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Abstract

We focus on automatically diagnosing different perfor-
mance problems in parallel file systems by identify-
ing, gathering and analyzing OS-level, black-box perfor-
mance metrics on every node in the cluster. Our peer-
comparison diagnosis approach compares the statistical
attributes of these metrics across I/O servers, to identify
the faulty node. We develop a root-cause analysis proce-
dure that further analyzes the affected metrics to pinpoint
the faulty resource (storage or network), and demonstrate
that this approach works commonly across stripe-based
parallel file systems. We demonstrate our approach for
realistic storage and network problems injected into three
different file-system benchmarks (dd, IOzone, and Post-
Mark), in both PVFS and Lustre clusters.

1 Introduction
File systems can experience performance problems that
can be hard to diagnose and isolate. Performance prob-
lems can arise from different system layers, such as
bugs in the application, resource exhaustion, misconfig-
urations of protocols, or network congestion. For in-
stance, Google reported the variety of performance prob-
lems that occurred in the first year of a cluster’s opera-
tion [10]: 40–80 machines saw 50% packet-loss, thou-
sands of hard drives failed, connectivity was randomly
lost for 30 minutes, 1000 individual machines failed,
etc. Often, the most interesting and trickiest problems
to diagnose are not the outright crash (fail-stop) failures,
but rather those that result in a “limping-but-alive” sys-
tem (i.e., the system continues to operate, but with de-
graded performance). Our work targets the diagnosis of
such performance problems in parallel file systems used
for high-performance cluster computing (HPC).

Large scientific applications consist of compute-
intense behavior intermixed with periods of intense par-
allel I/O, and therefore depend on file systems that can
support high-bandwidth concurrent writes. Parallel Vir-
tual File System (PVFS) [6] and Lustre [23] are open-
source, parallel file systems that provide such applica-
tions with high-speed data access to files. PVFS and Lus-
tre are designed as client-server architectures, with many

clients communicating with multiple I/O servers and one
or more metadata servers, as shown in Figure 1.

Problem diagnosis is even more important in HPC
where the effects of performance problems are magnified
due to long-running, large-scale computations. Current
diagnosis of PVFS problems involve the manual analysis
of client/server logs that record PVFS operations through
code-level print statements. Such (white-box) problem
diagnosis incurs significant runtime overheads, and re-
quires code-level instrumentation and expert knowledge.

Alternatively, we could consider applying existing
problem-diagnosis techniques. Some techniques specify
a service-level objective (SLO) first and then flag run-
time SLO violations—however, specifying SLOs might
be hard for arbitrary, long-running HPC applications.
Other diagnosis techniques first learn the normal (i.e.,
fault-free) behavior of the system and then employ
statistical/machine-learning algorithms to detect runtime
deviations from this learned normal profile—however, it
might be difficult to collect fault-free training data for all
of the possible workloads in an HPC system.

We opt for an approach that does not require the spec-
ification of an SLO or the need to collect training data
for all workloads. We automatically diagnose perfor-
mance problems in parallel file systems by analyzing the
relevant black-box performance metrics on every node.
Central to our approach is our hypothesis (borne out by
observations of PVFS’s and Lustre’s behavior) that fault-
free I/O servers exhibit symmetric (similar) trends in
their storage and network metrics, while a faulty server
appears asymmetric (different) in comparison. A similar
hypothesis follows for the metadata servers. From these
hypotheses, we develop a statistical peer-comparison ap-
proach that automatically diagnoses the faulty server and
identifies the root cause, in a parallel file-system cluster.

The advantages of our approach are that it (i) exhibits
low overhead as collection of OS-level performance met-
rics imposes low CPU, memory, and network demands;
(ii) minimizes training data for typical HPC workloads
by distinguishing between workload changes and perfor-
mance problems with peer-comparison; and (iii) avoids
SLOs by being agnostic to absolute metric values in iden-
tifying whether/where a performance problem exists.
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We validate our approach by studying realistic stor-
age and network problems injected into three file-system
benchmarks (dd, IOzone, and PostMark) in two parallel
file systems, PVFS and Lustre. Interestingly, but perhaps
unsurprisingly, our peer-comparison approach identifies
the faulty node even under workload changes (usually
a source of false positives for most black-box problem-
diagnosis techniques). We also discuss our experiences,
particularly the utility of specific metrics for diagnosis.

2 Problem Statement
Our research is motivated by the following questions: (i)
can we diagnose the faulty server in the face of a per-
formance problem in a parallel file system, and (ii) if so,
can we determine which resource (storage or network) is
causing the problem?

Goals. Our approach should exhibit:

• Application-transparency so that PVFS/Lustre appli-
cations do not require any modification. The approach
should be independent of PVFS/Lustre operation.

• Minimal false alarms of anomalies in the face of legit-
imate behavioral changes (e.g., workload changes due
to increased request rate).

• Minimal instrumentation overhead so that instru-
mentation and analysis does not adversely impact
PVFS/Lustre’s operation.

• Specific problem coverage that is motivated by anec-
dotes of performance problems in a production paral-
lel file-system deployment (see § 4).

Non-Goals. Our approach does not support:

• Code-level debugging. Our approach aims for coarse-
grained problem diagnosis by identifying the culprit
server, and where possible, the resource at fault. We
currently do not aim for fine-grained diagnosis that
would trace the problem to lines of PVFS/Lustre code.

• Pathological workloads. Our approach relies on I/O
servers exhibiting similar request patterns. In paral-
lel file systems, the request pattern for most work-
loads is similar across all servers—requests are either
large enough to be striped across all servers or random
enough to result in roughly uniform access. However,
some workloads (e.g., overwriting the same portion
of a file repeatedly, or only writing stripe-unit-sized
records to every stripe-count offset) make requests dis-
tributed to only a subset, possibly one, of the servers.

• Diagnosis of non-peers. Our approach fundamentally
cannot diagnose performance problems on non-peer
nodes (e.g., Lustre’s single metadata server).

Hypotheses. We hypothesize that, under a perfor-
mance fault in a PVFS or Lustre cluster, OS-level perfor-
mance metrics should exhibit observable anomalous be-
havior on the culprit servers. Additionally, with knowl-
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Figure 1: Architecture of parallel file systems, showing
the I/O servers and the metadata servers.

edge of PVFS/Lustre’s overall operation, we hypothe-
size that the statistical trends of these performance data:
(i) should be similar (albeit with inevitable minor differ-
ences) across fault-free I/O servers, even under workload
changes, and (ii) will differ on the culprit I/O server, as
compared to the fault-free I/O servers.

Assumptions. We assume that a majority of the I/O
servers exhibit fault-free behavior, that all peer server
nodes have identical software configurations, and that
the physical clocks on the various nodes are synchro-
nized (e.g., via NTP) so that performance data can be
temporally correlated across the system. We also assume
that clients and servers are comprised of homogeneous
hardware and execute homogeneous workloads. These
assumptions are reasonable in HPC environments where
homogeneity is both deliberate and critical to large scale
operation. Homogeneity of hardware and client work-
loads is not strictly required for our diagnosis approach
(§ 12 describes our experience with heterogeneous hard-
ware). However we have not yet tested our approach with
deliberately heterogeneous hardware or workloads.

3 Background: PVFS & Lustre
PVFS clusters consist of one or more metadata servers
and multiple I/O servers that are accessed by one or more
PVFS clients, as shown in Figure 1. The PVFS server
consists of a single monolithic user-space daemon that
may act in either or both metadata and I/O server roles.

PVFS clients consist of stand-alone applications that
use the PVFS library (libpvfs2) or MPI applications that
use the ROMIO MPI-IO library (that supports PVFS in-
ternally) to invoke file operations on one or more servers.
PVFS can also plug in to the Linux Kernel’s VFS in-
terface via a kernel module that forwards the client’s
syscalls (requests) to a user-space PVFS client daemon
that then invokes operations on the servers. This ker-
nel client allows PVFS file systems to be mounted under
Linux similar to other remote file systems like NFS.

With PVFS, file-objects are distributed across all I/O
servers in a cluster. In particular, file data is striped



across each I/O server with a default stripe size of 64 kB.
For each file-object, the first stripe segment is located
on the I/O server to which the object handle is assigned.
Subsequent segments are accessed in a round-robin man-
ner on each of the remaining I/O servers. This character-
istic has significant implications on PVFS’s throughput
in the event of a performance problem.

Lustre clusters consist of one active metadata server
which serves one metadata target (storage space), one
management server which may be colocated with the
metadata server, and multiple object storage servers
which serve one or more object storage targets each.
The metadata and object storage servers are analogous to
PVFS’s metadata and I/O servers with the main distinc-
tion of only allowing for a single active metadata server
per cluster. Unlike PVFS, the Lustre server is imple-
mented entirely in kernel space as a loadable kernel mod-
ule. The Lustre client is also implemented as a kernel
space file-system module, and like PVFS, provides file
system access via the Linux VFS interface. A userspace
client library (liblustre) is also available.

Lustre allows for the configurable striping of file data
across one or more object storage targets. By default, file
data is stored on a single target. The stripe_count
parameter may be set on a per-file, directory, or file-
system basis to specify the number of object storage tar-
gets that file data is striped over. The stripe_size
parameter specifies the stripe unit size and may be con-
figured to multiples of 64 kB, with a default of 1 MB (the
maximum payload size of a Lustre RPC).

4 Motivation: Real Problem Anecdotes
The faults we study here are motivated by the
PVFS developers’ anecdotal experience [5] of problems
faced/reported in various production PVFS deployments,
one of which is Argonne National Laboratory’s 557
TFlop Blue Gene/P (BG/P) PVFS cluster. Accounts
of experience with BG/P indicate that storage/network
problems account for approximately 50%/50% of perfor-
mance issues [5]. A single poorly performing server has
been observed to impact the behavior of the overall sys-
tem, instead of its behavior being averaged out by that
of non-faulty nodes [5]. This makes it difficult to trou-
bleshoot system-wide performance issues, and thus, fault
localization (i.e., diagnosing the faulty server) is a criti-
cal first step in root-cause analysis.

Anomalous storage behavior can result from a number
of causes. Aside from failing disks, RAID controllers
may scan disks during idle times to proactively search
for media defects [13], inadvertently creating disk con-
tention that degrades the throughput of a disk array [25].
Our disk-busy injected problem (§ 5) seeks to emulate
this manifestation. Another possible cause of a disk-busy
problem is disk contention due to the accidental launch

of a rogue processes. For example, if two remote file
servers (e.g., PVFS and GPFS) are collocated, the startup
of a second server (GPFS) might negatively impact the
performance of the server already running (PVFS) [5].

Network problems primarily manifest in packet-loss
errors, which is reported to be the “most frustrating” [sic]
to diagnose [5]. Packet loss is often the result of faulty
switch ports that enter a degraded state when packets can
still be sent but occasionally fail CRC checks. The re-
sulting poor performance spreads through the rest of the
network, making problem diagnosis difficult [5]. Packet
loss might also be the result of an overloaded switch that
“just can’t keep up” [sic]. In this case, network diagnos-
tic tests of individual links might exhibit no errors, and
problems manifest only while PVFS is running [5].

Errors do not necessarily manifest identically under all
workloads. For example, SANs with large write caches
can initially mask performance problems under write-
intensive workloads and thus, the problems might take a
while to manifest [5]. In contrast, performance problems
in read-intensive workloads manifest rather quickly.

A consistent, but unfortunate, aspect of performance
faults is that they result in a “limping-but-alive” mode,
where system throughput is drastically reduced, but the
system continues to run without errors being reported.
Under such conditions, it is likely not possible to iden-
tify the faulty node by examining PVFS/application logs
(neither of which will indicate any errors) [5].

Fail-stop performance problems usually result in an
outright server crash, making it relatively easy to iden-
tify the faulty server. Our work targets the diagno-
sis of non-fail-stop performance problems that can de-
grade server performance without escalating into a server
crash. There are basically three resources—CPU, stor-
age, network—being contended for that are likely to
cause throughput degradation. CPU is an unlikely bot-
tleneck as parallel file systems are mostly I/O-intensive,
and fair CPU scheduling policies should guarantee that
enough time-slices are available. Thus, we focus on the
remaining two resources, storage and network, that are
likely to pose performance bottlenecks.

5 Problems Studied for Diagnosis
We separate problems involving storage and network re-
sources into two classes. The first class is hog faults,
where a rogue process on the monitored file servers in-
duces an unusually high workload for the specific re-
source. The second class is busy or loss faults, where
an unmonitored (i.e., outside the scope of the server
OSes) third party creates a condition that causes a per-
formance degradation for the specific resource. To ex-
plore all combinations of problem resource and class, we
study the diagnosis of four problems—disk-hog, disk-
busy, network-hog, packet-loss (network-busy).



Metric [s/n]∗ Significance
tps [s] Number of I/O (read and write) requests made

to the disk per second.
rd_sec [s] Number of sectors read from disk per second.
wr_sec [s] Number of sectors written to disk per second.
avgrq-sz [s] Average size (in sectors) of disk I/O requests.
avgqu-sz [s] Average number of queued disk I/O requests;

generally a low integer (0–2) when the disk is
under-utilized; increases to ≈100 as disk uti-
lization saturates.

await [s] Average time (in milliseconds) that a request
waits to complete; includes queuing delay and
service time.

svctm [s] Average service time (in milliseconds) of I/O
requests; is the pure disk-servicing time; does
not include any queuing delay.

%util [s] Percentage of CPU time in which I/O requests
are made to the disk.

rxpck [n] Packets received per second.
txpck [n] Packets transmitted per second.
rxbyt [n] Bytes received per second.
txbyt [n] Bytes transmitted per second.
cwnd [n] Number of segments (per socket) allowed to be

sent outstanding without acknowledgment.

∗Denotes storage (s) or network (n) related metric.

Table 1: Black-box, OS-level performance metrics col-
lected for analysis.

Disk-hogs can result from a runaway, but other-
wise benign, process. They may occur due to unex-
pected cron jobs, e.g., an updatedb process gen-
erating a file/directory index for GNU locate, or a
monthly software-RAID array verification check. Disk-
busy faults can also occur in shared-storage systems due
to a third-party/unmonitored node that runs a disk-hog
process on the shared-storage device; we view this dif-
ferently from a regular disk-hog because the increased
load on the shared-storage device is not observable as a
throughput increase at the monitored servers.

Network-hogs can result from a local traffic-emitter
(e.g., a backup process), or the receipt of data during a
denial-of-service attack. Network-hogs are observable as
increased throughput (but not necessarily “goodput”) at
the monitored file servers. Packet-loss faults might be the
result of network congestion, e.g., due to a network-hog
on a nearby unmonitored node or due to packet corrup-
tion and losses from a failing NIC.

6 Instrumentation
For our problem diagnosis, we gather and analyze OS-
level performance metrics, without requiring any modi-
fications to the file system, the applications or the OS.

In Linux, OS-level performance metrics are made
available as text files in the /proc pseudo file sys-
tem. Table 1 describes the specific metrics that we col-
lect. Most /proc data is collected via sysstat 7.0.0’s
sadc program [12]. sadc is used to periodically gather

storage- and network-related metrics (as we are primar-
ily concerned with performance problems due to stor-
age and network resources, although other kinds of met-
rics are available) at a sampling interval of one second.
For storage resources sysstat provides us with throughput
(tps, rd_sec, wr_sec) and latency (await, svctm)
metrics, and for network resources it provides us with
throughput (rxpck, txpck, rxbyt, txbyt) metrics.

Unfortunately sysstat provides us only with through-
put data for network resources. To obtain congestion data
as well, we sample the contents of /proc/net/tcp,
on both clients and servers, once every second. This
gives us TCP congestion-control data [22] in the form
of the sending congestion-window (cwnd) metric.

6.1 Parallel File-System Behavior
We highlight our (empirical) observations of PVFS’s/
Lustre’s behavior that we believe is characteristic of
stripe-based parallel file systems. Our preliminary stud-
ies of two other parallel file systems, GlusterFS [2] and
Ceph [26], also reveal similar insights, indicating that our
approach might apply to parallel file systems in general.

[Observation 1] In a homogeneous (i.e., identical
hardware) cluster, I/O servers track each other closely
in throughput and latency, under fault-free conditions.
For N I/O servers, I/O requests of size greater than (N−
1)× stripe_size results in I/O on each server for a single
request. Multiple I/O requests on the same file, even for
smaller request sizes, will quickly generate workloads1

on all servers. Even I/O requests to files smaller than
stripe_size will generate workloads on all I/O servers,
as long as enough small files are read/written. We ob-
served this for all three target benchmarks, dd, IOzone,
and PostMark. For metadata-intensive workloads, we ex-
pect that metadata servers also track each other in propor-
tional magnitudes of throughput and latency.

[Observation 2] When a fault occurs on at least one of
the I/O servers, the other (fault-free) I/O servers experi-
ence an identical drop in throughput.
When a client syscall involves requests to multiple I/O
servers, the client must wait for all of these servers to re-
spond before proceeding to the next syscall.2 Thus, the
client-perceived cluster performance is constrained by
the slowest server. We call this the bottlenecking condi-
tion. When a server experiences a performance fault, that
server’s per-request service-time increases. Because the

1Pathological workloads might not result in equitable workload dis-
tribution across I/O servers; one server would be disproportionately
deluged with requests, while the other servers are idle, e.g., a workload
that constantly rewrites the same stripe_size chunk of a file.

2Since Lustre performs client side caching and readahead, client I/O
syscalls may return immediately even if the corresponding file server
is faulty. Even so, a maximum of 32 MB may be cached (or 40 MB
pre-read) before Lustre must wait for responses.
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Figure 2: Peer-asymmetry of rd_sec for iozoner
workload with disk-hog fault.

client blocks on the syscall until it receives all server re-
sponses, the client’s syscall-service time also increases.
This leads to slower application progress and fewer re-
quests per second from the client, resulting in a propor-
tional decrease in throughput on all I/O servers.

[Observation 3] When a performance fault occurs on
at least one of the I/O servers, the other (fault-free) I/O
servers are unaffected in their per-request service times.

Because there is no server-server communication (i.e.,
no server inter-dependencies), a performance problem at
one server will not adversely impact latency (per-request
service-time) at the other servers. If these servers were
previously highly loaded, latency might even improve
(due to potentially decreased resource contention).

[Observation 4] For disk/network-hog faults,
storage/network-throughput increases at the faulty
server and decreases at the non-faulty servers.

A disk/network-hog fault at a server is due to a third-
party that creates additional I/O traffic that is observed
as increased storage/network-throughput. The additional
I/O traffic creates resource contention that ultimately
manifests as a decrease in file-server throughput on
all servers (causing the bottlenecking condition of ob-
servation 2). Thus, disk- and network-hog faults can
be localized to the faulty server by looking for peer-
divergence (i.e. asymmetry across peers) in the storage-
and network-throughput metrics, respectively, as seen in
Figure 2.

[Observation 5] For disk-busy (packet-loss) faults,
storage- (network-) throughput decreases on all servers.

For disk-busy (packet-loss) faults, there is no asymme-
try in storage (network) throughputs across I/O servers
(because there is no other process to create observable
throughput, and the server daemon has the same through-
put at all the nodes). Instead, there is a symmetric
decrease in the storage-(network-) throughput metrics
across all servers. Because asymmetry does not arise,
such faults cannot be diagnosed, as seen in Figure 3.
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Figure 4: Peer-asymmetry of await for ddr workload
with disk-hog fault.

[Observation 6] For disk-busy and disk-hog faults,
storage-latency increases on the faulty server and de-
creases at the non-faulty servers.

For disk-busy and disk-hog faults, await, avgqu-sz
and %util increase at the faulty server as the disk’s
responsiveness decreases and requests start to backlog.
The increased await on the faulty server causes an
increased server response-time, making the client wait
longer before it can issue its next request. The additional
delay that the client experiences reduces its I/O through-
put, resulting in the fault-free servers having increased
idle time. Thus, the await and %utilmetrics decrease
asymmetrically on the fault-free I/O servers, enabling a
peer-comparison diagnosis of the disk-hog and disk-busy
faults, as seen in Figure 4.

[Observation 7] For network-hog and packet-loss
faults, the TCP congestion-control window decreases
significantly and asymmetrically on the faulty server.

The goal of TCP congestion control is to allow cwnd to
be as large as possible, without experiencing packet-loss
due to overfilling packet queues. When packet-loss oc-
curs and is recovered within the retransmission timeout
interval, the congestion window is halved. If recovery
takes longer than retransmission timeout, cwnd is re-
duced to one segment. When nodes are transmitting data,
their cwnd metrics either stabilize at high (≈100) val-
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ues or oscillate (between ≈10–100) as congestion is ob-
served on the network. However, during (some) network-
hog and (all) packet-loss experiments, cwnds of connec-
tions to the faulty server dropped by several orders of
magnitude to single-digit values and held steady until the
fault was removed, at which time the congestion window
was allowed to open again. These asymmetric sustained
drops in cwnd enable peer-comparison diagnosis for net-
work faults, as seen in Figure 5.

7 Discussion on Metrics
Although faults present in multiple metrics, not all met-
rics are appropriate for diagnosis as they exhibit incon-
sistent behaviors. Here we describe problematic metrics.

Storage-throughput metrics. There is a notable rela-
tionship between the storage-throughput metrics: tps×
avgrq-sz = rd_sec+ wr_sec. While rd_sec
and wr_sec accurately capture real storage activity
and strongly correlate across I/O servers, tps and
avgrq-sz do not correlate as strongly because a lower
transfer rate may be compensated by issuing larger-sized
requests. Thus, tps is not a reliable metric for diagnosis.

svctm. The impact of disk faults on svctm is incon-
sistent. The influences on storage service times are: time
to locate the starting sector (seek time and rotational de-
lay), media-transfer time, reread/rewrite time in the event
of a read/write error, and delay time to due servicing of
unobservable requests. During a disk fault, servicing of
interleaved requests increases seek time. Thus, for an
unchanged avgrq-sz, svctm will increase asymmet-
rically on the faulty server. Furthermore, during a disk-
busy fault, servicing of unobservable requests further in-
creases svctm due to request delays. However, during a
disk-hog fault, the hog process might be issuing requests
of smaller sizes than PVFS/Lustre. If so, then the associ-
ated decrease in media-transfer time might offset the in-
crease in seek time resulting in a decreased or unchanged
svctm. Thus, svctm is not guaranteed to exhibit asym-
metries for disk-hogs, and therefore is unreliable.

Other metrics. While problems manifest on other
metrics (e.g., CPU usage, context-switch rate), these sec-
ondary manifestations are due to the overall reduction in
I/O throughput during the faulty period, and reveal noth-
ing new. Thus, we do not analyze these metrics.

8 Experimental Set-Up
We perform our experiments on AMD Opteron 1220 ma-
chines, each with 4 GB RAM, two Seagate Barracuda
7200.10 320 GB disks (one dedicated for PVFS/Lustre
storage), and a Broadcom NetXtreme BCM5721 Gigabit
Ethernet controller. Each node runs Debian GNU/Linux
4.0 (etch) with Linux kernel 2.6.18. The machines run
in stock configuration with background tasks turned off.
We conduct experiments with x/y configurations, i.e., the
PVFS x/y cluster comprises y combined I/O and meta-
data servers and x clients, while the equivalent Lustre
x/y cluster comprises y object storage (I/O) servers with
a single object storage target each, a single (dedicated)
metadata server, and x clients. We conduct our experi-
ments for 10/10 and 6/12 PVFS and Lustre clusters;3 in
the interests of space, we explain the 10/10 cluster exper-
iments in detail, but our observations carry to both.

For these experiments PVFS 2.8.0 is used in the de-
fault server (pvfs2-genconfig generated) configu-
ration with two modifications. First, we use the Di-
rect I/O method (TroveMethod directio) to by-
pass the Linux buffer cache for PVFS I/O server storage.
This is required for diagnosis as we otherwise observe
disparate I/O server behavior during IOzone’s rewrite
phase. Although bypassing the buffer cache has no ef-
fect on diagnosis for non-rewrite (e.g., ddw) workloads,
it does improve large write throughput by 10%.

Second, we increase to 4 MB (from 256 kB) the Flow
buffer size (FlowBufferSizeBytes) to allow larger
bulk data transfers and enable more efficient disk usage.
This modification is standard practice in PVFS perfor-
mance tuning, and is required to make our testbed perfor-
mance representative of real deployments. It does not ap-
pear to affect diagnosis capability. In addition, we patch
the PVFS kernel client to eliminate the 128 MB total size
restriction on the /dev/pvfs2-req device request
buffers and to vmalloc memory (instead of kmalloc)
for the buffer page map (bufmap_page_array) to
ensure that larger request buffers are actually allocatable.
We then invoke the PVFS kernel client with 64 MB re-
quest buffers (desc-size parameter) in order to make
the 4 MB data transfers to each of the I/O servers.

For Lustre experiments we use the etch backport
of the Lustre 1.6.6 Debian packages in the default

3Due to a limited number of nodes we were unable to experiment
with higher active client/server ratios. However, with the workloads
and faults tested, an increased number of clients appears to degrade
per-client throughput with no significant change in other behavior.



server configuration with a single modification to set
the lov.stripecount parameter to −1 to stripe files
across each object storage target (I/O server).

The nodes are rebooted immediately prior to the start
of each experiment. Time synchronization is performed
at boot-time using ntpdate. Once the servers are ini-
tialized and the client is mounted, monitoring agents start
capturing metrics to a local (non-storage dedicated) disk.
sync is then performed, followed by a 15-second sleep,
and the experiment benchmark is run. The benchmark
runs fault-free for 120 seconds prior to fault injection.
The fault is then injected for 300 seconds and then de-
activated. The experiment continues to the completion
of the benchmark, which ideally runs for a total of 600
seconds in the fault-free case. This run time allows the
benchmark to run for at least 180 seconds after a fault’s
deactivation to determine if there are any delayed effects.
We run ten experiments for each workload & fault com-
bination, using a different faulty server for each iteration.

8.1 Workloads
We use five experiment workloads derived from three ex-
periment benchmarks: dd, IOzone, and PostMark. The
same workload is invoked concurrently on all clients.
The first two workloads, ddw and ddr, either write zeros
(from /dev/zero) to a client-specific temporary file or
read the contents of a previously written client-specific
temporary file and write the output to /dev/null.
dd [24] performs a constant-rate, constant-workload

large-file read/write from/to disk. It is the simplest large-
file benchmark to run, and helps us to analyze and under-
stand the system’s behavior prior to running more com-
plicated workloads. ddmodels the behavior of scientific-
computing workloads with constant data-write rates.

Our next two workloads, iozonew and iozoner,
consist of the same file-system benchmark, IOzone
v3.283 [4]. We run iozonew in write/rewrite mode
and iozoner in read/reread mode. IOzone’s behav-
ior is similar to dd in that it has two constant read/write
phases. Thus, IOzone is a large-file I/O-heavy bench-
mark with few metadata operations. However, there is
an fsync and a workload change half-way through.

Our fifth benchmark is PostMark v1.51 [15]. Post-
Mark was chosen as a metadata-server heavy workload
with small file writes (all writes < 64 kB thus, writes oc-
cur only on a single I/O server per file).

Configurations of Workloads. For the ddwworkload,
we use a 17 GB file with a record-size of 40 MB for
PVFS, and a 30 GB file is used with a record-size 10 MB
for Lustre. File sizes are chosen to result in a fault-free
experiment runtime of approximately 600 seconds. The
PVFS record-size was chosen to result in 4 MB bulk data
transfers to each I/O server, which we empirically deter-
mined to be the knee of the performance vs. record-size

curve. The Lustre record-size was chosen to result in
1 MB bulk data transfers to each I/O server—the max-
imum payload size of a Lustre RPC. Since Lustre both
aggregates client writes and performs readahead, varying
the record-size does not significantly alter Lustre read or
write performance. For ddr we use a 27 GB file with a
record-size of 40 MB for PVFS, and a 30 GB file with a
record-size of 10 MB for Lustre (same as ddw).

For both the iozonew and iozoner workloads, we
use an 8 GB file with a record-size of 16 MB (the largest
that IOzone supports) for PVFS. For Lustre we use a
9 GB file with a record-size of 10 MB for iozonew, and
a 16 GB file with the same record-size for iozoner. For
postmark we use its default configuration with 16,000
transactions for PVFS and 53,000 transactions for Lustre
to give a sufficiently long-running benchmark.

9 Fault Injection
In our fault-induced experiments, we inject a single fault
at a time into one of the I/O servers to induce degraded
performance for either network or storage resources. We
inject the following faults:

• disk-hog: a dd process that reads 256 MB blocks (us-
ing direct I/O) from an unused storage disk partition.

• disk-busy: an sgm_dd process [11] that issues low-
level SCSI I/O commands via the Linux SCSI Generic
(sg) driver to read 1 MB blocks from the same unused
storage disk partition.

• network-hog: a third-party node opens a TCP connec-
tion to a listening port on one of the PVFS I/O servers
and sends zeros to it (write-network-hog), or an I/O
server opens a connection and sends zeros to a third
party node (read-network-hog).

• pktloss: a netfilter firewall rule that (probabilistically)
drops packets received at one of the I/O servers with
probability 5% (receive-pktloss), or a firewall rule on
all clients that drops packets incoming from a single
server with probability 5% (send-pktloss).

10 Diagnosis Algorithm
The first phase of the peer-comparison diagnostic algo-
rithm identifies the faulty I/O server for the faults stud-
ied. The second phase performs root-cause analysis to
identify the resource at fault.

10.1 Phase I: Finding the Faulty Server
We considered several statistical properties (e.g., the
mean, the variance, etc. of a metric) as candidates for
peer-comparison across servers, but ultimately chose the
probability distribution function (PDF) of each metric
because it captures many of the metric’s statistical prop-
erties. Figure 6 shows the asymmetry in a metric’s his-
tograms/PDFs between the faulty and fault-free servers.
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Figure 6: Histograms of rd_sec (ddr with disk-hog fault) for one faulty and two non-faulty servers.

Histogram-Based Approach. We determine the
PDFs, using histograms as an approximation, of a
specific black-box metric values over a window of time
(of size WinSize seconds) at each I/O server. To compare
the resulting PDFs across the different I/O servers, we
use a standard measure, the Kullback-Leibler (KL)
divergence [9], as the distance between two distribu-
tion functions, P and Q.4 The KL divergence of a
distribution function, Q, from the distribution function,
P, is given by D(P||Q) = ∑i P(i) log P(i)

Qi . We use a
symmetric version of the KL divergence, given by
D′(P||Q) = 1

2 [D(P||Q)+D(Q||P)] in our analysis.
We perform the following procedure for each of metric

of interest. Using i to represent one of these metrics, we
first perform a moving average on i. We then take PDFs
of the smoothed i for two distinct I/O servers at a time
and compute their pairwise KL divergences. A pairwise
KL-divergence value for i is flagged as anomalous if it is
greater than a certain predefined threshold. An I/O server
is flagged as anomalous if its pairwise KL-divergence for
i is anomalous with more than half of the other servers
for at least k of the past 2k− 1 windows. The window
is shifted in time by WinShi f t (there is an overlap of
WinSize−WinShi f t samples between two consecutive
windows), and the analysis is repeated. A server is in-
dicted as faulty if it is anomalous in one or more metrics.

We use a 5-point moving average to ensure that met-
rics reflect average behavior of request processing. We
also use a WinSize of 64, a WinShi f t of 32, and a k of
3 in our analysis to incorporate a reasonable quantity of
data samples per comparison while maintaining a reason-
able diagnosis latency (approximately 90 seconds). We
investigate the useful ranges of these values in § 11.2.

Time Series-Based Approach. We use the histogram-
based approach for all metrics except cwnd. Unlike
other metrics, cwnd tends to be noisy under normal con-
ditions. This is expected as TCP congestion control pre-
vents synchronized connections from fully utilizing link
capacity. Thus cwnd analysis is different from other
metrics as there is no closely-coupled peer behavior.

4Alternatively, earth mover’s distance [20] or another distance mea-
sure may be used instead of KL.

Fortunately, there is a simple heuristic for detect-
ing packet-loss using cwnd. TCP congestion control
responds to packet-loss by halving cwnd, which re-
sults cwnd exponential decay after multiple loss events.
When viewed on a logarithmic scale, sustained packet-
loss results in a linear decrease for each packet lost.

To support analysis of cwnd, we first generate a time-
series by performing a moving average on cwnd with
a window size of 31 seconds. Based on empirical ob-
servation, this attenuates the effect of sporadic transmis-
sion timeout events while enabling reasonable diagnosis
latencies (i.e., under one minute). Then, every second,
a representative value (median) is computed of the log-
cwnd values. A server is indicted if its log-cwnd is less
than a predetermined fraction (threshold) of the median.

Threshold Selection. Both the histogram and time-
series analysis algorithms require thresholds to differ-
entiate between faulty and fault-free servers. We deter-
mine the thresholds through a fault-free training phase
that captures a profile of relative server performance.

We do not need to train against all potential workloads,
instead we train on workloads that are expected to stress
the system to its limits of performance. Since server per-
formance deviates the most when resources are saturated
(and thus, are unable to “keep up” with other nodes),
these thresholds represent the maximum expected perfor-
mance deviations under normal operation. Less intense
workloads, since they do not saturate server resources,
are expected to exhibit better coupled peer behavior.

As the training phase requires training on the spe-
cific file system and hardware intended for problem di-
agnosis, we recommend training with HPC workloads
normally used to stress-test systems for evaluation and
purchase. Ideally these tests exhibit worst-case request
rates, payload sizes, and access patterns expected dur-
ing normal operation so as to saturate resources, and ex-
hibit maximally-expected request queuing. In our exper-
iments, we train with 10 iterations of the ddr, ddw, and
postmark fault-free workloads. The same metrics are
captured during training as when performing diagnosis.

To train the histogram algorithm, for each metric, we
start with a minimum threshold value (currently 0.1) and



increase in increments (of 0.1) until the minimum thresh-
old is determined that eliminates all anomalies on a par-
ticular server. This server-specific threshold is doubled
to provide a cushion that masks minor manifestations
occurring during the fault period. This is based on the
premise that a fault’s primary manifestation will cause a
metric to be sufficiently asymmetric, roughly an order of
magnitude, yielding a “safe window” of thresholds that
can be used without altering the diagnosis.

Training the time-series algorithm is similar, except
that the final threshold is not doubled as the cwnd met-
ric is very sensitive, yielding a much smaller correspond-
ing “safe window”. Also, only two thresholds are deter-
mined for cwnd, one for all servers sending to clients,
and one for clients sending to servers. As cwnd is gen-
erally not influenced by the performance of specific hard-
ware, its behavior is consistent across nodes.

10.2 Phase II: Root-Cause Analysis
In addition to identifying the faulty server, we also infer
the resource that is the root cause of the problem through
an expert derived checklist. This checklist, based on our
observations (§ 6.1) of PVFS’s/Lustre’s behavior, maps
sets of peer-divergent metrics to the root cause. Where
multiple metrics may be used, the specific metrics se-
lected are chosen for consistency of behavior (see § 7).
If we observe peer-divergence at any step of the check-
list, we halt at that step and arrive at the root cause and
faulty server. If peer-divergence is not observed at that
step, we continue to the next step of decision-making.

Do we observe peer-divergence in . . .

1. Storage throughput? Yes: disk-hog fault
(rd_sec or wr_sec) No: next question

2. Storage latency? Yes: disk-busy fault
(await) No: . . .

3. Network throughput?∗ Yes: network-hog fault
(rxbyt or txbyt) No: . . .

4. Network congestion? Yes: packet-loss fault
(cwnd) No: no fault discovered

∗Must diverge in both rxbyt & txbyt, or in absence of peer-
divergence in cwnd (see § 12).

11 Results
PVFS Results. Tables 2 and 3 shows the accuracy
(true- and false-positive rates) of our diagnosis algorithm
in indicting faulty nodes (ITP/IFP) and diagnosing root
causes (DTP/DFP)5 for the PVFS 10/10 & 6/12 clusters.

5ITP is the percentage of experiments where all faulty servers are
correctly indicted as faulty, IFP is the percentage where at least one
non-faulty server is misindicted as faulty. DTP is the percentage of
experiments where all faults are successfully diagnosed to their root
causes, DFP is the percentage where at least one fault is misdiagnosed

Fault ITP IFP DTP DFP
None (control) 0.0% 0.0% 0.0% 0.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 90.0% 2.0% 90.0% 2.0%
write-network-hog 92.0% 0.0% 84.0% 8.0%
read-network-hog 100.0% 0.0% 100.0% 0.0%
receive-pktloss 42.0% 0.0% 42.0% 0.0%
send-pktloss 40.0% 0.0% 40.0% 0.0%
Aggregate 77.3% 0.3% 76.0% 1.4%

Table 2: Results of PVFS diagnosis for the 10/10 cluster.

Fault ITP IFP DTP DFP
None (control) 0.0% 2.0% 0.0% 2.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 100.0% 0.0% 100.0% 0.0%
write-network-hog 42.0% 2.0% 0.0% 44.0%
read-network-hog 0.0% 2.0% 0.0% 2.0%
receive-pktloss 54.0% 6.0% 54.0% 6.0%
send-pktloss 40.0% 2.0% 40.0% 2.0%
Aggregate 56.0% 2.0% 49.0% 8.0%

Table 3: Results of PVFS diagnosis for the 6/12 cluster.

It is notable that not all faults manifest equally on
all workloads. disk-hog, disk-busy, and read-network-
hog all exhibit a significant (> 10%) runtime increase for
all workloads. In contrast, the receive-pktloss and send-
pktloss only have significant impact on runtime for write-
heavy and read-heavy workloads respectively. Corre-
spondingly, faults with greater runtime impact are of-
ten the most reliably diagnosed. Since packet-loss faults
have negligible impact on ddr & ddw ACK flows and
postmark (where lost packets are recovered quickly),
it is reasonable to expect to not be able to diagnose them.

When removing the workloads for which packet-loss
cannot be observed (and thus, not diagnosed), the aggre-
gate diagnosis rates improve to 96.3% ITP and 94.6%
DTP in the 10/10 cluster, and to 67.2% ITP and 58.8%
DTP in the 6/12 cluster.

Lustre Results. Tables 4 and 5 shows the accuracy of
our diagnosis algorithm for the Lustre 10/10 & 6/12 clus-
ters. When removing workloads for which packet-loss
cannot be observed, the aggregate diagnosis rates im-
prove to 92.5% ITP and 86.3% DTP in the 10/10 cluster,
and to 90.0% ITP and 82.1% DTP in the 6/12 case.

Both 10/10 clusters exhibit comparable accuracy rates.
In contrast, the PVFS 6/12 cluster exhibits masked
network-hogs faults (fewer true-positives) due to low
network throughput thresholds from training with unbal-
anced metadata request workloads (see § 12). The Lus-
tre 6/12 cluster exhibits more misdiagnoses (higher false-
positives) due to minor, secondary manifestations in stor-
age throughput. This suggests that our analysis algorithm
may be refined with a ranking mechanism that allows di-
agnosis to tolerate secondary manifestations (see § 14).

to a wrong root cause (including misindictments).



Fault ITP IFP DTP DFP
None (control) 0.0% 0.0% 0.0% 0.0%
disk-hog 82.0% 0.0% 82.0% 0.0%
disk-busy 88.0% 2.0% 68.0% 22.0%
write-network-hog 98.0% 2.0% 96.0% 4.0%
read-network-hog 98.0% 2.0% 94.0% 6.0%
receive-pktloss 38.0% 4.0% 36.0% 6.0%
send-pktloss 40.0% 0.0% 38.0% 2.0%
Aggregate 74.0% 1.4% 69.0% 5.7%

Table 4: Results of Lustre diagnosis for the 10/10 cluster.

Fault ITP IFP DTP DFP
None (control) 0.0% 6.0% 0.0% 6.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 76.0% 8.0% 38.0% 46.0%
write-network-hog 86.0% 14.0% 86.0% 14.0%
read-network-hog 92.0% 8.0% 92.0% 8.0%
receive-pktloss 40.0% 2.0% 40.0% 2.0%
send-pktloss 38.0% 8.0% 38.0% 8.0%
aggregate 72.0% 6.6% 65.7% 12.0%

Table 5: Results of Lustre diagnosis for the 6/12 cluster.

11.1 Diagnosis Overheads & Scalability
Instrumentation Overhead. Table 6 reports runtime
overheads for instrumentation of both PVFS and Lus-
tre for our five workloads. Overheads are calculated as
the increase in mean workload runtime (for 10 iterations)
with respect to their uninstrumented counterparts. Nega-
tive overheads are result of sampling error, which is high
due runtime variance across experiments. The PVFS
workload with the least runtime variance (iozoner) ex-
hibits, with 99% confidence, a runtime overhead < 1%.
As the server load of this workload is comparable to the
others, we conclude that OS-level instrumentation has
negligible impact on throughput and performance.

Data Volume. The performance metrics collected by
sadc have an uncompressed data volume of 3.8 kB/s on
each server node, independent of workload or number
of clients. The congestion-control metrics sampled from
/proc/net/tcp have a data volume of 150 B/s per
socket on each client & server node. While the volume of
congestion-control data linearly increases with number
of clients, it is not necessary to collect per-socket data for
all clients. At minimum, congestion-control data needs
to be collected for only a single active client per time
window. Collecting congestion-control data from addi-
tional clients merely ensures that server packet-loss ef-
fects are observed by a representative number of clients.

Algorithm Scalability. Our analysis code requires, ev-
ery second, 3.44 ms per server and 182 µs per server pair
of CPU time on a 2.4 GHz dedicated core to diagnose a
fault if any exists. Therefore, realtime diagnosis of up to
88 servers may be supported on a single 2.4 GHz core.

Although the pairwise analysis algorithm is O(n2), we
recognize that it is not necessary to compare a given

Overhead for File System
Workload PVFS Lustre

ddr 0.90% ± 0.62% 1.81% ± 1.71%
ddw 0.00% ± 1.03% −0.22% ± 1.18%
iozoner −0.07% ± 0.37% 0.70% ± 0.98%
iozonew −0.77% ± 1.62% 0.53% ± 2.71%
postmark −0.58% ± 1.49% 0.20% ± 1.28%

Table 6: Instrumentation overhead: Increase in runtime
w.r.t. non-instrumented workload ± standard error.

server against all others in every analysis window. To
support very large clusters (thousands of servers), we
recommend partitioning n servers into n− k analysis do-
mains of k (e.g., 10) servers each, and only performing
pairwise comparisons within these partitions. To avoid
undetected anomalies that might develop in static parti-
tions, we recommend rotating partition membership in
each analysis window. Although we have not yet tested
this technique, it does allow for O(n) scalability.

11.2 Sensitivity
Histogram moving-average span. Due to large record
sizes, some workload & fault combinations (e.g., ddr
& disk-busy) yield request processing times up to 4 s.
As client requests often synchronize (see § 12), metrics
may reflect distinct request processing stages instead of
aggregate behavior. For example, during a disk fault,
the faulty server performs long, low-throughput storage
operations while fault-free servers perform short, high-
throughput operations. At 1 s resolution, these behaviors
reflect asymmetrically in many metrics. While this fea-
ture results in high (79%) ITP rates, its presence in nearly
all metrics results in high (10%) DFP rates as well. Fur-
thermore, since the influence of this feature is dependent
on workload and number of clients, it is not reliable, and
therefore, it is important to perform metric smoothing.

However, “too much” smoothing eliminates medium-
term variances, decreasing TP and increasing FP rates.
With 9-point smoothing, DFP (11%) exceeds un-
smoothed while DTP reduces by 11% to 58.3%. There-
fore we chose 5-point smoothing to minimize IFP (2.4%)
and DFP (6.7%) with a modest decrease in DTP (64.9%).

Anomalous window filtering. In histogram-based
analysis, servers are flagged anomalous only if they
demonstrate anomalies in k of the past 2k− 1 windows.
This filtering reduces false-positives in the event of spo-
radic anomalous windows when no underlying fault is
present. k in the range 3–7 exhibits a consistent 6% in-
crease in ITP/DTP and a 1% decrease in IFP/DFP over
the non-filtered case. For k ≥ 8, the TP/FP rates de-
crease/increase again. We expect k’s useful-range upper-
bound to be a function of the time that faults manifest.

cwnd moving-average span. For cwnd analysis a
moving average is performed on the time series to atten-



uate the effect of sporadic transmission timeouts. This
enforces the condition that timeout events sustain for a
reasonable time period, similar to anomalous window
filtering. Spans in the range 5–31, with 31 the largest
tested, exhibit a consistent 8% increase in ITP/DTP and
a 1% decrease in IFP/DFP over the non-smoothed case.

WinSize & WinShift. Seven WinSizes of 32–128 with
16 sample steps, and seven WinShi f ts of 16–64 with 8
sample steps were tested to determine diagnosis influ-
ence. All WinSizes≥ 48 and WinShi f ts≥ 32 were com-
parable in performance (62–66% DTP, 6–9% DFP). Thus
for sufficiently large values, diagnosis is not sensitive.

Histogram threshold scale factor. Histogram thresh-
olds are scaled by a factor (currently 2x) to provide a
cushion against secondary, minor fault manifestations
(see § 10.1). At 1x, FP rates increase to 19%/23%
IFP/DFP. 1.5x reduces this to 3%/8% IFP/DFP. On
the range 2–4x ITP/DTP decreases from 70%/65% to
54%/48% as various metrics are masked, while IFP/DFP
hold at 2%/7% as no additional misdiagnoses occur.

12 Experiences & Lessons
We describe some of our experiences, highlighting coun-
terintuitive or unobvious issues that arose.

Heterogeneous Hardware. Clusters with heteroge-
neous hardware will exhibit performance characteristics
that might violate our assumptions. Unfortunately, even
supposedly homogeneous hardware (same make, model,
etc.) can exhibit slightly different performance behaviors
that impede diagnosis. These differences mostly mani-
fest when the devices are stressed to performance limits
(e.g., saturated disk or network).

Our approach can compensate for some deviations in
hardware performance as long as our algorithm is trained
for stressful workloads where these deviations manifest.
The tradeoff, however, is that performance problems of
lower severity (whose impact is less than normal devia-
tions) may be masked. Additionally, there may be fac-
tors that are non-linear in influence. For example, buffer-
cache thresholds are often set as a function of the amount
of free memory in a system. Nodes with different mem-
ory configurations will have different caching seman-
tics, with associated non-linear performance changes that
cannot be easily accounted for during training.

Multiple Clients. Single- vs. multi-client workloads
exhibit performance differences. In PVFS clusters with
caching enabled, the buffer cache aggregates contigu-
ous small writes for single-client workloads, consider-
ably improving throughput. The buffer cache is not as ef-
fective with small writes in multi-client workloads, with
the penalty due to interfering seeks reducing throughput
and pushing disks to saturation.
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Figure 7: Single (top) and multiple (bottom) client
cwnds for ddw workloads with receive-pktloss faults.
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Figure 8: Disk-busy fault influence on faulty server’s
cwnd for ddr workload.

This also impacts network congestion (see Figure 7).
Single-client write workloads create single-source bulk
data transfers, with relatively little network congestion.
This creates steady client cwnds that deviate sharply
during a fault. Multi-client write workloads create multi-
source bulk data transfers, leading to interference, con-
gestion and chaotic, widely varying cwnds. While a
faulty server’s cwnds are still distinguishable, this high-
lights the need to train on stressful workloads.

Cross-Resource Fault Influences. Faults can exhibit
cross-metric influence on a single resource, e.g., a disk-
hog creates increased throughput on the faulty disk, sat-
urating that disk, increasing request queuing and latency.

Faults affecting one resource can manifest unintu-
itively in another resource’s metrics. Consider a disk-
busy fault’s influence on the faulty server’s cwnd for a



large read workload (see Figure 8). cwnd is updated
only when a server is both sending and experiencing con-
gestion; thus, cwnd does not capture the degree of net-
work congestion when a server is not sending data. Un-
der a disk-busy fault, (i) a single client would send re-
quests to each server, (ii) the fault-free servers would re-
spond quickly and then idle, and (iii) the faulty server
would respond after a delayed disk-read request.

PVFS’ lack of client read-ahead blocks clients on
the faulty server’s responses, effectively synchronizing
clients. Bulk data transfers occur in phases (ii) and (iii).
During phase (ii), all fault-free servers transmit, creating
network congestion and chaotic cwnd values, whereas
during phase (iii), only the faulty server transmits, ex-
periencing almost no congestion and maintaining a sta-
ble, high cwnd value. Thus, the faulty server’s cwnd is
asymmetric w.r.t. the other servers, mistakenly indicat-
ing a network-related fault instead of a disk-busy fault.

We can address this by assigning greater weight to
storage-metric anomalies over network-metric anomalies
in our root-cause analysis (§ 10.2). With Lustre’s client
read-ahead, read calls are not as synchronized across
clients, and this influence does not manifest as severely.

Metadata Request Heterogeneity. Our peer-similarity
hypothesis does not apply to PVFS metadata servers.
Specifically, since each PVFS directory entry is stored
in a single server, server requests are unbalanced during
path lookups, e.g., the server containing the directory “/”
is involved in nearly all lookups, becoming a bottleneck.

We address this heterogeneity by training on the
postmark metadata-heavy workload. Unbalanced
metadata requests create a spread in network-throughput
metrics for each server, contributing to a larger training
threshold. If the request imbalance is significant, the re-
sulting large threshold for network-throughput metrics
will mask nearly all network-hog faults.

Buried ACKs. Read/write-network-hogs induce de-
viations in both receive and send network-throughput
due to the network-hog’s payload and associated ac-
knowledgments. Since network-hog ACK packets are
smaller than data packets, they can easily be “buried”
in the network-throughput due to large-I/O traffic. Thus,
network-hogs can appear to influence only one of rxbyt
or txbyt, for read or write workloads, respectively.
rxpck and txpck metrics are immune to this ef-

fect, and can be used as alternatives for rxbyt and
txbyt for network-hog diagnosis. Unfortunately, the
non-homogeneous nature of metadata operations (in par-
ticular, postmark) result in rxpck/txpck fault man-
ifestations being masked in most circumstances.

Delayed ACKs. In contradiction to Observation 5, a
receive-(send-) packet-loss fault during a large-write
(large-read) workload can cause a steady receive (send)

network throughput on the faulty node and asymmetric
decreases on non-faulty nodes. Since the receive (send)
throughput is almost entirely comprised of ACKs, this
phenomenon is the result of delayed ACK behavior.

Delayed ACKs reduce ACK traffic by acknowledg-
ing every other packet when packets are received in or-
der, effectively halving the amount of ACK traffic that
would otherwise be needed to acknowledge packets 1:1.
During packet-loss, each out-of-order packet is acknowl-
edged 1:1 resulting in an effective doubling of receive
(send) throughput on the faulty server as compared to
non-faulty nodes. Since the packet-loss fault itself results
in, approximately, a halving of throughput, the overall
behavior is a steady or slight increase in receive (sent)
throughput on the faulty node during the fault period.

Network Metric Diagnosis Ambiguity. A single net-
work metric is insufficient for diagnosis of network
faults because of three properties of network through-
put and congestion. First, write-network-hogs during
write workloads create enough congestion to deviate the
client cwnd; thus, cwnd is not an exclusive indicator
of a packet-loss fault. Second, delayed ACKs contribute
to packet-loss faults manifesting as network-throughput
deviations, on rxbyt or txbyt; thus, the absence of
a throughput deviation in the presence of a cwnd does
not sufficiently diagnose all packet-loss faults. Third,
buried ACKs contribute to network-hog faults manifest-
ing in only one of rxbyt and txbyt, but not both; thus,
the presence of both rxbyt and txbyt deviations does
not sufficiently indicate all network-hog faults.

Thus, we disambiguate network faults in the third
root-cause analysis step as follows. If both rxbyt
and txbyt are asymmetric across servers, regardless
of cwnd, a network-hog fault exists. If either rxbyt
or txbyt is asymmetric, in the absence of cwnd, a
network-hog fault exists. If cwnd is asymmetric regard-
less of either rxbyt or txbyt (but not both, due to the
first rule above), then a packet-loss fault exists.

13 Related Work
Peer-comparison Approaches. Our previous work
[14] utilizes a syscall-based approach to diagnosing per-
formance problems in addition to propagated errors and
crash/hang problems in PVFS. Currently, the perfor-
mance metric approach described here is capable of more
accurate diagnosis of performance problems with supe-
rior root-cause determination as compared to the syscall-
based approach, although the syscall approach is capa-
ble of diagnosing non-performance problems in PVFS
that would otherwise escape diagnosis here. The syscall-
based approach also has a significantly higher worst-
observed runtime overhead (≈65%) and per-server data
volumes on the order of 1 MB/s, raising performance and



scalability concerns in larger deployments.
Ganesha [18], seeks to diagnose performance-related

problems in Hadoop by classifying slave nodes, via clus-
tering of performance metrics, into behavioral profiles
which are then peer-compared to indict nodes behaving
anomalously. While the node indictment methods are
similar, our work peer-compares a limited set of perfor-
mance metrics directly (without clustering), which en-
ables us to attribute the affected metrics to a root-cause.
In contrast, Ganesha is limited to identifying faulty nodes
only, it does not perform root-cause analysis.

The closest non-authored work is Mirgorodskiy et
al. [17], which localizes code-level problems by trac-
ing function calls and peer comparing their execution
times across nodes to identify anomalous nodes in an
HPC cluster. As a debugging tool, it is designed to lo-
cate the specific functions where problems manifest in
cluster software. The performance problems studied in
our work tend to escape diagnosis with their technique
as the problems manifest in increased time spent in the
file servers’ descriptor poll loop that is symmetric across
faulty and fault-free nodes. Thus, our work aims to target
the resource responsible for performance problems.

Metric Selection. Cohen et al. [8] uses a statistical ap-
proach to metric selection for problem diagnosis in large
systems with many available metrics by identifying those
with a high efficacy at diagnosing SLO violations. They
achieve this by a summary and index of system history as
expressed by the available metrics and by marking signa-
tures of past histories as being indicative of a particular
problem, which enables them to diagnose future occur-
rences. Our metric selection is expert-based, since in the
absence of SLOs, we must determine which metrics reli-
ably peer-compare to determine if a problem exists. We
also select metrics based on semantic relevance, so that
we can attribute asymmetries to behavioral indications of
particular problems that hold across different clusters.

Message-based Problem Diagnosis. Many previous
works have focused on path-based [1, 19, 3] and
component-based [7, 16] approaches to problem diag-
nosis in Internet Services. Aguilera et al. [1] treats
components in a distributed system as black-boxes, in-
ferring paths by tracing RPC messages and detecting
faults by identifying request flow paths with abnor-
mally long latencies. Pip [19] traces causal request
flows with tagged messages, which are checked against
programmer-specified expectations. Pip identifies re-
quests and specific lines of code as faulty when they vi-
olate these expectations. Magpie [3] uses expert knowl-
edge of event orderings to trace causal request flows in
a distributed system. Magpie then attributes system re-
source utilizations (e.g. memory, CPU) to individual re-
quests and clusters them by their resource usage profiles

to detect faulty requests. Pinpoint [7, 16] tags request
flows through J2EE web-service systems, and, once a re-
quest is known to have failed, it identifies the responsible
request processing components.

Each of the path- and component-based approaches
rely on tracing of intercomponent messages (e.g., RPCs)
as the primary means of instrumentation. This requires
either modification of the messaging libraries (which, for
parallel file systems is usually contained in server ap-
plication code) or, at minimum, the ability to sniff mes-
sages and extract features from them. Unfortunately, the
message interfaces used by parallel file systems are often
proprietary and insufficiently documented, making such
instrumentation difficult. Hence, our initial attempts to
diagnose problems in parallel file systems specifically
avoid message-level tracing by identifying anomalies
through peer-comparison of global performance metrics.

While performance metrics are lightweight and easy
to obtain, we believe that traces of component-level mes-
sages (i.e., client requests & responses) would serve as a
rich source of behavioral information, and would prove
beneficial in diagnosing problems with subtler manifes-
tations. With the recent standardization of Parallel NFS
[21] as a common interface for parallel storage, future
adoption of this protocol would encourage investigation
of message-based techniques in our problem diagnosis.

14 Future Work
We intend to improve our diagnosis algorithm by incor-
porating a ranking mechanism to account for secondary
fault manifestations. Although our threshold selection
is good at determining whether a fault exists at all in
the cluster, if a fault presents in two metrics with sig-
nificantly different degrees of manifestation, then our al-
gorithm should place precedence on the metric with the
greater manifestation instead of indicting one arbitrarily.

In addition, we intend to validate our diagnosis ap-
proach on a large HPC cluster with a significantly in-
creased client/server ratio and real scientific workloads
to demonstrate our diagnosis capability at scale. We in-
tend to expand our problem coverage to include more
complex sources of performance faults. Finally, we in-
tend to expand our instrumentation to include additional
black-box metrics as well as client request tracing.

15 Conclusion
We presented a black-box problem-diagnosis approach
for performance faults in PVFS and Lustre. We have also
revealed our (empirically-based) insights about PVFS’s
and Lustre’s behavior with regard to performance faults,
and have used these observations to motivate our analysis
approach. Our fault-localization and root-cause analysis
identifies both the faulty server and the resource at fault,
for storage- and network-related problems.
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