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Abstract
Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the I/O
performance demands. These systems routinely face the
challenges of popularity skew, background load imbal-
ance, and server failures, which result in severe load im-
balance across servers and degraded I/O performance.
Selective replication is a commonly used technique to
tackle these challenges, where the number of cached
replicas of an object is proportional to its popularity. In
this paper, we explore an alternative approach using era-
sure coding.

EC-Cache is a load-balanced, low latency cluster
cache that uses online erasure coding to overcome the
limitations of selective replication. EC-Cache employs
erasure coding by: (i) splitting and erasure coding in-
dividual objects during writes, and (ii) late binding,
wherein obtaining any k out of (k + r) splits of an ob-
ject are sufficient, during reads. As compared to selective
replication, EC-Cache improves load balancing by more
than 3× and reduces the median and tail read latencies
by more than 2×, while using the same amount of mem-
ory. EC-Cache does so using 10% additional bandwidth
and a small increase in the amount of stored metadata.
The benefits offered by EC-Cache are further amplified
in the presence of background network load imbalance
and server failures.

1 Introduction
In recent years, in-memory solutions [12, 25, 56, 87, 89]
have gradually replaced disk-based solutions [3, 29, 37]
as the primary toolchain for high-performance data an-
alytics. The root cause behind the transition is simple:
in-memory I/O is orders of magnitude faster than that
involving disks. Since the total amount of memory is
significantly smaller than that of disks, the design of in-
memory solutions boils down to maximizing the num-
ber of requests that can be efficiently served from mem-
ory. The primary challenges in this regard are: (i) Ju-
diciously determining which data items to cache and
which ones to evict. This issue has been well studied in
past work [23, 35, 56, 67]. (ii) Increasing the effective
memory capacity to be able to cache more data. Sam-
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Figure 1: EC-Cache splits individual objects and encodes them
using an erasure code to enable read parallelism and late bind-
ing during individual reads.

pling [12, 16, 52] and compression [15, 27, 53, 79] are
some of the popular approaches employed to increase the
effective memory capacity. (iii) Ensuring good I/O per-
formance for the cached data in the presence of skewed
popularity, background load imbalance, and failures.

Typically, the popularity of objects in cluster caches
are heavily skewed [20, 47], and this creates signifi-
cant load imbalance across the storage servers in the
cluster [20, 48]. The load imbalance necessitates over-
provisioning in order to accommodate the peaks in the
load distribution, and it also adversely affects the I/O
performance. Consequently, load imbalance is one of
the key challenges toward improving the performance of
cluster caches. In addition to the skew in popularity, mas-
sive load fluctuations in the infrastructure due to back-
ground activities [33] and failures [70] can result in se-
vere performance degradation.

A popular approach employed to address the afore-
mentioned challenges is selective replication, which
replicates objects based on their popularity [20, 63]; that
is, it creates more replicas for hot objects. However,
due to the limited amount of available memory, selective
replication falls short in practice in terms of both load
balancing and I/O performance [48].
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While typical caches used in web-services and key-
value stores cache small-sized objects in the range of a
few bytes to few kilobytes, data-intensive cluster caches
used for data analytics [23, 56] must store larger objects
in the range of tens to hundreds of megabytes (§3). This
significant increase in object sizes allows us to take a
novel approach, using erasure coding, toward load bal-
ancing and improving I/O performance in cluster caches.

We present EC-Cache, an in-memory object cache that
leverages online erasure coding – that is, data is never
stored in a decoded form – to provide better load balanc-
ing and I/O performance (§4). We show both analytically
(§5) and via extensive system evaluation (§6) that EC-
Cache can outperform the optimal selective replication
mechanism while using the same amount of memory.

EC-Cache employs erasure coding and its properties
toward load balancing and improving I/O performance
in the following manner.

Self-Coding and Load Spreading: A (k, r) erasure
code encodes k data units and generates r parity units
such that any k of the (k + r) total units are sufficient to
decode the original k data units.1 Erasure coding is tradi-
tionally employed in disk-based systems to provide fault-
tolerance in a storage-efficient manner. In many such sys-
tems [26, 46, 61, 69], erasure coding is applied across ob-
jects: k objects are encoded to generate r additional ob-
jects. Read requests to an object are served from the orig-
inal object unless it is missing. If the object is missing,
it is reconstructed using the parities. In such a configura-
tion, reconstruction using parities incurs huge bandwidth
overheads [70]; hence, coding across objects is not useful
for load balancing or improving I/O performance. In con-
trast, EC-Cache divides individual objects into k splits
and creates r additional parity splits. Read requests to an
object are served by reading any k of the (k+r) splits and
decoding them to recover the desired object (Figure 1).
This approach provides multiple benefits. First, spread-
ing the load of read requests across both data and parity
splits results in better load balancing under skewed pop-
ularity. Second, reading/writing in parallel from multiple
splits provides better I/O performance. Third, decoding
the object using the parities does not incur any additional
bandwidth overhead.

Late Binding: Under self-coding, an object can be re-
constructed from any k of its (k+r) splits. This allows us
to leverage the power of choices: instead of reading ex-
actly k splits, we read (k+ ∆) splits (where ∆ ≤ r) and
wait for the reading of any k splits to complete. This late
binding makes EC-Cache resilient to background load
imbalance and unforeseen stragglers that are common
in large clusters [24, 91], and it plays a critical role in

1Not all erasure codes have this property, but for simplicity, we do
not make this distinction.

taming tail latencies. Note that, while employing object
splitting (that is, dividing each object into splits) together
with selective replication can provide the benefits of load
balancing and opportunities for read parallelism, this ap-
proach cannot exploit late binding without incurring high
memory and bandwidth overheads (§ 2.3).

We have implemented EC-Cache over Alluxio [56] us-
ing Intel’s ISA-L library [9]. It can be used as a caching
layer on top of object stores such as Amazon S3 [2],
Windows Azure Storage [30], and OpenStack Swift [11]
where compute and storage are not collocated. It can also
be used in front of cluster file systems such as HDFS
[29], GFS [42], and Cosmos [31] by considering each
block of a distributed file as an individual object.

We evaluated EC-Cache by deploying it on Amazon
EC2 using synthetic workloads and production workload
traces from a 3000-machine cluster at Facebook. EC-
Cache improves the median and tail latencies for reads
by more than 2× in comparison to the optimal selec-
tive replication scheme; it improves load balancing by
more than 3×,2 while using the same amount of mem-
ory. EC-Cache’s latency reductions increase as objects
grow larger: for example, 1.33× for 1 MB objects and
5.5× for 100 MB objects. We note that using k = 10
and ∆ = 1 suffices to avail these benefits. In other words,
a bandwidth overhead of at most 10% can lead to more
than 50% reduction in the median and tail latencies. EC-
Cache outperforms selective replication by even higher
margins in the presence of an imbalance in the back-
ground network load and in the presence of server fail-
ures. Finally, EC-Cache performs well over a wide range
of parameter settings.

Despite its effectiveness, our current implementation
of EC-Cache offers advantages only for objects greater
than 1 MB due to the overhead of creating (k + ∆) par-
allel TCP connections for each read. However, small ob-
jects form a negligible fraction of the footprint in many
data-intensive workloads (§3). Consequently, EC-Cache
simply uses selective replication for objects smaller than
this threshold to minimize the overhead. Furthermore,
EC-Cache primarily targets immutable objects, which is
a popular model in many data analytics systems and ob-
ject stores. Workloads with frequent, in-place updates are
not suitable for EC-Cache because they would require
updating all the parity splits of the updated objects.

Finally, we note that erasure codes are gaining increas-
ing popularity in disk-based storage systems for provid-
ing fault tolerance in a space-efficient manner [26, 46,
61, 69]. EC-Cache demonstrates the effectiveness of era-
sure coding for a new setting – in-memory object caching
– and toward new goals – improving load balancing and
latency characteristics.

2This evaluation is in terms of the percent imbalance metric de-
scribed in Section 6.
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2 Background and Motivation
This section provides a brief overview of object stores
(e.g., Amazon S3 [2], Windows Azure Storage [30],
OpenStack Swift [11], and Ceph [86]) and in-memory
caching solutions (e.g., Tachyon/Alluxio [56]) used in
modern data-intensive clusters. We discuss the tradeoffs
and challenges faced therein, followed by the opportuni-
ties for improvements over the state-of-the-art.

2.1 Cluster Caching for Object Stores

Cloud object stores [2, 11, 30, 86] provide a simple
PUT/GET interface to store and retrieve arbitrary ob-
jects at an attractive price point. In recent years, due to
the rapid increase in datacenter bandwidth [4, 77], cloud
tenants are increasingly relying on these object stores
as their primary storage solutions instead of compute-
collocated cluster file systems such as HDFS [29]. For
example, Netflix has been exclusively using Amazon S3
since 2013 [7]. Separating storage from compute in this
manner mitigates disk locality challenges [62]. However,
existing object stores can rarely offer end-to-end non-
blocking connectivity without storage-side disks becom-
ing a bottleneck. As a result, in-memory storage systems
[56] are often used for caching in the compute side.

EC-Cache primarily targets storage-side caching to
provide high I/O performance while mitigating the need
for compute-side caching. Note that, in the presence of
very high-speed networks, it can also be used in environ-
ments where compute and storage are collocated.

2.2 Challenges in Object Caching

In-memory object caches face unique tradeoffs and chal-
lenges due to workload variations and dynamic infras-
tructure in large-scale deployments.

Popularity Skew Recent studies from production clus-
ters show that the popularity of objects in cluster caches
are heavily skewed [20, 47], which creates significant
load imbalance across storage servers in the cluster.
This hurts I/O performance and also requires over-
provisioning the cluster to accommodate the peaks in
the load distribution. Unsurprisingly, load imbalance has
been reported to be one of the key challenges toward im-
proving the performance of cluster caches [45, 48].

Background Load Imbalance Across the Infrastruc-
ture In addition to skews in object popularity, network
interfaces – and I/O subsystems in general – through-
out the cluster experience massive load fluctuations due
to background activities [33]. Predicting and reacting to
these variations in time is difficult. Even with selective
replication, performance can deteriorate significantly if
the source of an object suddenly becomes a hotspot
(§6.3).

Tradeoff Between Memory Efficiency, Fault Toler-
ance, and I/O Performance In caches, fault tolerance
and I/O performance are inherently tied together since
failures result in disk I/O activities, which, in turn, sig-
nificantly increases latency. Given that memory is a con-
strained and expensive resource, existing solutions either
sacrifice fault tolerance (that is, no redundancy) to in-
crease memory efficiency [56, 89], or incur high mem-
ory overheads (e.g., replication) to provide fault toler-
ance [81, 90].

2.3 Potential for Benefits

Due to the challenges of popularity skew, background
load imbalance, and failures, maintaining a single copy
of each object in memory is often insufficient for acheiv-
ing high performance. Replication schemes that treat all
objects alike do not perform well under popularity skew
as they waste memory by replicating less-popular ob-
jects. Selective replication [20, 45, 63], where additional
replicas of hot objects are cached, only provides coarse-
grained support: each replica incurs an additional mem-
ory overhead of 1×. Selective replication has been shown
to fall short in terms of both load balancing and I/O per-
formance [48] (§6.2).

Selective replication along with object splitting (all
splits of the same object have the same replication fac-
tor) does not solve the problem either. While such an
object-splitting approach provides better load balancing
and opportunities for read parallelism, it cannot exploit
late binding without incurring high memory and band-
width overheads. As shown in Section 6.6.2, contacting
multiple servers to read the splits severely affects tail la-
tencies, and late binding is necessary to rein them in.
Hence, under selective replication with object splitting,
each object will need at least 2× memory overhead, and,
in order to make use of late binding, one must read mul-
tiple copies of each of the splits of the object, resulting
in at least 2× bandwidth overhead.

3 Analysis of Production Workload
Object stores are gaining popularity as the primary data
storage solution for data analytics pipelines (e.g., at Net-
flix [6, 7]). As EC-Cache is designed to cater to these
use cases, in order to obtain a better understanding of
the requirements, we analyzed a trace with millions of
reads in a 3000-machine analytics cluster at Facebook.
The trace was collected in October 2010, and consists
of a mix of batch and interactive MapReduce analytics
jobs generated from Hive queries. The block size for the
HDFS installation in this cluster was 256 MB, and the
corresponding network had a 10 : 1 oversubscription ra-
tio.

Our goal in analyzing these traces is to highlight char-
acteristics – distributions of object sizes, their relative
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Figure 2: Characteristics of object reads in the Facebook data analytics cluster. We observe that (a) large object sizes are more
prevalent; (b) small objects have even smaller footprint; and (c) access patterns across objects is heavily skewed. Note that the
X-axes are in log-scale in (a) and (b).

impact, access characteristics, and the nature of imbal-
ance in I/O utilizations – that enable us to make realistic
assumptions in our analysis, design, and evaluation.

3.1 Large Object Reads are Prevalent

Data-intensive jobs in production clusters are known to
follow skewed distributions in terms of their input and
output size [23, 32, 34]. We observe a similar skewed
pattern in the Facebook trace (Figure 2): only 7% (11%)
of the reads are smaller than 1 (10) MB, but their total
size in terms of storage usage is miniscule. Furthermore,
28% of the objects are less than 100 MB in size with less
than 5% storage footprint. Note that a large fraction of
the blocks in the Facebook cluster are 256 MB in size,
which corresponds to the vertical segment in Figure 2a.

3.2 Popularity of Objects is Skewed

Next, we focus on object popularity/access patterns. As
noted in prior work [20, 23, 32, 56, 61], object popu-
larity follows a Zipf-like skewed pattern; that is, a small
fraction of the objects are highly popular. Figure 2c [23,
Figure 9] plots the object access characteristics. Note
that this measurement does not include objects that were
never accessed. Here, the most popular 5% of the ob-
jects are seven times more popular than the bottom three-
quarters [23].

3.3 Network Load Imbalance is Inherent

As observed in prior studies [28, 33, 44, 51], we found
that datacenter traffic across the oversubscribed links can
be significantly imbalanced. Furthermore, network im-
balances are time varying. The root causes behind such
imbalances include, among others, skew in application-
level communication patterns [28, 51, 55], rolling up-
grades and maintenance operations [28], and imper-
fect load balancing inside multipath datacenter networks
[19]. We measured the network imbalance as the ratio
of the maximum and the average utilizations across all
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Figure 3: Imbalance in utilizations (averaged over 10-second
intervals) of up and down oversubscribed links in Facebook
clusters due to data analytics workloads. The X-axis is in log-
scale.

oversubscribed links3 in the Facebook cluster (Figure 3).
This ratio was above 4.5× more than 50% of the time
for both up and downlinks, indicating significant imbal-
ance. Moreover, the maximum utilization was high for a
large fraction of the time, thereby increasing the possi-
bility of congestion. For instance, the maximum uplink
utilization was more than 50% of the capacity for more
than 50% of the time. Since operations on object stores
must go over the network, network hotspots can signif-
icantly impact their performance. This impact is ampli-
fied for in-memory object caches, where the network is
the primary bottleneck.

4 EC-Cache Design Overview
This section provides a high-level overview of EC-
Cache’s architecture.

4.1 Overall Architecture

EC-Cache is an object caching solution to provide high
I/O performance in the presence of popularity skew,
background load imbalance, and server failures. It con-

3Links connecting top-of-the-rack (ToR) switches to the core.
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Figure 5: Roles in EC-Cache: (a) backend servers manage in-
teractions between caches and persistent storage for client li-
braries; (b) EC-Cache clients perform encoding and decoding
during writes and reads.

sists of a set of servers, each of which has an in-memory
cache on top of on-disk storage. Applications interact
with EC-Cache via a client library. Similar to other ob-
ject stores [2, 11, 30], EC-Cache storage servers are not
collocated with the applications using EC-Cache.

We have implemented EC-Cache on top of Alluxio
[56], which is a popular caching solution for big data
clusters. Consequently, EC-Cache shares some high-
level similarities with Alluxio’s architecture, such as a
centralized architecture with a master coordinating sev-
eral storage/cache servers (Figure 4).

Backend Storage Servers Both in-memory and on-
disk storage in each server is managed by a worker that
responds to read and write requests for splits from clients
(Figure 5a). Backend servers are unaware of object-level
erasure coding introduced by EC-Cache. They also take
care of caching and eviction of objects to and from mem-
ory using the least-recently-used (LRU) heuristic [56].

EC-Cache Client Library Applications use EC-
Cache through a PUT-GET interface (Figure 5b). The
client library transparently handles all aspects of erasure
coding.

EC-Cache departs significantly from Alluxio in two
major ways in its design of the user-facing client li-
brary. First, EC-Cache’s client library exposes a signif-
icantly narrower interface for object-level operations as

B1 B2 B3 BN

F1 F2 FM

…

…

B4

F3

PU
T

Split

Encode

Write'+'Frontend

M1 M2 M3 MN

C1

…M4

C2

(a)

B1 B2 B3 BN

F1 F2 F3 FM

…

…

B4

F4

Backend
Cache/
Storage
Servers

Frontend 
Coding
Servers

PU
T

Split

Encode

Write&+&Frontend

(b)

Figure 6: Writes to EC-Cache. (a) Two concurrent writes with
k = 2 and r = 1 from two applications. (b) Steps involved
during an individual write inside the EC-Cache client library
for an object using k = 2 and r = 1.

compared to Alluxio’s file-level interface. Second, EC-
Cache’s client library takes care of splitting and encoding
during writes, and reading from splits and decoding dur-
ing reads instead of writing and reading entire objects.

4.2 Writes

EC-Cache stores each object by dividing it into k
splits and encoding these splits using a Reed-Solomon
code [73] to add r parity splits.4 It then distributes these
(k + r) splits across unique backend servers chosen uni-
formly at random. Note that each object is allowed to
have distinct values of the parameters k and r. Figure 6
depicts an example of object writes with k = 2 and r = 1
for both objects C1 and C2. EC-Cache uses Intel ISA-L
[9] for encoding operations.

A key issue in any distributed storage solution is that
of data placement and rendezvous, that is, where to write
and where to read from. The fact that each object is fur-
ther divided into (k+r) splits in EC-Cache magnifies this
issue. For the same reason, metadata management is also
an important issue in our design. Similar to Alluxio and
most other storage systems [29, 42, 56], the EC-Cache
coordinator determines and manages the locations of all
the splits. Each write is preceded by an interaction with
the coordinator server that determines where each of the
(k + r) splits are to be written. Similarly, each reader
receives the locations of the splits through a single inter-
action with the coordinator.

EC-Cache requires a minimal amount of additional
metadata to support object splitting. For each object, EC-
Cache stores its associated k and r values and the associ-
ated (k + r) server locations (32-bit unsigned integers).
This forms only a small fraction of the total metadata size
of an object.

4Section 4.4 discusses the choice of the erasure coding scheme.
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4.3 Reads

The key advantage of EC-Cache comes into picture dur-
ing read operations. Instead of reading from a single
replica, the EC-Cache client library reads from (k + ∆)
splits in parallel chosen uniformly at random (out of the
(k + r) total splits of the object). This provides three
benefits. First, it exploits I/O parallelism. Second, it dis-
tributes the load across many backend servers helping in
balancing the load. Third, the read request can be com-
pleted as soon as any k out of (k + ∆) splits arrive,
thereby avoiding stragglers. Once k splits of an object
arrives, the decoding operation is performed using Intel
ISA-L [9].

Figure 7a provides an example of a read operation
over the objects stored in the example presented in Fig-
ure 6. In this example, both the objects have k = 2 and
r = 1. Although 2 splits are enough to complete each
read request, EC-Cache issues an additional read (that is,
∆ = 1). Since both objects had one split in server M3,
reading from that server may be slow. However, instead
of waiting for that split, EC-Cache proceeds as soon as it
receives the other 2 splits (Figure 7b) and decodes them
to complete the object read requests.

Additional reads play a critical role in avoiding strag-
glers, and thus, in reducing tail latencies. However, they
also introduce additional load on the system. The band-
width overhead due to additional reads is precisely ∆

k . In
Section 6.6.2, we present a sensitivity analysis with re-
spect to ∆, highlighting the interplay between the above
two aspects.

4.4 Choice of Erasure Code

In disk-based storage systems, erasure codes are em-
ployed primarily to provide fault tolerance in a storage-
efficient manner. In these systems, network and I/O re-
sources consumed during recovery of failed or otherwise
unavailable data units play a critical role in the choice of

the erasure code employed [46, 69, 70]. There has been a
considerable amount of recent work on designing erasure
codes for distributed storage systems to optimize recov-
ery operations [26, 43, 68, 71, 72]. Many distributed stor-
age systems are adopting these recovery-optimized era-
sure codes in order to reduce network and I/O consump-
tion [8, 46, 69]. On the other hand, EC-Cache employs
erasure codes for load balancing and improving read per-
formance of cached objects. Furthermore, in this caching
application, recovery operations are not a concern as data
is persisted in the underlying storage layer.

We have chosen to use Reed-Solomon (RS) [73] codes
for two primary reasons. First, RS codes are Maximum-
Distance-Separable (MDS) codes [59]; that is, they pos-
sess the property that any k out of the (k + r) splits are
sufficient to decode the object. This property provides
maximum flexibility in the choice of splits for load bal-
ancing and late binding. Second, the Intel ISA-L [9] li-
brary provides a highly optimized implementation of RS
codes that significantly decreases the time taken for en-
coding and decoding operations. This reduced decoding
complexity makes it feasible for EC-Cache to perform
decoding for every read operation. Both the above factors
enable EC-Cache to exploit properties of erasure coding
to achieve significant gains in load balancing and read
performance (§6).

5 Analysis

In this section, we provide an analytical explanation for
the benefits offered by EC-Cache.

5.1 Impact on Load Balancing

Consider a cluster with S servers and F objects. For sim-
plicity, let us first assume that all objects are equally pop-
ular. Under selective replication, each object is placed on
a server chosen uniformly at random out of the S servers.
For simplicity, first consider that EC-Cache places each
split of a object on a server chosen uniformly at random
(neglecting the fact that each split is placed on a unique
server). The total load on a server equals the sum of the
loads on each of the splits stored on that server. Thus the
load on each server is a random variable. Without loss
of generality, let us consider the load on any particular
server and denote the corresponding random variable by
L.

The variance of L directly impacts the load imbalance
in the cluster – intuitively, a higher variance of L implies
a higher load on the maximally loaded server in com-
parison to the average load; consequently, a higher load
imbalance.

Under this simplified setting, the following result
holds.
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Theorem 1 For the setting described above:

Var(LEC-Cache)

Var(LSelective Replication)
=

1

k
.

Proof: Let w > 0 denote the popularity of each of the
files. The random variable LSelective Replication is distributed
as a Binomial random variable with F trials and success
probability 1

S , scaled by w. On the other hand, LEC-Cache
is distributed as a Binomial random variable with kF tri-
als and success probability 1

S , scaled by w
k . Thus we have

Var(LEC-Cache)

Var(LSelective Replication)
=

(
w
k

)2
(kF ) 1

S

(
1− 1

S

)
w2F 1

S

(
1− 1

S

) =
1

k
,

thereby proving our claim. �
Intuitively, the splitting action of EC-Cache leads to

a smoother load distribution in comparison to selective
replication. One can further extend Theorem 1 to accom-
modate a skew in the popularity of the objects. Such an
extension leads to an identical result on the ratio of the
variances. Additionally, the fact that each split of an ob-
ject in EC-Cache is placed on a unique server further
helps in evenly distributing the load, leading to even bet-
ter load balancing.

5.2 Impact on Latency

Next, we focus on how object splitting impacts read la-
tencies. Under selective replication, a read request for
an object is served by reading the object from a server.
We first consider naive EC-Cache without any additional
reads. Under naive EC-Cache, a read request for an ob-
ject is served by reading k of its splits in parallel from
k servers and performing a decoding operation. Let us
also assume that the time taken for decoding is negligi-
ble compared to the time taken to read the splits.

Intuitively, one may expect that reading splits in paral-
lel from different servers will reduce read latencies due
to the parallelism. While this reduction indeed occurs for
the average/median latencies, the tail latencies behave in
an opposite manner due to the presence of stragglers –
one slow split read delays the completion of the entire
read request.

In order to obtain a better understanding of the afore-
mentioned phenomenon, let us consider the following
simplified model. Consider a parameter p ∈ [0, 1] and
assume that for any request, a server becomes a straggler
with probability p, independent of all else. There are two
primary contributing factors to the distributions of the la-
tencies under selective replication and EC-Cache:

(a) Proportion of stragglers: Under selective replica-
tion, the fraction of requests that hit stragglers is p. On
the other hand, under EC-Cache, a read request for an
object will face a straggler if any of the k servers from
where splits are being read becomes a straggler. Hence,

a higher fraction
(
1− (1− p)k

)
of read requests can hit

stragglers under naive EC-Cache.
(b) Latency conditioned on absence/presence of strag-

glers: If a read request does not face stragglers, the time
taken for serving a read request is significantly smaller
under EC-Cache as compared to selective replication be-
cause splits can be read in parallel. On the other hand, in
the presence of a straggler in the two scenarios, the time
taken for reading under EC-Cache is about as large as
that under selective replication.

Putting the aforementioned two factors together we get
that the relatively higher likelihood of a straggler under
EC-Cache increases the number of read requests incur-
ring a higher latency. The read requests that do not en-
counter any straggler incur a lower latency as compared
to selective replication. These two factors explain the de-
crease in the median and mean latencies, and the increase
in the tail latencies.

In order to alleviate the impact on tail latencies, we
use additional reads and late binding in EC-Cache. Reed-
Solomon codes have the property that any k of the collec-
tion of all splits of an object suffice to decode the object.
We exploit this property by reading more than k splits
in parallel, and using the k splits that are read first. It is
well known that such additional reads help in mitigating
the straggler problem and alleviate the affect on tail la-
tencies [36, 82].

6 Evaluation

We evaluated EC-Cache through a series of experiments
on Amazon EC2 [1] clusters using synthetic workloads
and traces from Facebook production clusters. The high-
lights of the evaluation results are:
• For skewed popularity distributions, EC-Cache im-

proves load balancing over selective replication by
3.3× while using the same amount of memory. EC-
Cache also decreases the median latency by 2.64×
and the 99.9th percentile latency by 1.79× (§6.2).

• For skewed popularity distributions and in the pres-
ence of background load imbalance, EC-Cache de-
creases the 99.9th percentile latency w.r.t. selective
replication by 2.56× while maintaining the same
benefits in median latency and load balancing as in
the case without background load imbalance (§6.3).

• For skewed popularity distributions and in the pres-
ence of server failures, EC-Cache provides a graceful
degradation as opposed to the significant degradation
in tail latency faced by selective replication. Specif-
ically, EC-Cache decreases the 99.9th percentile la-
tency w.r.t. selective replication by 2.8× (§6.4).

• EC-Cache’s improvements over selective replication
increase as object sizes increase in production traces;
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e.g., 5.5× at median for 100 MB objects with an up-
ward trend (§6.5).

• EC-Cache outperforms selective replication across a
wide range of values of k, r, and ∆ (§6.6).

6.1 Methodology

Cluster Unless otherwise specified, our experiments
use 55 c4.8xlarge EC2 instances. 25 of these machines
act as the backend servers for EC-Cache, each with 8
GB cache space, and 30 machines generate thousands
of read requests to EC-Cache. All machines were in the
same Amazon Virtual Private Cloud (VPC) with 10 Gbps
enhanced networking enabled; we observed around 4-
5 Gbps bandwidth between machines in the VPC using
iperf.

As mentioned earlier, we implemented EC-Cache on
Alluxio [56], which, in turn, used Amazon S3 [2] as its
persistence layer and runs on the 25 backend servers. We
used DFS-Perf [5] to generate the workload on the 30
client machines.

Metrics Our primary metrics for comparison are la-
tency in reading objects and load imbalance across the
backend servers.

Given a workload, we consider mean, median, and
high-percentile latencies. We measure improvements in
latency as:

Latency Improvement =
Latency w/ Compared Scheme

Latency w/ EC-Cache

If the value of this “latency improvement” is greater (or
smaller) than one, EC-Cache is better (or worse).

We measure load imbalance using the percent imbal-
ance metric λ defined as follows:

λ =

(
Lmax − Lavg?

Lavg?

)
∗ 100, (1)

where Lmax is the load on the server which is maximally
loaded andLavg? is the load on any server under an oracle
scheme, where the total load is equally distributed among
all the servers without any overhead. λ measures the
percentage of additional load on the maximally loaded
server as compared to the ideal average load. Because
EC-Cache operates in the bandwidth-limited regime, the
load on a server translates to the total amount of data read
from that server. Lower values of λ are better. Note that
the percent imbalance metric takes into account the ad-
ditional load introduced by EC-Cache due to additional
reads.

Setup We consider a Zipf distribution for the popular-
ity of objects, which is common in many real-world ob-
ject popularity distributions [20, 23, 56]. Specifically, we
consider the Zipf parameter to be 0.9 (that is, high skew).

Unless otherwise specified, we allow both selective
replication and EC-Cache to use 15% memory overhead
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Figure 8: Read latencies under skewed popularity of objects.

to handle the skew in the popularity of objects. Selec-
tive replication uses all the allowed memory overhead
for handling popularity skew. Unless otherwise specified,
EC-Cache uses k = 10 and ∆ = 1. Thus, 10% of the al-
lowed memory overhead is used to provide one parity
to each object. The remaining 5% is used for handling
popularity skew. Both schemes make use of the skew in-
formation to decide how to allocate the allowed memory
among different objects in an identical manner: the num-
ber of replicas for an object under selective replication
and the number of additional parities for an object under
EC-Cache are calculated so as to flatten out the popu-
larity skew to the extent possible starting from the most
popular object, until the memory budget is exhausted.

Moreover, both schemes use uniform random place-
ment policy to evenly distribute objects (splits in case of
EC-Cache) across memory servers.

Unless otherwise specified, the size of each object
considered in these experiments is 40 MB. We present
results for varying object sizes observed in the Facebook
trace in Section 6.5. In Section 6.6, we perform a sensi-
tivity analysis with respect to all the above parameters.

Furthermore, we note that while the evaluations pre-
sented here are for the setting of high skew in object
popularity, EC-Cache outperforms selective replication
in scenarios with low skew in object popularity as well.
Under high skew, EC-Cache offers significant benefits
in terms of load balancing and read latency. Under low
skew, while there is not much to improve in load balanc-
ing, EC-Cache will still provide latency benefits.

6.2 Skew Resilience

We begin by evaluating the performance of EC-Cache in
the presence of skew in object popularity.

Latency Characteristics Figure 8 compares the mean,
median, and tail latencies of EC-Cache and selective
replication. We observe that EC-Cache improves median
and mean latencies by 2.64× and 2.52×, respectively.
EC-Cache outperforms selective replication at high per-
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Figure 9: Comparison of load distribution across servers in terms of the amount of data read from each server. The percent imbal-
ance metric λ for selective replication and EC-Cache are 43.45% and 13.14% respectively.
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Figure 10: Read latencies in the presence of background traffic
from big data workload.

centiles as well, improving the latency by 1.76× at the
99th percentile and by 1.79× at the 99.9th percentile.

Load Balancing Characteristics Figure 9 presents the
distribution of loads across servers. The percent imbal-
ance metric λ observed for selective replication and EC-
Cache in this experiment are 43.45% and 13.14% respec-
tively.

Decoding Overhead During Reads We observed that
the time taken to decode during the reads is approxi-
mately 30% of the total time taken to complete a read
request. Despite this overhead, we see (Figure 8) that EC-
Cache provides a significant reduction in both median
and tail latencies. Although our current implementation
uses only a single thread for decoding, the underlying
erasure codes permit the decoding process to be made
embarrassingly parallel, potentially allowing for a linear
speed up; this, in turn, can further improve EC-Cache’s
latency characteristics.

6.3 Impact of Background Load Imbalance

We now investigate EC-Cache’s performance in the pres-
ence of a background network load, specifically in the
presence of unbalanced background traffic. For this ex-

25
4

23
8 30

4

63
9

1388

98 92 14
2 23

3

49
5

0

200

400

600

800

1000

1200

1400

Mean Median 95th 99th 99.9th

R
ea

d 
L

at
en

cy
 (m

s)

Selective Replication

EC-Cache

Figure 11: Read latencies in the presence of server failures.

periment, we generated a background load that follows
traffic characteristics similar to those described in Sec-
tion 3.3. Specifically, we emulated network transfers
from shuffles for the jobs in the trace. Shuffles arrive
following the same arrival pattern of the trace. For each
shuffle, we start some senders (emulating mappers) and
receivers (emulating reducers) that transfer randomly
generated data over the network. The amount of data re-
ceived by each receiver for each shuffle followed a dis-
tribution similar to that in the trace.

Latency Characteristics Figure 10 compares the
mean, median, and tail latencies using both EC-Cache
and selective replication. We observe that as in Sec-
tion 6.2, EC-Cache improves the median and mean la-
tencies by 2.56× and 2.47× respectively.

At higher percentiles, EC-Cache’s benefits over se-
lective replication are even more than that observed in
Section 6.2. In particular, EC-Cache outperforms selec-
tive replication by 1.9× at the 99th percentile and by
2.56× at the 99.9th percentile. The reason for these im-
provements is the following: while selective replication
gets stuck in few of the overloaded backend servers, EC-
Cache remains almost impervious to such imbalance due
to late binding.
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Figure 12: Comparison of EC-Cache and selective replication read latencies over varying object sizes in the Facebook production
trace. EC-Cache’s advantages improve as objects become larger.

Load Balancing Characteristics The percent imbal-
ance metric λ for selective replication and EC-Cache are
similar to that reported in Section 6.2. This is because the
imbalance in background load does not affect the load
distribution across servers due to read requests.

6.4 Performance in Presence of Failures

We now evaluate the performance of EC-Cache in the
presence of server failures. This experiment is identical
to that in Section 6.2 except with one of the back-end
servers terminated. The read latencies in this degraded
mode are shown in Figure 11. Comparing the latencies
in Figure 8 and Figure 11, we see that the performance
of EC-Cache does not degrade much as most objects are
still served from memory. On the other hand, selective
replication suffers significant degradation in tail latencies
as some of the objects are now served from the under-
lying storage system. Here, EC-Cache outperforms se-
lective replication by 2.7× at the 99th percentile and by
2.8× at the 99.9th percentile.

6.5 Performance on Production Workload

So far we focused on EC-Cache’s performance for a
fixed object size. In this section, we compare EC-Cache
against selective replication for varying object sizes
based on the workload collected from Facebook (details
in Section 3).

Figure 12 presents the median and the 99th percentile
read latencies for objects of different sizes (starting from
1 MB). Note that EC-Cache resorts to selective replica-
tion for objects smaller than 1 MB to avoid communica-
tion overheads.

We make two primary observations. First, EC-Cache’s
median improvements over selective replication steadily
increases with the object size; e.g., EC-Cache is 1.33×
faster for 1 MB-sized objects, which improves to 5.5×
for 100 MB-sized objects and beyond. Second, EC-
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Figure 13: Load imbalance for varying values of k with ∆ =
1: percent imbalance metric (λ) decreases as objects are divided
into more splits.

Cache’s 99th percentile improvements over selective
replication kick off when object sizes grow beyond 10
MB. This is because EC-Cache’s constant overhead of
establishing (k + ∆) connections is more pronounced
for smaller reads, which generally have lower latencies.
Beyond 10 MB, connection overheads get amortized due
to increased read latency, and EC-Cache’s improvements
over selective replication even in tail latencies steadily
increase from 1.25× to 3.85× for 100 MB objects.

6.6 Sensitivity Evaluation

In this section, we evaluate the effects of the choice of
different EC-Cache parameters. We present the results
for 10 MB objects (instead of 40 MB as in prior evalua-
tions) in order to bring out the effects of all the parame-
ters more clearly and to be able to sweep for a wide range
of parameters.

6.6.1 Number of splits k

Load Balancing Characteristics The percent imbal-
ance metric for varying values of k with ∆ = 1 are
shown in Figure 13. We observe that load balancing im-
proves with increasing k. There are two reasons for this
phenomenon: (i) A higher value of k leads to a smaller
granularity of individual splits, thereby resulting in a
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Figure 14: Impact of the number of splits k on the read latency.

greater smoothing of the load under skewed popularity.
(ii) With a fixed value of ∆, the load overhead due to ad-
ditional reads varies inversely with the value of k. This
trend conforms to the theoretical analysis presented in
Section 5.1.

Latency Characteristics Figure 14 shows a compari-
son of median and 95th percentile read latencies for vary-
ing values of k with ∆ = 1. The corresponding values for
selective replication are also provided for comparison.
We observe that parallelism helps in improving median
latencies, but with diminishing returns. However, higher
values of k lead to worse tail latencies as a result of the
straggler effect discussed earlier in Section 5. Hence, for
k > 10, more than one additional reads are needed to
rein in the tail latencies. We elaborate this effect below.

6.6.2 Additional Reads (∆)

First, we study the necessity of additional reads. Fig-
ure 15 shows the CDF of read latencies from about
160, 000 reads for selective replication and EC-Cache
with k = 10 with and without additional reads, that is,
with ∆ = 1 and ∆ = 0, respectively. We observe that,
without any additional reads, EC-Cache performs quite
well in terms of the median latency, but severely suffers
at high percentiles. This is due to the effect of stragglers
as discussed in Section 5.2. Moreover, adding just one
additional read helps EC-Cache tame these negative ef-
fects. Figure 15 also shows that selective replication with
object splitting (as discussed in Section 2.3) would not
perform well.

Next, we study the effect of varying values of ∆. In
this experiment, we vary ∆ from 0 to 4, set k = 12, and
use an object size of 20 MB. We choose k = 12 instead
of 10 because the effect of additional reads is more pro-
nounced for higher values of k, and we choose a larger
object size (20 MB instead of 10 MB) because the value
of k is higher (§7.4). We use uniform popularity distri-
bution across objects so that each object is provided with
equal (specifically, r = 4) number of parities. This al-
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lows us to evaluate with values of ∆ up to 4. Figure 16
shows the impact of different number of additional reads
on the read latency. We see that the first one or two ad-
ditional reads provide a significant reduction in the tail
latencies while subsequent additional reads provide lit-
tle additional benefits. In general, having too many addi-
tional reads would start hurting the performance because
they would cause a proportional increase in communica-
tion and bandwidth overheads.

6.6.3 Memory Overhead

Up until now, we have compared EC-Cache and selective
replication with a fixed memory overhead of 15%. Given
a fixed amount of total memory, increasing memory over-
head allows a scheme to cache more redundant objects
but fewer unique objects. In this section, we vary mem-
ory overhead and evaluate the latency and load balancing
characterisitics of selective replication and EC-Cache.

We observed that the relative difference in terms of
latency between EC-Cache and selective replication re-
mained similar to that shown in Figure 8 – EC-Cache
provided a significant reduction in the median and tail
latencies as compared to selective replication even for
higher memory overheads. However, in terms of load
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balancing, the gap between EC-Cache and selective
replication decreased with increasing memory overhead.
This is because EC-Cache was almost balanced even
with just 15% memory overhead (Figure 9) with lit-
tle room for further improvement. In contrast, selec-
tive replication became more balanced due to the higher
memory overhead allowed, reducing the relative gap
from EC-Cache.

6.7 Write Performance

Figure 17 shows a comparison of the average write times.
The time taken to write an object in EC-Cache involves
the time to encode and the time to write out the splits
to different workers; Figure 17 depicts the breakdown of
the write time in terms of these two components. We ob-
serve that EC-Cache is faster than selective replication
when writing objects larger than 40 MB, supplementing
its faster performance in terms of the read times observed
earlier. EC-Cache performs worse for smaller objects due
to the overhead of connecting to several machines in par-
allel. Finally, we observe that the time taken for encoding
is less than 10% of the total write time, regardless of the
object size.

7 Discussion
While EC-Cache outperforms existing solutions both in
terms of latency and load balancing, our current imple-
mentation has several known limitations. We believe that
addressing these limitations will further improve EC-
Cache’s performance.

7.1 Networking Overheads

A key reason behind EC-Cache being less effective for
smaller objects is its communication overhead. More
specifically, creating many TCP connections accounts for
a constant, non-negligible portion (few milliseconds) of
a read’s duration. This factor is more pronounced for
smaller read requests which generally have shorter du-
rations. Using long-running, reusable connections may
allow us to support even smaller objects. Furthermore,

multiplexing will also help in decreasing the total num-
ber of TCP connections in the cluster.

7.2 Reducing Bandwidth Overhead

EC-Cache has 10% bandwidth overhead in our present
setup. While this overhead does not significantly impact
performance during non-peak hours, it can have a non-
negligible impact during the peak. In order to address
this issue, one may additionally employ proactive cancel-
lation [36, 64] that can help reduce bandwidth overheads
of speculative reads.

7.3 Time Varying Skew

EC-Cache can handle time-varying popularity skew and
load imbalance by changing the number of parity splits
of objects. However, we have not yet implemented this
feature due to a limitation posed by Alluxio. In our cur-
rent implementation, we store individual splits of an ob-
ject as part of the file abstraction in Alluxio to reduce
metadata overheads (§4.2). Since Alluxio does not cur-
rently offer support for appending to a file once the
file is closed (ALLUXIO-25 [14]), we cannot dynami-
cally change the number of parities and adapt to time-
varying skew. Assuming the presence of underlying sup-
port for appending, we expect EC-Cache to respond to
time-varying skews better than selective replication. This
is because the overhead of any object can be changed
in fractional increments in EC-Cache as opposed to the
limitation of having only integral increments in selective
replication.

7.4 Choice of parameters

Although EC-Cache performs well for a wide range of
parameters in our evaluation (§6.6), we outline a few
rules of thumb for choosing its parameter values below.

The value of parameter k is chosen based on the size of
the object and cluster characteristics: a higher value of k
provides better load balancing but negatively affects tail
latencies for too large values (as shown in Figure 13 and
Figure 14). In general, the larger the size of an object,
the higher the value of k it can accommodate without
resulting in too small-sized splits and without adversely
affecting the tail latency. In our evaluations, we observed
k = 10 to perform well for a wide range of object sizes
(Figure 12).

Suitable choices for ∆ depend on the choice of k. As
discussed in Section 6.6.2, a higher value of ∆ is needed
for higher values of k in order to rein in tail latencies. At
the same time, each additional read results in a propor-
tional increase in the bandwidth overhead, which would
degrade performance for too large a value. In our evalu-
ations, we observed ∆ = 1 to be sufficient for k = 10
(Figure 10 and Figure 12).

The value of parameter r for each object is chosen
based on the skew in object popularity (§6.1).
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8 Related Work
A key focus of this work is to demonstrate and validate
a new application of erasure coding, specifically in in-
memory caching systems, to achieve load balancing and
to reduce the median and tail read latencies. The basic
building blocks employed in EC-Cache are simple and
have been studied and employed in various other systems
and settings. We borrow and build on the large body of
existing work in this area. However, to the best of our
knowledge, EC-Cache is the first object caching system
that employs erasure coding to achieve load balancing
and to reduce read latencies.

Caching in Data-Intensive Clusters Given that read-
ing data from disks is often the primary bottleneck in
data analytics [3, 24, 37, 49, 56, 88, 89, 91], caching fre-
quently used data has received significant attention in re-
cent years [21, 23, 56, 89]. However, existing caching so-
lutions typically keep a single copy of data to increase the
memory capacity, which leaves them vulnerable to popu-
larity skew, background load imbalance, and failures, all
of which result in disk accesses.

(Selective) Replication Replication is the most com-
mon technique for guarding against performance degra-
dation in the face of popularity skew, background load
imbalance, and failures [29, 31, 42, 81]. Giving every
object an identical replication factor, however, wastes
capacity in the presence of skew, and selective replica-
tion [20, 63] forms a better option in this case. However,
selective replication has a number of drawbacks (§2.3)
that EC-Cache overcomes.

Erasure Coding in Storage Systems For decades,
disk arrays have employed erasure codes to achieve
space-efficient fault tolerance in RAID systems [65].
The benefits of erasure coding over replication to pro-
vide fault tolerance in distributed storage systems has
also been well studied [85, 93], and erasure codes have
been employed in many related settings such as network-
attached-storage systems [18], peer-to-peer storage sys-
tems [54, 74], etc. Recently, erasure coding has been
widely used for storing relatively cold data in datacenter-
scale distributed storage systems [46, 61, 86] to achieve
fault tolerance while minimizing storage requirements.
While some of these storage systems [61, 70, 79] en-
code across objects, others employ self-coding [80, 86].
However, the purpose of erasure coding in these systems
is to achieve storage-efficient fault tolerance, while the
focus of EC-Cache is on load balancing and reducing
the median and tail read latencies. Aggarwal et al. [17]
proposed augmenting erasure-coded disk-based storage
systems with a cache at the proxy or client side to re-
duce latency. In contrast, EC-Cache directly applies era-
sure coding on objects stored in cluster caches to achieve

load balancing and to reduce latency when serving ob-
jects from memory.

Late binding Many systems have employed the tech-
nique of sending additional/redundant requests or run-
ning redundant jobs to rein in tail latency in various set-
tings [22, 36, 40, 66, 78, 83]. The effectiveness of late
binding for load balancing and scheduling has been well
known and well utilized in many systems [60, 64, 82].
Recently, there have also been a body of theoretical
work that analyzes the performance of redundant re-
quests [41, 50, 57, 75, 76, 84].

In-Memory Key-Value Stores A large body of work
in recent years has focused on building high-performance
in-memory key-value (KV) stores [10, 13, 15, 38, 39,
53, 58, 63]. EC-Cache focuses on a different workload
where object sizes are much larger than typical values
in these KV stores. However, EC-Cache may be used as
a caching layer for holding slabs, where each slab con-
tain many key-value pairs. While KV stores have typi-
cally employed replication for fault tolerance, a recent
work [92] uses erasure coding to build a fault-tolerant
in-memory KV store. The role of erasure coding in [92]
is to provide space-efficient fault tolerance, whereas EC-
Cache employs erasure coding toward load balancing
and reducing the median and tail read latencies.

9 Conclusion
Caching solutions used in conjunction with modern ob-
ject stores and cluster file systems typically rely on uni-
form or selective replication that do not perform well in
the presence of skew in data popularity, imbalance in net-
work load, or failures of machines and software, all of
which are common in large clusters. In EC-Cache, we
employ erasure coding to overcome the limitations of se-
lective replication and provide significantly better load
balancing and I/O performance for workloads with im-
mutable data.

EC-Cache employs self-coding, where each object is
divided into k splits and stored in a (k+r) erasure-coded
form. The encoding is such that any k of the (k+r) splits
are sufficient to read an object. Consequently, EC-Cache
can leverage the power of choices through late binding:
instead of reading from k splits, it reads from (k + ∆)
splits and completes reading an object as soon as the first
k splits arrive. The value of ∆ can be as low as 1.

The combination of self-coding and late binding,
along with fast encoding/decoding using Intel’s ISA-L
library, allows EC-Cache to significantly outperform the
optimal selective replication solution. For instance, for
objects of size 40 MB, EC-Cache outperforms selective
replication by 3.3× in terms of cache load balancing, and
decreases the median and tail read latencies by more than
2×. EC-Cache achieves these improvements while using
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the same amount of memory as selective replication. The
relative performance of EC-Cache improves even more
in the presence of background/network load imbalance
and server failures, and for larger objects.

In conclusion, while erasure codes are commonly
used in disk-based storage systems to achieve fault tol-
erance in a space-efficient manner, EC-Cache demon-
strates their effectiveness in a new setting (in-memory
object caching) and toward new goals (load balancing
and improving the median and tail read latencies).
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