

−2

0

2

4
Sp

ee
du

p
(%

)
Hawkeye
Random

DRRIP
GHRP

SRRIP
Ripple-random

Ripple-LRU
Ideal

(a) Over no prefetching baseline, Ripple provides 1.25% speedup compared to 3.36% ideal speedup on average.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

−2

0

2

4

6

Sp
ee

du
p

(%
)

Harmony
Random

GHRP
DRRIP

SRRIP
Ripple-random

Ripple-LRU
Ideal

(b) Over next-line prefetching baseline, Ripple provides 2.13% speedup compared to 3.87% ideal speedup on average.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

−2

0

2

4

Sp
ee

du
p

(%
)

Harmony
Random

DRRIP
GHRP

SRRIP
Ripple-random

Ripple-LRU
Ideal

(c) Over fetch directed instruction prefetching baseline, Ripple provides 1.4% speedup compared to 3.16% ideal speedup on average.
Fig. 7: Ripple’s speedup compared to ideal and state-of-the-art replacement policies over an LRU baseline (with different
hardware prefetching): On average, Ripple provides 1.6% speedup compared to 3.47% ideal speedup.

For this application, Ripple executes 10% extra instructions to
invalidate cache lines. This is because for verilator, Ripple
covers almost all replacement policy decisions via software
invalidation (98.7% coverage as shown in Fig. 9). Similarly,
Ripple’s accuracy for verilator is very high (99.9% as shown
in Fig. 10). Therefore, though Ripple executes a relatively
greater number of invalidation instructions for verilator, it
does not execute unnecessary invalidation instructions.

Profiling and offline analysis overhead. Ripple leverages
Intel PT to collect basic block traces from data center
application executions because of its low overhead (less than
1%) and adoption in production settings [19, 28]. While Ripple’s
extraction and analysis on this trace takes longer (up to 10
minutes), we do not expect that this expensive analysis will
be deployed in production servers. Instead, we anticipate the

extraction, analysis, and invalidation injection component of
Ripple will be performed offline, similar to how existing
profile-guided optimizations for data center applications are
performed [17, 30, 54, 75, 76]. Therefore, we consider the
overhead for Ripple’s offline analysis acceptable.

Invalidation vs. reducing LRU priority. When the underlying
hardware cache replacement policy is LRU, moving a cache
line to the bottom of the LRU chain is sufficient to cause
eviction. This LRU-specific optimization improved Ripple’s
IPC speedup from 1.6% to 1.7% (apart from verilator, all
other applications benefited from this optimization). This shows
that Ripple’s profiling mechanism works well independent of
the particular eviction mechanism.

Performance across multiple application inputs. We inves-
tigate Ripple’s performance for data center applications with

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg

−20

0

20
L1

i-
M

PK
Ir

ed
uc

ti
on

(%
)

Hawkeye
Random

DRRIP
GHRP

SRRIP
Ripple-random

Ripple-LRU
Ideal

(a) With no prefetching, Ripple-LRU reduces 9.57% of all I-cache misses compared to 28.88% miss reduction provided by the ideal
replacement policy.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
−100

−50

0

50

L1
i-

M
PK

Ir
ed

uc
ti

on
(%

)

Harmony
Random

DRRIP
GHRP

SRRIP
Ripple-random

Ripple-LRU
Ideal

(b) With next-line prefetching, Ripple-LRU reduces on average 28.6% of all I-cache misses compared to 53.66% reduction provided
by the ideal replacement policy.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
−20

0

20

40

L1
i-

M
PK

Ir
ed

uc
ti

on
(%

)

Random
Harmony

DRRIP
GHRP

SRRIP
Ripple-random

Ripple-LRU
Ideal

(c) With fetch directed instruction prefetching, Ripple-LRU reduces on average 18.61% of all I-cache misses compared to 45%
reduction provided by the ideal replacement policy.

Fig. 8: Ripple’s L1 I-cache miss reduction compared to ideal and state-of-the-art replacement policies over an LRU baseline
(with different hardware prefetching): On average, Ripple reduces 19% of all LRU I-cache misses compared to 42.5% miss
reduction by the ideal replacement policy.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

50

100

C
ov

er
ag

e
(%

)

Fig. 9: Ripple’s coverage for different applications: On average
50% of replacement requests are processed by evicting cache
lines that Ripple invalidates.

three separate input configurations (‘#1’ to ‘#3’). We vary these
applications’ input configurations by changing the webpage, the
client requests, the number of client requests per second, the
number of server threads, random number seeds, and the size
of input data. We optimize each application using the profile
from input ‘#0’ and measure Ripple’s performance benefits for
different test inputs ‘#1, #2, #3’. For each input, we also
measure the performance improvement when Ripple optimizes
the application with a profile for the same input. As shown
in Fig. 13, Ripple provides 17% more IPC gains with input-
specific profiles compared to profiles that are not input specific.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

50

100
A

cc
ur

ac
y

(%
)

LRU Ripple Overall

Fig. 10: Ripple’s accuracy for different applications: On average
Ripple provides 92% accuracy which ensures that the overall
accuracy is 86% even though underlying LRU has an accuracy
of 77.8%.

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

2

4

In
st

ru
ct

io
n

ov
er

he
ad

(%
)

Fig. 11: Static instruction overhead introduced by Ripple: On
average Ripple inserts 3.4% new static instructions.

For brevity, we only show the results for the FDIP baseline.
Results with the other prefetching baselines are similar.

V. DISCUSSION

Ripple generates optimized binaries for different target
architectures considering the processor’s I-cache size and
associativity. Such a process is common in data centers
deploying profile-guided [17, 62] and post-link-time-based
optimization [75, 76] techniques. Therefore, Ripple can be
conveniently integrated into the existing build and optimization
processes. Moreover, as the I-cache size (32KB) and associativ-
ity (8-way) for Intel data center processors has been stable for
the last 10 years, the number of different target architectures
that Ripple needs to support is small.

VI. RELATED WORK

Instruction prefetching. Hardware instruction prefetchers
such as next-line and decoupled fetch directed prefetchers
[18, 39, 82, 84, 92] have been pervasively deployed in commer-
cial designs [32, 78, 85, 97]. While complex techniques [25,
26, 51, 52] employing record and replay prefetchers are highly
effective in reducing I-cache misses, they require impractical
on-chip metadata storage. Branch predictor-guided prefetch-
ers [9, 60, 61], on the other hand, follow the same principle as
FDIP to reduce on-chip metadata storage, however, they also
require a complete overhaul of the underlying branch target
prediction unit. Even recent proposals [8, 29, 31, 33, 70, 72, 83,
89] from 1st Instruction Prefetching Championship (IPC1)

cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

5

10

In
st

ru
ct

io
n

ov
er

he
ad

(%
)

Fig. 12: Dynamic instruction overhead introduced by Ripple:
On average Ripple executes 2.2% extra dynamic instructions.

#1#2#3 #1#2#3 #1#2#3 #1#2#3 #1#2#3 #1#2#3 #1#2#3 #1#2#3 #1#2#3
0

20

40

60

%
of

op
ti

m
al

po
lic

y
pe

rf
or

m
an

ce Profile-from-training-input
Profile-from-the-same-input

ca
ss

an
dr

a

dr
up

al

fin
ag

le
-c

hi
rp

er

fin
ag

le
-h

ttp

ka
fk

a

m
ed

ia
w

ik
i

to
m

ca
t

ve
ril

at
or

w
or

dp
re

ss

Fig. 13: Ripple’s performance for multiple application inputs
with the FDIP baseline: On average Ripple provides 17% more
speedup with input-specific profiles compared to profiles from
different inputs.

require kilobytes of extra on-chip storage to provide near-
ideal performance even on workloads where FDIP with a
large enough fetch target queue provides most of the potential
performance benefit [38]. Hybrid hardware-software prefetchers
[12, 13, 55, 68, 71] analyze a program’s control flow information
in software and inject dedicated prefetching instructions in code
which does not exist in today’s hardware. In contrast, we show
that instruction prefetchers alone do not close the performance
gap due to wasteful evictions that must be handled by smarter
cache line replacement.

Cache replacement policies. Heuristic-based hardware data
cache replacement policies have been studied for a long time,
including LRU and its variations [47, 63, 73, 91, 106], MRU
[80], re-reference interval prediction [43], reuse prediction
[22, 23, 66] and others [6, 27, 35, 56, 81, 87, 96, 99]. Learning-
based data cache replacement policies [40, 41, 53, 107] consider
replacement as a binary classification problem of cache-friendly
or cache-averse. Recent methods introduce machine learning
techniques like perceptrons [45, 100] and genetic algorithms
[44]. Some learning-based policies use information of Belady’s
optimal solution [15], including Hawkeye [40], Glider [90]
and Parrot [65]. However, these policies are mostly designed
for data caches and do not work well for instruction caches
as we show earlier (Sec. II). We also propose a profile-guided
approach that can work on top of any of these policies.

Prefetch-aware replacement policy. Prefetch-aware replace-
ment policies focus on avoiding cache pollution caused by inac-
curate prefetches. Some prefetch-aware policies [36, 37, 57] get
feedback from prefetchers to identify inaccurate prefetches, and
need co-design or prefetcher modifications. Others [88, 94, 108]
work independently from the prefetcher and estimate prefetch
accuracy from cache behavior.

With prefetching, Belady’s optimal policy [15] becomes
incomplete as it cannot distinguish easy-to-prefetch cache lines
from hard-to-prefetch cache lines [94, 108]. To address this
limitation, Demand-MIN [41] revised Belady’s optimal policy
to accommodate prefetching and proposed a program counter
(PC) classification based predictor, Harmony to emulate the
ideal performance. In this work, we not only revise Demand-
MIN to cover an extra corner case, but also show that a PC-
classification based predictor performs poorly for I-cache. We
address this imprecision and effectively emulate optimal I-cache
behavior in our work via a profile-guided software technique.

VII. CONCLUSION

Modern data center applications have large instruction foot-
prints, leading to significant I-cache misses. Although numerous
prior proposals aim to mitigate I-cache misses, they still fall
short of an ideal cache. We investigated why existing I-cache
miss mitigation mechanisms achieve sub-optimal speedup, and
found that widely-studied instruction prefetchers incur wasteful
prefetch-induced evictions that existing replacement policies
do not mitigate. To enable smarter evictions, we proposed
Ripple, a novel profile-guided replacement technique that uses
program context to inform the underlying replacement policy
about efficient replacement decisions. Ripple identifies program
contexts that lead to I-cache misses and sparingly injects “cache
line eviction” instructions in suitable program locations at
link time. We evaluated Ripple using nine popular data center
applications and demonstrated that it is replacement policy
agnostic, i.e., it enables any replacement policy to achieve
speedup that is 44% closer to that of an ideal I-cache.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
feedback and suggestions. This work was supported by the Intel
Corporation, the NSF FoMR grants #1823559 and #2011168,
a Facebook fellowship, and the Applications Driving Architec-
tures (ADA) Research Center, a JUMP Center co-sponsored
by SRC and DARPA. We thank Grant Ayers from Google for
excellent discussions and helpful feedback. We thank Scott
Beamer from the University of California, Santa Cruz for
helping set up Verilator with the Rocket Chip simulation.

REFERENCES

[1] “Apache cassandra,” http://cassandra.apache.org/.
[2] “Apache tomcat,” https://tomcat.apache.org/.
[3] “Twitter finagle,” https://twitter.github.io/finagle/.
[4] “Verilator,” https://www.veripool.org/wiki/verilator.
[5] “facebookarchive/oss-performance: Scripts for benchmarking various

php implementations when running open source software,” https://github.
com/facebookarchive/oss-performance, 2019, (Online; last accessed 15-
November-2019).

[6] J. Abella, A. González, X. Vera, and M. F. O’Boyle, “Iatac: a smart
predictor to turn-off l2 cache lines,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 2, no. 1, pp. 55–77, 2005.

[7] S. M. Ajorpaz, E. Garza, S. Jindal, and D. A. Jiménez, “Exploring
predictive replacement policies for instruction cache and branch target
buffer,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018, pp. 519–532.

[8] A. Ansari, F. Golshan, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Mana:
Microarchitecting an instruction prefetcher,” The First Instruction
Prefetching Championship, 2020.

[9] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer
frontend bottleneck,” in Proceedings of the 47th Annual International
Symposium on Computer Architecture (ISCA), 2020.

[10] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[11] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
643–656.

[12] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying
memory access patterns for prefetching,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 513–526.

[13] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and P. Ran-
ganathan, “Asmdb: understanding and mitigating front-end stalls in
warehouse-scale computers,” in Proceedings of the 46th ISCA, 2019.

[14] S. Bansal and D. S. Modha, “Car: Clock with adaptive replacement.”
in FAST, vol. 4, 2004, pp. 187–200.

[15] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[16] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer et al.,
“The dacapo benchmarks: Java benchmarking development and analysis,”
in Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, 2006, pp.
169–190.

[17] D. Chen, T. Moseley, and D. X. Li, “Autofdo: Automatic feedback-
directed optimization for warehouse-scale applications,” in CGO, 2016.

[18] T.-F. Chen and J.-L. Baer, “Reducing memory latency via non-blocking
and prefetching caches,” ACM SIGPLAN Notices, vol. 27, no. 9, pp.
51–61, 1992.

[19] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang, and
I. Yun, “{REPT}: Reverse debugging of failures in deployed software,”
in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 17–32.

[20] P. J. Denning, “Thrashing: Its causes and prevention,” in Proceedings of
the December 9-11, 1968, fall joint computer conference, part I, 1968,
pp. 915–922.

[21] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” IEEE Micro,
2017.

[22] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Vei-
denbaum, “Improving cache management policies using dynamic reuse
distances,” in 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, 2012, pp. 389–400.

[23] P. Faldu and B. Grot, “Leeway: Addressing variability in dead-block
prediction for last-level caches,” in 2017 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE,
2017, pp. 180–193.

https://github.com/facebookarchive/oss-performance
https://github.com/facebookarchive/oss-performance

[24] B. Falsafi and T. F. Wenisch, “A primer on hardware prefetching,”
Synthesis Lectures on Computer Architecture, vol. 9, no. 1, pp. 1–67,
2014.

[25] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,”
in International Symposium on Microarchitecture, 2011.

[26] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in International Symposium on
Microarchitecture, 2008.

[27] H. Gao and C. Wilkerson, “A dueling segmented lru replacement
algorithm with adaptive bypassing,” 2010.

[28] X. Ge, B. Niu, and W. Cui, “Reverse debugging of kernel
failures in deployed systems,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, Jul. 2020, pp.
281–292. [Online]. Available: https://www.usenix.org/conference/atc20/
presentation/ge

[29] N. Gober, G. Chacon, D. Jiménez, and P. V. Gratz, “The temporal
ancestry prefetcher.”

[30] Google, “Propeller: Profile guided optimizing large scale llvm-based
relinker,” https://github.com/google/llvm-propeller, 2020.

[31] D. A. J. P. V. Gratz and G. C. N. Gober, “Barca: Branch agnostic region
searching algorithm.”

[32] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha et al., “Evo-
lution of the samsung exynos cpu microarchitecture,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 40–51.

[33] V. Gupta, N. S. Kalani, and B. Panda, “Run-jump-run: Bouquet of
instruction pointer jumpers for high performance instruction prefetch-
ing.”

[34] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches,”
IEEE Transactions on Computers, vol. 38, no. 12, pp. 1612–1630, 1989.

[35] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the memory
system: predicting and optimizing memory behavior,” in Proceedings
29th Annual International Symposium on Computer Architecture. IEEE,
2002, pp. 209–220.

[36] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for
high performance data cache prefetch,” Journal of Instruction-Level
Parallelism, vol. 13, no. 2011, pp. 1–24, 2011.

[37] Y. Ishii, M. Inaba, and K. Hiraki, “Unified memory optimizing architec-
ture: memory subsystem control with a unified predictor,” in Proceedings
of the 26th ACM international conference on Supercomputing, 2012,
pp. 267–278.

[38] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Rebasing instruction
prefetching: An industry perspective,” IEEE Computer Architecture
Letters, 2020.

[39] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-based next trace
prediction,” in Proceedings of 30th Annual International Symposium
on Microarchitecture. IEEE, 1997, pp. 14–23.

[40] A. Jain and C. Lin, “Back to the future: leveraging belady’s algorithm
for improved cache replacement,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2016, pp. 78–89.

[41] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate
prefetching,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2018, pp. 110–123.

[42] A. Jain and C. Lin, “Cache replacement policies,” Synthesis Lectures
on Computer Architecture, vol. 14, no. 1, pp. 1–87, 2019.

[43] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” ACM SIGARCH Computer Architecture News, vol. 38, no. 3,
pp. 60–71, 2010.

[44] D. A. Jiménez, “Insertion and promotion for tree-based pseudolru
last-level caches,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 284–296.

[45] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2017, pp. 436–448.

[46] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the 42nd ISCA, 2015.

[47] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to improve
disk system performance,” Computer, vol. 27, no. 3, pp. 38–46, 1994.

[48] B. Kasikci, W. Cui, X. Ge, and B. Niu, “Lazy diagnosis of in-production
concurrency bugs,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 582–598.

[49] B. Kasikci, C. Pereira, G. Pokam, B. Schubert, M. Musuvathi, and
G. Candea, “Failure sketches: A better way to debug,” in 15th Workshop
on Hot Topics in Operating Systems (HotOS XV). Kartause Ittingen,
Switzerland: USENIX Association, May 2015.

[50] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea, “Failure
sketching: A technique for automated root cause diagnosis of in-
production failures,” in SOSP, Monterey, CA, October 2015.

[51] C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction
fetch for lean-core server processors,” in International Symposium on
Microarchitecture, 2013.

[52] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: unified instruction
supply for scale-out servers,” in Proceedings of the 48th International
Symposium on Microarchitecture, 2015, pp. 166–177.

[53] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2010, pp. 175–
186.

[54] T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci, “Dmon:
Efficient detection and correction of data locality problems using
selective profiling,” in Proceedings (to appear) of the 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
ser. OSDI 2021. USENIX Association, Jul. 2021.

[55] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,
“I-spy: Context-driven conditional instruction prefetching with coalesc-
ing,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 146–159.

[56] M. Kharbutli and Y. Solihin, “Counter-based cache replacement
algorithms,” in 2005 International Conference on Computer Design.
IEEE, 2005, pp. 61–68.

[57] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and
C. Wilkerson, “Kill the program counter: Reconstructing program
behavior in the processor cache hierarchy,” ACM SIGPLAN Notices,
vol. 52, no. 4, pp. 737–749, 2017.

[58] A. Kleen and B. Strong, “Intel processor trace on linux,” Tracing
Summit, 2015.

[59] A. Kolli, A. Saidi, and T. F. Wenisch, “Rdip: return-address-stack
directed instruction prefetching,” in 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2013,
pp. 260–271.

[60] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end
bottleneck with shotgun,” Proceedings of the 23rd ASPLOS, 2018.

[61] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A
metadata-free architecture for control flow delivery,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 493–504.

[62] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[63] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (lru) and least frequently used (lfu) policies,” in
Proceedings of the 1999 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, 1999, pp. 134–143.

[64] D. X. Li, R. Ashok, and R. Hundt, “Lightweight feedback-directed cross-
module optimization,” in Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization, 2010,
pp. 53–61.

[65] E. Z. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn, “An
imitation learning approach for cache replacement,” arXiv preprint
arXiv:2006.16239, 2020.

[66] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,”
in 2008 41st IEEE/ACM International Symposium on Microarchitecture.
IEEE, 2008, pp. 222–233.

[67] C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney, “Ispike: a
post-link optimizer for the intel/spl reg/itanium/spl reg/architecture,” in
International Symposium on Code Generation and Optimization, 2004.
CGO 2004. IEEE, 2004, pp. 15–26.

https://www.usenix.org/conference/atc20/presentation/ge
https://www.usenix.org/conference/atc20/presentation/ge
https://github.com/google/llvm-propeller

[68] C.-K. Luk and T. C. Mowry, “Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern
processors,” in International Symposium on Microarchitecture, 1998.

[69] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,
pp. 78–117, 1970.

[70] P. Michaud, “Pips: Prefetching instructions with probabilistic scouts,”
in The 1st Instruction Prefetching Championship, 2020.

[71] N. P. Nagendra, G. Ayers, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and P. Ran-
ganathan, “Asmdb: Understanding and mitigating front-end stalls in
warehouse-scale computers,” IEEE Micro, vol. 40, no. 3, pp. 56–63,
2020.

[72] T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya,
“D-jolt: Distant jolt prefetcher.”

[73] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” Acm Sigmod Record, vol. 22,
no. 2, pp. 297–306, 1993.

[74] G. Ottoni and B. Maher, “Optimizing function placement for large-scale
data-center applications,” in 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 2017, pp. 233–
244.

[75] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a practical
binary optimizer for data centers and beyond,” in 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2019, pp. 2–14.

[76] M. Panchenko, R. Auler, L. Sakka, and G. Ottoni, “Lightning bolt:
powerful, fast, and scalable binary optimization,” in Proceedings
of the 30th ACM SIGPLAN International Conference on Compiler
Construction, 2021, pp. 119–130.

[77] R. Panda, P. V. Gratz, and D. A. Jiménez, “B-fetch: Branch prediction
directed prefetching for in-order processors,” IEEE Computer Architec-
ture Letters, vol. 11, no. 2, pp. 41–44, 2011.

[78] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,
C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala et al., “The arm
neoverse n1 platform: Building blocks for the next-gen cloud-to-edge
infrastructure soc,” IEEE Micro, vol. 40, no. 2, pp. 53–62, 2020.

[79] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Stu-
dener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and
W. Binder, “Renaissance: Benchmarking suite for parallel applications
on the jvm,” in Programming Language Design and Implementation,
2019.

[80] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 381–391, 2007.

[81] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for
mlp-aware cache replacement,” in 33rd International Symposium on
Computer Architecture (ISCA’06). IEEE, 2006, pp. 167–178.

[82] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. IEEE, 1999, pp. 16–27.

[83] A. Ros and A. Jimborean, “The entangling instruction prefetcher,” IEEE
Computer Architecture Letters, vol. 19, no. 2, pp. 84–87, 2020.

[84] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency
approach to high bandwidth instruction fetching,” in Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 29. IEEE, 1996, pp. 24–34.

[85] J. Rupley, “Samsung exynos m3 processor,” IEEE Hot Chips, vol. 30,
2018.

[86] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in International Symposium
on Computer Architecture, 2013.

[87] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-
address filter: A unified mechanism to address both cache pollution
and thrashing,” in 2012 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE, 2012, pp.
355–366.

[88] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Mitigating prefetcher-caused pollution using

[89] A. Seznec, “The fnl+ mma instruction cache prefetcher,” in IPC-1-First
Instruction Prefetching Championship, 2020.

informed caching policies for prefetched blocks,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 4, pp. 1–22,
2015.

[90] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
413–425.

[91] Y. Smaragdakis, S. Kaplan, and P. Wilson, “Eelru: simple and effective
adaptive page replacement,” ACM SIGMETRICS Performance Evalua-
tion Review, vol. 27, no. 1, pp. 122–133, 1999.

[92] A. J. Smith, “Sequential program prefetching in memory hierarchies,”
Computer, no. 12, pp. 7–21, 1978.

[93] A. J. Smith, “Cache memories,” ACM Computing Surveys (CSUR),
vol. 14, no. 3, pp. 473–530, 1982.

[94] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture. IEEE, 2007, pp. 63–74.

[95] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing
server architectures for microservice diversity@ scale,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 513–526.

[96] R. Subramanian, Y. Smaragdakis, and G. H. Loh, “Adaptive caches:
Effective shaping of cache behavior to workloads,” in 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06).
IEEE, 2006, pp. 385–396.

[97] D. Suggs, M. Subramony, and D. Bouvier, “The amd “zen 2” processor,”
IEEE Micro, vol. 40, no. 2, pp. 45–52, 2020.

[98] V. Sukhomlinov and K. Doshi, “Selective execution of cache line flush
operations,” Oct. 8 2020, uS Patent App. 16/907,729.

[99] M. Takagi and K. Hiraki, “Inter-reference gap distribution replacement:
an improved replacement algorithm for set-associative caches,” in Pro-
ceedings of the 18th annual international conference on Supercomputing,
2004, pp. 20–30.

[100] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[101] Wikipedia contributors, “Alder lake (microprocessor) — Wikipedia, the
free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Alder
Lake (microprocessor)&oldid=990207738, 2020, [Online; accessed 25-
November-2020].

[102] Wikipedia contributors, “Apache kafka — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/w/index.php?title=Apache Kafka&
oldid=988898935, 2020, [Online; accessed 23-November-2020].

[103] Wikipedia contributors, “Drupal — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/w/index.php?title=Drupal&oldid=
989582664, 2020, [Online; accessed 23-November-2020].

[104] Wikipedia contributors, “Mediawiki — Wikipedia, the free encyclo-
pedia,” https://en.wikipedia.org/w/index.php?title=MediaWiki&oldid=
989993176, 2020, [Online; accessed 23-November-2020].

[105] Wikipedia contributors, “Wordpress — Wikipedia, the free encyclo-
pedia,” https://en.wikipedia.org/w/index.php?title=WordPress&oldid=
977243718, 2020, [Online; accessed 23-November-2020].

[106] W. A. Wong and J.-L. Baer, “Modified lru policies for improving second-
level cache behavior,” in Proceedings Sixth International Symposium on
High-Performance Computer Architecture. HPCA-6 (Cat. No. PR00550).
IEEE, 2000, pp. 49–60.

[107] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 2011, pp. 430–441.

[108] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr, and J. Emer, “Pacman:
prefetch-aware cache management for high performance caching,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, 2011, pp. 442–453.

[109] G. Zuo, J. Ma, A. Quinn, P. Bhatotia, P. Fonseca, and B. Kasikci,
“Execution reconstruction: Harnessing failure reoccurrences for failure
reproduction,” in ACM SIGPLAN conference on Programming language
design and implementation, 2021.

https://en.wikipedia.org/w/index.php?title=Alder_Lake_(microprocessor)&oldid=990207738
https://en.wikipedia.org/w/index.php?title=Alder_Lake_(microprocessor)&oldid=990207738
https://en.wikipedia.org/w/index.php?title=Apache_Kafka&oldid=988898935
https://en.wikipedia.org/w/index.php?title=Apache_Kafka&oldid=988898935
https://en.wikipedia.org/w/index.php?title=Drupal&oldid=989582664
https://en.wikipedia.org/w/index.php?title=Drupal&oldid=989582664
https://en.wikipedia.org/w/index.php?title=MediaWiki&oldid=989993176
https://en.wikipedia.org/w/index.php?title=MediaWiki&oldid=989993176
https://en.wikipedia.org/w/index.php?title=WordPress&oldid=977243718
https://en.wikipedia.org/w/index.php?title=WordPress&oldid=977243718

	Introduction
	Why do existing I-cache miss mitigation techniques fall short?
	Background on evaluated applications
	Ideal I-cache: The theoretical upper bound
	Why do modern instruction prefetchers fall short?
	Why do existing replacement policies fall short?

	The Ripple Replacement Mechanism
	Runtime Profiling
	Eviction Analysis
	Injection of Invalidation Instructions

	Evaluation
	Discussion
	Related Work
	Conclusion
	References

