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This article introduces the first open-source FPGA-based infrastructure, MetaSys, with a prototype in a RISC-
V system, to enable the rapid implementation and evaluation of a wide range of cross-layer techniques in
real hardware. Hardware-software cooperative techniques are powerful approaches to improving the perfor-
mance, quality of service, and security of general-purpose processors. They are, however, typically challeng-
ing to rapidly implement and evaluate in real hardware as they require full-stack changes to the hardware,
system software, and instruction-set architecture (ISA).

MetaSys implements a rich hardware-software interface and lightweight metadata support that can be used
as a common basis to rapidly implement and evaluate new cross-layer techniques. We demonstrate MetaSys’s
versatility and ease-of-use by implementing and evaluating three cross-layer techniques for: (i) prefetching
in graph analytics; (ii) bounds checking in memory unsafe languages, and (iii) return address protection in
stack frames; each technique requiring only ~100 lines of Chisel code over MetaSys.

Using MetaSys, we perform the first detailed experimental study to quantify the performance overheads
of using a single metadata management system to enable multiple cross-layer optimizations in CPUs. We
identify the key sources of bottlenecks and system inefficiency of a general metadata management system.
We design MetaSys to minimize these inefficiencies and provide increased versatility compared to previously
proposed metadata systems. Using three use cases and a detailed characterization, we demonstrate that a
common metadata management system can be used to efficiently support diverse cross-layer techniques in
CPUs. MetaSys is completely and freely available at https://github.com/CMU-SAFARI/MetaSys.
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1 INTRODUCTION

Hardware-software cooperative techniques offer a powerful approach to improving the perfor-
mance and efficiency of general-purpose processors. These techniques involve communicating key
application and semantic information from the software to the architecture to enable more pow-
erful optimizations and resource management in hardware. Recent research proposes many such
cross-layer techniques for various purposes, e.g., performance, quality of service (QoS), memory
protection, programmability, and security. For example, Whirlpool [104] identifies and communi-
cates regions of memory that have similar properties (i.e., data structures) in the program to the
hardware, which uses this information to more intelligently place data in a non-uniform cache
architecture (NUCA) system. RADAR [96] and EvictMe [166] communicate which cache blocks
will no longer be used in the program, such that cache policies can evict them. These are just a
few examples in an increasingly large space of cross-layer techniques proposed in the form of
hints implemented as new ISA instructions to aid cache replacement, prefetching, memory man-
agement, and so on [22, 26, 58, 66, 96, 116, 117, 126, 136, 137, 159, 166, 179], program annotation-
s/directives to convey program semantics [3, 47, 58, 87, 104, 163], or interfaces to communicate
an application’s QoS requirements for efficient partitioning and prioritization of shared hardware
resources [62, 93].

While cross-layer approaches have been demonstrated to be highly effective, such proposals
are challenging to evaluate on real hardware as they require cross-layer changes to the hardware,
operating system (OS), application software, and instruction-set architecture (ISA). Exist-
ing open-source infrastructures for implementing cross-layer techniques in real hardware include
PARD [62, 93] for QoS and Cheri [174] for fine-grained memory protection and security. Unfortu-
nately, these open-source infrastructures are not designed to provide key features required for per-
formance optimizations: (i) rich dynamic hardware-software interfaces, (ii) low-overhead metadata
management, and (iii) interfaces to numerous hardware components such as prefetchers, caches,
memory controllers, and so on.

In this work, we introduce MetaSys (Metadata Management System for Cross-layer Perfor-
mance Optimization), a full-system FPGA-based infrastructure, with a prototype in the RISC-V
Rocket Chip system [10], to enable rapid implementation and evaluation of diverse cross-layer
techniques in real hardware. MetaSys comprises three key components: (1) A rich hardware-
software interface to communicate a general and extensible set of application information to
the hardware architecture at runtime. We refer to this additional application information as meta-
data. Examples of metadata include memory access pattern information for prefetching, data reuse
information for cache management, address bounds for hardware bounds checking, and so on. The
interface is implemented as new instructions in the RISC-V ISA and is wrapped with easy-to-use
software library abstractions. (2) Metadata management support in the OS and hardware to
store and access the communicated metadata. Hardware components performing optimizations
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can then efficiently query for the metadata. We use a tagged memory-based design for metadata
management where each memory address is tagged with an ID. This ID points to metadata that
describes the data contained in the location specified by the memory address. (3) Modularized
components to quickly implement various cross-layer optimizations with interfaces to the meta-
data management support, OS, core, and memory system. Our FPGA-based infrastructure provides
flexible modules that can be easily extended to implement different cross-layer optimizations.

The closest work to our proposed system is XMem [164]. XMem proposes a general metadata
management system that can communicate semantic information at compile time. This limits the
use cases supported by XMem. MetaSys has the following benefits over XMem: First, MetaSys
offers a richer interface that communicates a flexible amount of metadata at runtime, rather than
being limited to statically available program information. This enables a wider set of use cases and
more powerful cross-layer techniques (as explained in Section 3.8). Second, MetaSys has a more
optimized system design that is designed to be lightweight in terms of the hardware complexity
and changes to the ISA, without sacrificing versatility (Section 3.8). MetaSys incurs only a small
area overhead of 0.02% (including 17 KB of additional SRAM), 0.2% memory overhead in DRAM,
and adds only eight new instructions to the RISC-V ISA. Third, MetaSys is open-source and freely
available, whereas XMem is neither implemented nor evaluated in real hardware with full-system
support.

Use cases. Cross-layer techniques that can be implemented with MetaSys include performance
optimizations such as cache management, prefetching, memory scheduling, data compression, and
data placement; cross-layer techniques for QoS; and lightweight techniques for memory protec-
tion (see Section 7). To demonstrate the versatility and ease-of-use of MetaSys in implementing
new cross-layer techniques, we implement and evaluate three hardware-software cooperative tech-
niques: (i) prefetching for graph analytics applications; (ii) bounds checking in memory unsafe
languages, and (iii) return address protection in stack frames. These techniques were quick to im-
plement with MetaSys, each requiring only an additional ~100 lines of Chisel [13] code on top of
MetaSys’s hardware codebase (~1,800 lines of code).

Characterizing a general metadata management system. Using MetaSys, we perform the
first detailed experimental characterization and limit study of the performance overheads of using
a single common metadata management system to enable multiple diverse cross-layer techniques
in a general-purpose processor. We make four new observations from our characterization across
24 applications and four microbenchmarks that were designed to stress MetaSys.

First, the performance overheads from the cross-layer interface and metadata system itself are
on average very low (2.7% on average, up to 27% for the most intensive microbenchmark). Second,
there is no performance loss from supporting multiple techniques that simultaneously query the
shared metadata system. This indicates that MetaSys can be designed to be a scalable substrate.
Third, the most critical factor in determining the performance overhead is the fundamental spatial
and temporal locality in the accesses to the metadata itself. This determines the effectiveness of
the metadata caches and the additional memory accesses to retrieve metadata. Fourth, we identify
TLB misses from the required address translation when metadata is retrieved from memory as an
important factor in performance overhead.

Conclusions from characterization. From our detailed characterization and implemented
use cases on real hardware, we make the following conclusions: First, using a single general meta-
data management system is a promising low-overhead approach to implement multiple cross-layer
techniques in future general-purpose processors. The significance of using a single framework is
in enabling a wide range of cross-layer techniques with a single change to the hardware-software
interface [93, 164] and consolidating common metadata management support; thus, making the
adoption of new cross-layer techniques in future processors significantly easier. Second, we demon-
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strate that a common framework can simultaneously and scalably support multiple cross-layer
optimizations. For our implemented use cases, we observe low performance overheads from using
the general MetaSys system: 0.2% for prefetching, 14% for bounds checking, and 1.2% for return
address protection.

MetaSys is fully open-source and freely available at https://www.github.com/CMU-SAFARI/
MetaSys.

This work makes the following major contributions.

e We introduce MetaSys, the first full-system open-source FPGA-based infrastructure of a
lightweight metadata management system. MetaSys provides a rich hardware-software in-
terface that can be used to implement a diverse set of cross-layer techniques. We implement
a prototype of MetaSys in a RISC-V system providing the required support in the hardware,
OS, and the ISA to enable quick implementation and evaluation of new hardware-software
cooperative techniques in real hardware.

e We propose a new hardware-software interface that enables dynamically communicating
information and a more streamlined system design that can support a richer set of cross-
layer optimizations than prior work [164].

e We present the first detailed experimental characterization of the performance and area
overheads of a general hardware-software interface and lightweight metadata management
system designed to enable multiple and diverse cross-layer performance optimizations. We
identify key sources of inefficiencies and bottlenecks of a general metadata system on real
hardware, and we demonstrate its effectiveness as a common substrate for enabling cross-
layer techniques in CPUs.

e We demonstrate the versatility and ease-of-use of the MetaSys infrastructure by imple-
menting and evaluating three hardware-software cooperative techniques: (i) prefetching for
graph analytics applications; (ii) efficient bounds checking for memory-unsafe languages;
and (iii) return address protection for stack frames. We highlight other use cases that can be
implemented with MetaSys.

2 BACKGROUND AND RELATED WORK

Hardware-software cooperative techniques in CPUs. Cross-layer performance optimizations
communicate additional information across the application-system boundary. We refer to this in-
formation as metadata. Metadata that is typically useful for performance optimization include
program properties such as access patterns, read-write characteristics, data locality/reuse, data
types/layouts, data “hotness,” and working set size. This metadata enables more intelligent hard-
ware/system optimizations such as cache management, data placement, thread scheduling, mem-
ory scheduling, data compression, and approximation [162-164]. For QoS optimizations, metadata
includes application priorities and prioritization rules for allocation of resources such as memory
bandwidth and cache space [48, 62, 76, 93, 106, 107, 152, 153]. Memory safety optimizations may
communicate base/bounds addresses of data structures [43, 45].

A general framework is a promising approach as it enables many cross-layer techniques with a
single change to the hardware-software interface and enables reusing the metadata management
support across multiple optimizations. Such systems were recently proposed for performance [163,
164], memory protection and security [45, 174], and QoS [62, 93].

A general framework to support a wide range of cross-layer optimizations—specifically for
performance—requires (i) a rich and dynamic hardware-software interface to communicate a di-
verse set of metadata at runtime, (ii) lightweight and low-overhead metadata management [164],
and (iii) interfaces to numerous hardware components. Even small overheads imposed as a result
of the system’s generality may overshadow the performance benefits of a cross-layer technique.
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General metadata systems may also impose significant complexity, performance, and power over-
heads to the processor. While prior work has demonstrated the significant benefits of cross-layer
approaches, no previous work has characterized the efficiency and capacity limits of a general
metadata system for cross-layer optimizations in CPUs.

Tagged architectures. MetaSys is inspired by the metadata management and interfaces pro-
posed in XMem [164] and the large body of work on tagged memory [45, 53, 68, 173, 182] and
capability-based systems [27, 85, 168, 174]. We compare against the closest prior work, XMem,
qualitatively in Section 3.8 and quantitatively in Section 5. Unlike all above works, our goal is to
provide an open-source framework to implement and these prior cross-layer approaches in real
hardware and to perform a detailed real-system characterization of such metadata systems for
performance optimization.

Infrastructure for evaluating cross-layer techniques. Evaluating the overheads and
feasibility of a newly proposed cross-layer technique is non-trivial. Fully characterizing the
performance and area overheads either with a full-system cycle-accurate simulator or an FPGA
implementation requires implementing: (i) Hardware support to implement the mechanism;
(ii) OS support for OS-based cross-layer optimizations and to characterize the context-switch and
system overheads of saving and handling a process’ metadata; and (iii) Compiler support and ISA
modifications to add and recognize new instructions to communicate metadata.

Recent works propose general systems that are designed to enable cross-layer techniques for
QoS (PARD [62, 93]) or fine-grained memory protection and security (Cheri [174]). PARD enables
tagging of components and applications with IDs that are propagated with memory requests and
enforcing QoS requirements in hardware. Cheri [174] is a capability-based system that provides
hardware support and ISA extensions to enable fine-grained memory protection. Neither system
supports the (i) communication of diverse metadata at runtime, (ii) flexible granularity tagging
of memory to enable efficient metadata lookups from multiple components, or (iii) interfaces to
numerous hardware components (such as the prefetcher, caches, memory controllers) that are
needed for performance optimization.

Our Goal. Our goal in this work is twofold. First, we aim to develop an efficient and flexible open-
source framework that enables rapid implementation of new cross-layer techniques to evaluate the
associated performance, area, and power overheads, and thus their benefits and feasibility, in real
hardware.

Second, we aim to perform the first detailed limit study to characterize and experimentally quan-
tify the overheads associated with general metadata systems to determine their practicality for
performance optimization in future CPUs.

3 METASYS: ENABLING AND EVALUATING CROSS-LAYER OPTIMIZATIONS

To this end, we develop MetaSys , an open-source full-system FPGA-based infrastructure to im-
plement and evaluate new cross-layer techniques in real hardware. MetaSys includes: (i) a rich
hardware-software interface to dynamically communicate a flexible amount of metadata at run-
time from the application to the hardware, using new RISC-V instructions; (ii) a tagged memory-
based [45, 53, 68, 173, 182] implementation of metadata management in the system and OS; and
(iii) flexible modules to add new hardware optimizations with interfaces to the metadata, processor,
memory, and OS. We build a prototype of MetaSys in the RISC-V Rocket Chip [10] system.

We choose an FGPA implementation as opposed to a full-system simulator as: (i) This enables
us to focus on feasibility as all components need to be fully implemented (e.g., ports, wires, buffers)
and their impact on area, cycle time, power, and scalability is quickly visible. (ii) FPGAs are much
faster, running full application simulations in a few minutes/hours as opposed to many days on a
full-system simulator, making FPGAs a better fit for quick experimentation. (iii) The RTL generated
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Fig. 1. MetaSys hardware components and operation. MetaSys’ structures are highlighted.

can be used for more accurate area and power calculation and potential future synthesis on other
systems.

Figure 1 depicts an overview of the major hardware components in MetaSys and their operation:
The mapping management unit @, the optimization client @, and the metadata lookup unit .

3.1 Tagged Memory-based Metadata Management

Similar to prior systems for taint-tracking, security, and performance optimization, MetaSys imple-
ments tagged memory-based [53, 68, 173, 182] metadata management. MetaSys associates metadata
with memory address ranges of arbitrary sizes by tagging each memory address with an 8-bit (con-
figurable) ID or tag. Each tag is a unique pointer to metadata that describes the data at the memory
address. Hardware optimizations (e.g., in the cache, memory controller, or core) can query for the
tag associated with any memory address and the metadata associated with the tag.

The mapping between each memory address and the corresponding ID is saved in a table in
memory referred to as Metadata Mapping Table (MMT): @ in Figure 1. This table is allocated by the
OS for each process and is saved in memory. In MetaSys (similar to XMem [164] and Cheri [174]),
we tag physical addresses. As a result, any virtual address has to be translated before indexing the
MMT to retrieve the tag ID. To enable fast retrieval of IDs, we implement a cache for the MMT
in hardware that stores frequently accessed mappings, referred to as the Metadata Mapping
Cache (MMC) ®. MMC misses lead to memory accesses to retrieve mappings from the MMT in
memory.

MetaSys can be configured to tag memory at flexible granularities. In Section 9.1, we evaluate
the performance impact of the tagging granularity. The size of the MMT depends on the tagging
granularity. For a 512 B mapping granularity, the MMT requires 0.2% of physical memory (16 MB
in a 8 GB system). The MMC holds 128 entries, where each entry stores a physical-address-to-tag
mapping, and is 608 B in size (8 bit entry and 30 bit tag).

We implement dedicated mapping tables for tag IDs rather than use the page table or TLBs
for the following reasons: First, doing so obviates the need to modify the latency-critical ad-
dress translation structures. Second, MetaSys associates physical addresses with Tag IDs rather
than virtual addresses (to enable the memory controller and LLCs to look up metadata). Thus,
a page table or TLB cannot be directly used to save Tag IDs as they are indexed with virtual
addresses.

The actual metadata associated with any ID is saved in special SRAM caches that are private
to each hardware component or optimization. For example, the prefetcher would separately save
access pattern information, while a hardware bounds checker would privately save data structure
boundary information. We refer to these stores as Private Metadata Tables (PMTs) ®. The PMTs
are saved near each component (private to each component) and are loaded/updated by MetaSys.
The metadata (e.g., locality/“hotnes”) is encoded such that it can be directly interpreted by the
component, e.g., a prefetcher.
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Table 1. MetaSys Instructions Table 2. MetaSys Software Library Function Calls
MetaSys Operator MetaSys ISA Instructions Library Function Call Description
CREATE CREATEClientID, TagID, Metadata CREATE(ClientID, TaglD, *meta) ClientID -> PMT[TagID] = *“metadata
(UN)MAP TaglD, start_addr, size MAP(start*, end”*, TagID) MMT start...end) = TagID
(UN)MAP (UN)MAP2D TaglD, start_addr, lenX, sizeX, sizeY . . ~
(UN)MAP3D TaglID, start_addr, lenX, lenY, sizeX, UNMAP(start”, end”) MMTTstart..end] = 0
sizeY, sizeZ;

3.2 The Hardware-Software Interface

Communicating application information with MetaSys requires (i) associating memory address
ranges with a tag or ID of configurable size (8 bits by default) and (ii) associating each ID with
the relevant metadata. The metadata could include program properties that describe the memory
range, such as data locality/reuse, access patterns, read-write characteristics, data “hotness,” and
data types/layouts. We use two operators (described below) that can be called in programs to
dynamically communicate metadata.

To associate memory address ranges with an ID, we provide the MAP/UNMAP interface @ (similar
to XMem [164]). MAP and UNMAP are implemented as new RISC-V instructions that are interpreted
by the Mapping Management Unit (MMU) to map a range of memory addresses (from a given
virtual address up to a certain length) to the provided ID. These mappings are saved by the MMU in
the MMT. We also implement 2D and 3D versions of MAP to efficiently map two-/three-dimensional
address ranges in a multi-dimensional data structure with a single instruction.

To associate each ID with metadata, we provide the CREATE interface. CREATE @ takes three
inputs from the application: the tag ID, the 8-bit ID for the hardware component (i.e., prefetcher,
bounds checker, etc., called Module ID), and 512 B of metadata. CREATE directly populates the PMT
of the appropriate hardware component with 512 B of (or less) metadata. Each PMT (private to the
optimization client) has 256 entries assuming 8-bit tag IDs. The CREATE operator overwrites the
metadata at the entry indexed by the tag ID at the PMT specified by the module ID. All CREATE
and MAP instructions are associated with the next load/store instruction in program order to avoid
inaccuracies due to out-of-order execution. In other words, an implicit dependence is created in
hardware between these instructions and the next load/store, and they are committed together.
This enables associating information with the next load/store and not just the memory region
associated with it, e.g., in the bounds checking use case described in Section 6.1.

Table 1 lists the new instructions along with their arguments.

3.3 Metadata Lookup

Each optimization component is triggered by a hardware event @ (e.g., a cache miss). A component
then retrieves the physical address corresponding to the virtual address associated with the event
(e.g., the virtual address that misses in the cache) from the TLB @ (in case of L1 optimizations) and
queries the MMC with the physical address to retrieve the associated tag ID. On a miss in the MMC,
the mapping is retrieved from the MMT in memory. The optimization client uses the retrieved tag
ID to obtain the appropriate metadata from the PMT. The optimization client is designed to flexibly
implement a wide range of use cases and can be designed based on the optimization at hand. For
example, the optimization client used to build the prefetcher use case in Section 5 has interfaces to
the prefetcher, caches, memory controller, and TLBs to make implementing optimizations easier.
Each client has a static ID (clientID) and a PMT that is updated by the CREATE operator.

3.4 Operating System Support

We add OS support for metadata management in the RISC-V proxy kernel [128], which can be
booted on our Rocket RISC-V prototype: First, we add support to manage the MMT in memory,
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where the OS allocates the MMT in the physical address space and communicates the pointer to the
MAP hardware support. Second, we add support to flush the PMTs during a context switch (similar
to how the TLB is flushed). Third, if the OS changes the virtual to physical address mapping of a
page, then to ensure consistency of the metadata, the MMT is updated by the OS to reflect the cor-
rect physical-address-to-tag-ID mapping and the corresponding MMC entries are invalidated. We
modify the page allocation mechanism in the OS to do this. In addition, we also provide support to
implement optimizations performed by the OS or with OS cooperation. To do so, MetaSys enables
trapping into the OS to perform customized checks or optimizations (e.g., protection checks or
altering virtual-to-physical mappings) based on specific hardware trigger events (using interrupt
routines). We describe one such use case in Section 6.

3.5 Coherence/Consistency of Metadata in Multicore Systems

MetaSys can be flexibly extended to multicore processors. Metadata is maintained at a process-
level, therefore, threads within the same process cannot have different metadata for the same data
structure. The MMC is a per-core structure, while the Private Metadata Tables (PMTs) are per-
component structures (e.g., at the memory controller, LLC, prefetcher). The two dynamic operators
(CREATE and MAP) may cause challenges in coherence and consistency of metadata in multicore
systems. CREATE directly updates metadata associated with the per-process tag ID, which is saved
at the per-component PMTs. The PMTs are shared by all cores when the optimization component
is also shared (and thus any updates by CREATE are automatically coherent). The PMTs for private
components (e.g., L1 cache) are not coherent and can only be updated by the corresponding thread.
MAP updates the mapping in the MMC, which is private to each core. To ensure coherence of
the MMC mappings, a MAP update invalidates the corresponding MMC entry (if present) in other
MMCs by broadcasting updates with a snoopy protocol. If the use case requires consistency of
the metadata, i.e., ordering between a CREATE/MAP instruction and when it is visible to other cores,
then barriers and fence instructions are used to enforce any required ordering between threads for
updates to metadata.

3.6 Timing Sensitivity of Metadata

MetaSys supports three modes: (i) Force stall, where the instruction triggering a metadata lookup
cannot commit until the optimization completes (e.g., for security use cases); (ii) No stall, where
metadata lookups do not stall the core but are always resolved (e.g., for page placement, cache
replacement); and (iii) Best effort, where lookups may be dropped to minimize performance over-
heads (e.g., for prefetcher training).

3.7 Software Library

We develop a software library that can be included in user programs to facilitate the use of MetaSys
primitives CREATE and MAP (Table 2). The library exposes three functions: (i) CREATE populates an
entry indexed by the tag ID (TagID) in the PMT of a hardware optimization client (ClientID) with
the corresponding metadata; (ii) MAP updates the MMT by assigning tag IDs to memory addresses
of the range (start, end); (iii) UNMAP resets the tag IDs of the corresponding address range in the
MMT. While the operators can be directly used via the provided software library, their use can be
simplified by using wrapper libraries that abstract away the need to directly manage tag IDs and
their mappings.

3.8 Comparison to the XMem Framework [164]

MetaSys implements a tagged-memory-based system with a metadata cache similar to XMem [164].
MetaSys however has three major benefits over XMem. First, MetaSys enables communicating
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Table 3. Comparison between MetaSys and XMem Interfaces

Operator XMem [164] MetaSys

. . . Selects a hardware optimization, dynamically associates
Compiler pragma to communicate static

CREATE . metadata with an ID, and communicates both to hardware at
metadata at program load time. . . X .
runtime (implemented as a new instruction).
(UN)MAP 1}55001ate memory ranges Wltb tag IDs Same semantics and implementation as XMem.
(implemented as new instructions).
(DE)ACTIVATE Enable/disable optimizations associated with Does not exist as the same functionality can now be done
a tag ID (implemented as new instructions). with CREATE.

metadata at runtime using a more powerful CREATE operator that is implemented as a new in-
struction. In XMem, metadata is communicated only statically at compile time (CREATE is hence
a compiler pragma). MetaSys thus enables a wider set of optimizations including fine-grained
memory safety, protection, prefetching, and so on, and enables communicating metadata that is
dependent on program input and metadata that can be accurately known only at runtime (e.g.,
access patterns, data “hotness,” etc.). MetaSys was designed to efficiently handle these dynamic
metadata updates. Second, the dynamic and more expressive CREATE operator obviates the need
for additional interfaces (ACTIVATE/DEACTIVATE) to track the validity of statically communicated
metadata. This enables a more streamlined metadata system in MetaSys with fewer new instruc-
tions, tables, and lookups. Third, MetaSys allows the application programmer to directly select
which cross-layer optimization to enable/disable and communicate metadata to, via the CREATE
operator. XMem, however, does not allow control of hardware optimizations from the application.
Table 3 summarizes the MetaSys operators and compares to the corresponding operators in XMem.
Of the three MetaSys use cases we evaluate in this article, only return address protection (Section 6.2)
can be implemented with XMem.

3.9 FPGA-based Infrastructure

We build a full system prototype of MetaSys on an FPGA with the Rocket Chip RISC-V system [10]
and add the necessary support in the compiler, libraries, OS, ISA, and hardware. The modularized
MetaSys components can also be ported to other RISC-V cores. We used the RoCC accelerator [10]
in the Rocket chip to implement the metadata management system. RoCC is a customizable module
that enables interfacing with the core and memory. The hardware support implemented in ROCC
comprises (i) the control logic to handle MAPs and CREATEs, (ii) control logic to perform metadata
lookups by components that implement optimizations, and (iii) the memory for metadata caches
(MMC and PMTs). We extended the RISC-V ISA with eight instructions (six for MAP/CREATE and
two for OS operations). To implement all the hardware modules of MetaSys, we modified/added
1,781 lines of Chisel code in the Rocket Chip. As we demonstrate later, since the MetaSys hardware
modules can be flexibly reused across multiple hardware-software optimizations, the techniques in
our use cases only required 87-103 additional lines of Chisel code. The full MetaSys infrastructure
is open-sourced [57] including the Chisel code for the MetaSys hardware support, the RISC-V OS
with the required modification, and the software libraries to expose the MetaSys primitives.

3.10 Implementing a Hardware-Software Cooperative Technique with MetaSys

To implement a new hardware technique with the baseline MetaSys code, we provide a flexible
module (@ in Figure 2) with a PMT and interfaces to the metadata lookup unit, to the core (to
receive triggers), and interfaces to the cache controller. The interface to the lookup unit @ provides
dynamic access to the metadata communicated by the CREATE and MAP operators. The interfaces to
the core ® and the memory system @ can be used as trigger events for optimization and lookups
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Fig. 2. MetaSys Optimization Client.

(e.g., a cache miss). The different components within the MetaSys logic itself (i.e., the metadata
caches, logic to access the Metadata Mapping Table in memory, and the lookup logic) can be flexibly
reconfigured.

3.11 Dynamically Typed or Managed Languages

MetaSys relies heavily on function calls/libraries that abstract away low-level details that call
the MetaSys instructions even in C/C++. With managed and dynamically typed languages, the
metadata associated with data structures/objects would be provided by the user with additional
class/object member functions. The metadata could also be directly embedded within object/class
definitions (e.g., a list or map in Python would by definition have certain access properties). Other
properties (e.g., data types) would be provided by the interpreter (in the case of dynamically typed
languages) and the mapping/remapping calls to memory addresses would be handled by the run-
time during memory (de)allocation.

3.12 Comparison to Specialized Cross-layer Solutions

In comparison to specialized cross-layer solutions, MetaSys offers the following benefits: (i) Gen-
erality: toward implementing a large number of use cases, including more complex use cases such
as specialized prefetching (Section 5), which amortizes the overall hardware cost; (ii) Flexibility
and versatility in the implemented instructions: A challenge with specialized cross-layer solutions
is the need to add new instructions that create challenges in forward/backward compatibility and
also require changes across the stack for each new optimization. With MetaSys, the instructions
are designed to be agnostic to the optimization and only require a one-off change to the hardware-
software interface; (iii) Infrastructure for evaluation: MetaSys can be used to implement many
specialized cross-layer techniques in real hardware, which would otherwise be a challenging pro-
gramming task (as demonstrated in Sections 5 and 6). In Sections 5 and 6, we evaluate MetaSys’s
ability to implement several cross-layer techniques.

4 METHODOLOGY

Baseline system. We use the in-order Rocket core [10] as the baseline CPU and conduct our
experiments on the ZedBoard Zynq-7000 [12] FPGA board. Table 4 lists the parameters of the core
and memory system as well as evaluated workloads.! MetaSys does not require any changes to
support an L2/LLC and optimization modules for an L2/LLC can be flexibly implemented similar
to the L1. The cost of an MMC miss may be further alleviated with an L2/LLC that reduces access
to memory.

5 USE CASE 1: HW-SW COOPERATIVE PREFETCHING
Hardware-software cooperative prefetching techniques have been widely proposed to handle

challenging access patterns such as in graph processing [4-6, 18, 103, 113, 157, 181, 185],

ISince DRAM is disproportionately faster than the CPU clock rate on FPGAs, we added logic in the memory controller to
scale the rate at which memory requests are issued. The resulting average memory latency and bandwidth in core cycles
were validated with microbenchmarks against a real CPU.
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Table 4. Parameters of the Evaluated Real FPGA-based System

CPU: 25 MHz; in-order Rocket core [10]; TLB 16 entries DTLB; LRU policy

L1 Data + Inst. Cache: 16 KB, 4-way; 4-cycle; 64 B line; LRU policy; MSHR size: 2

MMC: NMRU Policy; 128 entries; 38 bits/entry; Tagging Granularity: 512 B

Private Metadata Table: 256 entries; 64 B/entry; DRAM: 533 MHz; V34: 1.5V

Workloads: Ligra [145]: PageRank (PR), Shortest Path (SSSP), Collaborative Filtering (CF), Teenage Follower (TF), Triangle Counting
(TC), Breadth-First Search (BFS) Radius Estimation (Radii), Connected Components (CC); Polybench [124]; yuBenchmarks

Data Structures in Vertex-Centric Model | Corresponding 1.2 [0 Stride [ GraphPref [N MetaSys
o | Graph Input
workus(o]1]2]3]2) i =
N2 ! ® o — | |
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Fig. 3. Data-dependent accesses in vertex-centric graph processing model (left), speedup with the MetaSys
prefetcher (right).

pointer-chasing [7, 30, 49, 131, 132, 187], linear algebra computation [32], and other applica-
tions [9, 120, 165, 167]. In this section, we demonstrate how MetaSys can be flexibly used to
implement and evaluate such prefetching techniques. We design a new prefetcher for graph
applications that leverages knowledge of the semantics of graph data structures using Meta-
Sys. Graph applications typically involve irregular pointer-chasing-based memory access pat-
terns. The data-dependent non-sequential accesses in these workloads are challenging for spa-
tial [14, 21, 23, 52, 54, 55, 64, 71, 75, 80, 82, 99, 115, 125, 139, 140, 148, 150], temporal [15, 19,
31, 33, 35, 51, 61, 65, 70, 73, 147, 169-171, 175, 176], and learning-based hardware prefetch-
ers [20,59, 121, 122, 141-143, 184] that rely either on (i) program context information (e.g., program
counter, cache line address) or (ii) memorizing long sequences of cache line addressses to generate
accurate prefetch requests.

To implement the hardware support for our prefetcher, we only needed to add 87 lines of Chisel code
to the baseline MetaSys codebase, all within the provided module for new optimization components.

5.1 Hardware-Software Cooperative Prefetching for Graph Analytics with MetaSys

Vertex-centric graph analytics typically involves first traversing a work list containing vertices
to be visited (@ in Figure 3, left). For each vertex, the application accesses the vertex list @ to
retrieve the neighboring vertex IDs from the edge list ®. To perform computation on the graph,
the application then operates on the properties of these neighboring vertices (retrieved from the
property list @). Graph processing thus involves a series of memory accesses that depend on the
contents of the work, vertex and edge lists.

In this use case, we design a prefetcher that can interpret the contents of each of the above data
structures and appropriately compute the next data-dependent memory address to prefetch. To
capture the required application information for each data structure, we use MetaSys’s CREATE
interface to communicate the following metadata: (i) base address of the data structure that is
indexed using the current data structure’s contents (64 bits); (ii) base address of the current data
structure (64 bits); (iii) data type (32 bits) and size (32 bits) to determine the index of the next access;
and (iv) the prefetching stride (6 bits). MAP then associates the address range of each data structure
with the appropriate tag.
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1 « Additional Code in BFS «

2 metadata_create(0, 1, WorkList, { sizeof(Worklist), VertexList, Stride }); // Create metadata (arguments: ClientID=0, tag ID, metadata)
3 metadata_create(0, 2,VertexList, { sizeof(VertexList), EdgeList, Stride});

4 metadata_create(0, 3,EdgeList, { sizeof(Worklist), VertexList, Stride});

5 metadata_create(0, 4,Property, {sizeof(Property), NULL, Stride});
6
7
8

metadata_map((void+) (WorkList), mapSize, 1); // Map tag 1 to Worklist
metadata_map((voids) (VertexList), mapSize, 2);
9  metadata_map((voidx) (EdgeList), mapSize, 3);
10 metadata_map((void+) (Property), mapSize, 4);

12 « Hardware Prefetcher Functionality «
13 void snoop_mem_request ( address ): // snoop every memory request

14 (Valid,Base,Bounds,PointerToNextDS,Stride) = metadata_lookup (address); // Access MetaSys using the address

15

16 while (Valid && PointerToNext != NULL) // While the data structure traversal is not complete

17 if (Base < address && address > Bounds) // If the memory request comes from a tracked data structure

18 initiate_prefetch(address+stride); // Initiate a stride prefetch request

19 Value = wait_for_value(address+stride); // Wait for the prefetch request to return data

20 address = &PointerToNextDS[value]; // Discover the address of the next data structure (DS)

21 (Valid,Base,Bounds,PointerToNextDS,Stride) = metadata_lookup (PointerToNextDS[value]); // Look up metadata for the next DS

Listing 1. Metasys-based Graph Prefetcher. Available online [57].

Listing 1 shows a detailed end-to-end example of how metadata is created in the application
(BFS), how metadata tags are associated with the data structures of BFS, and how the prefetcher
operates. Lines 2-10 (incorporated into the code of the BFS application) use the MetaSys software
libraries to create metadata (with CREATE) and associate it with the corresponding data structures
(using MAP). CREATE saves the metadata in the PMT and MAP updates the MMT. Lines 13-21 (incor-
porated into the hardware optimization client responsible for prefetching) describe the algorithm
behind the MetaSys-based prefetcher. The prefetcher is implemented with an optimization client
(ClientID = 0). The prefetcher essentially: (i) snoops every memory request from the core and re-
trieves the associated tag ID using MetaSys; (ii) queries the PMT to retrieve the communicated
metadata (listed above); and (iii) uses the metadata to identify dependencies between the data
structures of the application.

We describe a detailed walkthrough of how the prefetcher operates during the execution of
the BFS application using Figure 3 and Listing 1. In Figure 3 (left), when the prefetcher snoops a
memory request that targets the work list at index 0, it looks ahead (depending on the prefetching
stride) to retrieve the contents of the work list at index 1. At this point, it also prefetches the
contents of the vertex, edge, and property lists based on the computed index at each level. In graph
applications where the work list is ordered, the prefetcher is configured to simply stream through
the contents of the vertex and edge lists to prefetch the data dependent memory locations in the
property list. The snoop_mem_request(address) (Line 13) function is executed for each request
sent by the core to the memory hierarchy. For every memory request, the prefetcher accesses
the MMC using the address to receive the tag ID (using MetaSys’s lookup functionality). Next, it
indexes the PMT using the tag ID to retrieve the metadata associated with the memory request.
Using the metadata, the prefetcher determines if the request comes from one of the data structures
of the application (Line 17). In this case, the prefetcher first prefetches ahead (Line 18) according
to the stride and waits until it receives the value of the prefetched request (Line 19). Using the
value, it calculates the address of the data-dependent data structure (e.g., value of WorkList used
as an index for VertexList) and looks up the metadata for the newly formed address. The same
procedure happens until no further data-dependency is found (Line 16).

The prefetcher can be flexibly configured (by associating metadata to data structures, Lines 2—
10 in Listing 1) by the user based on the specific properties associated with any data structure,
algorithm, and the desired aggressiveness of prefetcher.
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5.2 Evaluation and Methodology

We evaluate the MetaSys-based prefetcher using eight graph analytics workloads from the Ligra
framework [145] using the Rocket Chip prototype of MetaSys with the system parameters listed
in Table 4. We evaluate three configurations: (i) the baseline system with a hardware stride
prefetcher [55]; (ii) GraphPref, a customized hardware prefetcher that implements the same idea
described above without the generalized MetaSys support (similar to prior work [5, 157]); and
(iii) the MetaSys-based graph prefetcher. In the case of GraphPref; all the required metadata (e.g.,
base and bound addresses, stride) are directly provided to the prefetcher using specialized instruc-
tions. Thus, GraphPref is able to access metadata at low latency and does not access the memory
hierarchy. The prefetcher works in the same way as the MetaSys-based prefetcher, however, in
the case of MetaSys, the general CREATE/MAP instructions are used to communicate information
and the metadata lookups access the MMC (which may lead to additional memory accesses when
there is an MMC miss). Figure 3 (right) depicts the corresponding speedups, normalized to the
baseline. We observe that the MetaSys graph prefetcher improves performance by 11.2% on aver-
age (up to 14.3%) over the baseline by accurately prefetching data-dependent memory accesses. It
also significantly outperforms the stride prefetcher, which is unable to capture the irregular access
patterns in graph workloads. Compared to GraphPref, the MetaSys-based prefetcher performs al-
most as well: within 0.2% on average (within 0.8% for BFS). The additional overheads of MetaSys
come from the MMC misses and the larger number of instructions used. In terms of area, MetaSys
requires 17 KB of SRAM (1 KB for the MMC and 16 KB for the Private Metadata Table) compared
to the custom hardware prefetcher, which requires 8 KB of SRAM for the metadata. The custom
prefetcher requires two additional instructions and additional logic to perform metadata lookups
and create/update metadata. We found the area complexity to be slightly less for the custom solu-
tion as the SRAM requirements are lower (~0.01% for custom hardware versus ~0.02% for MetaSys,
compared to a 22 nm Intel CPU Core [144]). However, MetaSys’s overhead can be amortized over
multiple use cases, whereas a custom solution is specific to a single use case.

We conclude that MetaSys can be used to flexibly implement and evaluate hardware-software
cooperative techniques for prefetching by leveraging MetaSys’s metadata support and interfaces,
incurring only small overheads from MetaSys’s general metadata management.

6 USE CASE 2: MEMORY SAFETY AND PROTECTION

We describe two hardware-software cooperative mechanisms for memory safety and protection
that can be directly implemented with MetaSys. To implement both use cases, we only add 103 lines
of Chisel code to the baseline MetaSys code, all within the new optimization client that is used in both
use cases.

6.1 Hardware Bounds Checking

Unmanaged languages such as C/C++ provide great flexibility in memory management but an
important challenge with these languages is memory safety. The pointer casting and pointer arith-
metic supported by these languages allow buffer overflows and potentially hazardous writes to
arbitrary memory locations. Prior work has demonstrated a range of software approaches [11,
34, 46, 50, 60, 67, 79, 100, 111, 112, 114, 119, 133, 173, 177, 180] to increase memory safety in the
form of static or dynamic checks, such as CCured [112], Cyclone [67], and Softbound [111]. These
approaches are known to incur significant runtime overheads in performing numerous checks
in software [156]. Hardware-based approaches offer a promising opportunity to alleviate these
overheads. Prior work [42, 43, 84, 98, 109, 110, 161, 174], including HardBound [43], ShaktiT [98],
and Cheri [174] investigate enabling hardware-software cooperative bounds checking. These
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1 « Example bounds checking software «

2 metadata_map((void-) (array1), mapSize, 1); // Map TagID 1 to array "

3 metadata_map((void+) (array2), mapSize, 2); // Map TaglD 2 to array y

4 metadata_map((void-) (array3), mapSize, 3); // Map TaglID 3 to array "array3"

5

6 Access every element of each array with a stride of one element

7  for(i=0;i< array_size;i+=1)

5

9 metadata_create(0,1,1); // Create metadata with TagID=1 and Metadata=1 to ClientID=0
10 int elem1 = array1[i];
11 metadata_create(0,2,2); // Create metadata with TagID=2 and Metadata=2 to ClientID=0
12 int elem2 = array2[i];
13 int result = elem1 + elem2;
14 metadata_create(0,3,3); // Create metadata with TagID=3 and Metadata=3 to ClientID=0
15 array3[i] = result;
16 }
17

18 « Hardware Bounds Checker Functionality «

19  HardwareBoundsChecker(CreateTagID, Address):
20 TagIDRegister <= CreateTagID // Software communicates TagID using CREATE
21 MetadataTagID <= PerformMetadataLookup(Address) // Bounds checker client performs a metadata lookup to find the TagID of address
22 if MetadataTagID != TagIDRegister: // Interrupt rocket core if TagIDs do not match (i.e., access is out of bounds)
23 InterruptRocketCore()

Listing 2. MetaSys-based bounds checking example. Full source code is available online [57].

approaches require architectures that are entirely specialized for bounds checking [43, 84, 98]
or more heavyweight metadata management systems tailored for memory security and protec-
tion [42, 109, 110, 161, 174]. In this section, we demonstrate how MetaSys can be used to imple-
ment hardware-based bounds checking at low overhead using a lightweight and general metadata
system.

6.1.1 Implementing bounds checking with MetaSys. We use Listing 2, where two arrays A and
B are traversed with a stride of one element, to illustrate the mechanism. To implement bounds
checking with MetaSys, we use the MAP operator to tag each data structure to be protected with a
unique ID (lines 2-4). For dynamically allocated nodes (which may not be contiguously located),
each node is tagged with the same ID as other nodes in the same data structure. Every memory
access in the program then needs to be verified in hardware to be going to the correct data structure.
To do this, we add the CREATE operator before every load or store to a protected data structure
(lines 9, 11, and 14). The CREATE operator in this case communicates the tag ID of the desired data
structure as metadata and the ClientID of the bounds checking hardware. In hardware, we simply
check whether there is a match between CREATE’s tag ID and the ID of the load/store address
that follows the CREATE instruction. To perform this check, the bounds check optimization client
(ClientID=0), performs a lookup to the MMC to retrieve the tag ID associated with the load/store
address. This ID is compared with the value stored in the PMT by the previous CREATE instruction.
If there is a mismatch, then this indicates a buffer overflow or an access to data that is not part of
the intended data structure as the load is accessing data that was not mapped to the same tag ID
and using its interface to the OS, MetaSys terminates the program.

6.1.2  Methodology and Evaluation. We evaluate MetaSys-based bounds checking on our pro-
totype with the parameters listed in Table 4 (tagging granularity is set to 64 B). We use the
Olden [130] benchmarks (commonly used for bounds checking and stack protection research [43,
50,111, 146, 174] due to its focus on pointer-based data structures). We only compare against a prior
software solution [177] as custom hardware solutions for bounds checking require intrusive and
significant changes to the microarchitecture, ISA, and application, which are difficult to reasonably
implement on a full-system simulator or an FPGA. For example, implementing Hardbound [43],
the closest custom hardware solution for bounds checking, requires compiler support, extending
every register and word of memory with “sidecar” shadow registers for base and bound addresses,
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Fig. 4. Performance overheads for (left) bounds checking, (right) return address protection.
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compression/decompression engines to compress these base/bound addresses, tag caches, and
bounds checking logic.

We evaluate three designs: (i) the Baseline system without MetaSys; (ii) software bounds check-
ing, based on prior work [177]; and (iii) MetaSys-based bounds checking. Figure 4 (left) depicts the
execution time normalized to the Baseline. We observe that the software bounds checking design
incurs a high average performance overhead of 36% (up to 82%). This overhead comes from exe-
cuting more instructions to check bounds (64% on average). In contrast, MetaSys-based bounds
checking incurs only an average performance overhead of 14% (up to 40%). MetaSys requires only
a 32% increase in the number of executed instructions. Workloads such as em3d, power, and mst,
are highly compute intensive and hence do not incur significant overheads with either bounds
checking technique.

We conclude that MetaSys provides a lightweight substrate to implement and evaluate hardware-
software cooperative bounds checking. MetaSys can be flexibly extended to implement more so-
phisticated memory protection techniques.

6.2 Return Address Protection

The program’s call stack is a known source of many security vulnerabilities in low-level, memory-
unsafe languages such as C/C++. For example, the control flow in the program can be hi-
jacked by overwriting the return addresses saved in the stack [8, 36]. Existing defenses such
as ExecShield [160] and stack canaries [36] do not protect against sophisticated attack tech-
niques [24, 28, 158]. Stack canary protection [36] is a software check that involves writing an
additional randomly generated value in the stack and a duplicate is saved separately in memory.
The stack canary checks the randomly generated value in the stack against its duplicate to detect
stack overwriting before a function returns to the return address saved in the stack. Protecting
return addresses with more powerful software checks [1, 16, 83, 97, 101] incurs significant run-
time overheads and are hence difficult to use in practice [39, 156]. Prior work has proposed a
range of hardware techniques [45, 63, 86, 129, 174, 186] to enable return address protection more
efficiently. These approaches either require dedicated hardware support for stack protection (e.g.,
RAGuard [186], PAC-it-up [86], CET [63]) or more heavy-weight metadata systems for memory
protection (e.g., SDMP [129], Cheri [174], PUMP [45]). In this section, we implement and evaluate
return address protection with MetaSys’s lightweight metadata support and cross-layer interfaces.

6.2.1 Return Address Protection with MetaSys. To enable return address protection with Meta-
Sys, we first tag each return address using MAP as id=“1. This is done automatically with compiler
support and no programmer intervention is required. No CREATE instruction is used. In hardware,
we add support to simply disallow writes to any address tagged with id="1" To do this, we im-
plement a simple hardware optimization client, which is triggered by store instructions. For each
store instruction, the client performs a lookup to the MMC to determine the tag ID associated with
the address. If the tag="1,” then the location is a return address and the store is not allowed to com-
plete. Any store to a tagged memory address causes the hardware to invoke the OS to terminate
the program. The application can then unmap the return address when it is retrieved again from
the stack. This ensures that once a memory location within the stack has a return address saved,
it cannot be overwritten via attacks that hijack control flow such as buffer overflow attacks.
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6.2.2  Evaluation and Methodology. We evaluate MetaSys-based return address protection using
our FPGA prototype with system parameters listed in Table 4 (the tagging granularity set to 64
B). We evaluate three designs using the Olden [130] benchmarks: (i) the Baseline system with no
overheads; (ii) canary stack protection [36] in the GCC RISC-V compiler; and (iii) MetaSys-based
return address protection.

Figure 4 (right) depicts the execution time normalized to the Baseline. We observe that the canary
approach incurs a performance overhead of 5.5% (up to 20%), while MetaSys incurs a diminished
overhead of 1.2% (up to 6.2%). The major overheads for the stack canaries come from executing
extra instructions (5.5% on average) to perform software checks. The overheads for MetaSys are
low due to the high MMC hit rate, which leads to few additional memory accesses. In addition to
providing less overhead, MetaSys-based return address protection can also protect against more
sophisticated attacks that exploit write-what-where gadgets [38] and, unlike canaries, are immune
to information leaks [151]. Protecting additional memory locations beyond return addresses (e.g.,
function pointers) with software approaches would incur even higher instruction overhead. How-
ever, the observed MetaSys overhead would largely remain the same as it already involves checking
each store. In addition, MetaSys-based return address protection utilizes the Metasys support and
interfaces, whose cost is amortized across many use cases, without requiring specialized ISA and
hardware support.

We conclude that MetaSys enables easy implementation and evaluation of lightweight memory
protection mechanisms with low performance overhead.

7 OTHER USE CASES OF METASYS

We briefly discuss various other cross-layer techniques that can be implemented with MetaSys
(but would be challenging to implement with prior approaches like XMem [164]).

Performance optimization techniques. MetaSys provides a low-overhead framework and a
rich cross-layer interface to implement a diverse set of performance optimizations including cache
management, prefetching, page placement in memory, approximation, data compression, DRAM
cache management, and memory management in NUMA and NUCA systems [2, 22, 26, 40, 41,
58, 66, 96, 116, 117, 126, 136, 137, 159, 166, 179]. MetaSys can flexibly implement the range of
cross-layer optimizations supported by XMem [164], and the Locality Descriptor [163]. MetaSys’s
dynamic interface for metadata communication enables even more powerful optimizations than
XMem including memory optimizations for dynamic data structures such as graphs. We already
demonstrate one performance optimization in Section 5.

Techniques to enforce cross-layer quality of service (QoS). MetaSys can be used to im-
plement cross-layer techniques to enforce QoS requirements of applications in shared environ-
ments [48, 62, 76, 93, 106, 107, 152, 153]. MetaSys allows communicating an applications’ QoS
requirements to hardware components (e.g., the last-level cache, memory controllers) to enable
optimizations for partitioning and allocating shared resources such as cache space and memory
bandwidth.

Hardware support for debugging and monitoring. MetaSys can be used to implement cross-
layer techniques for performance debugging and bug detection by providing efficient mechanisms
to track memory access patterns using its memory tagging and metadata lookup support. This
includes efficient detection of memory safety violations [123, 161] or concurrency bugs [88-91,
108, 188] such as data races, deadlocks, or atomicity violations.

Security and protection. MetaSys provides a substrate to implement low-overhead hard-
ware techniques for security/protection: the tagged memory support can be used to implement
protection for spatial memory safety [42, 127, 172, 183], cache timing side-channels [78] and
stack protection [86, 129]. For example, using MetaSys, software can tag memory accesses as
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security-critical or safe. Based on the metadata received for every access, MetaSys can activate/de-
activate (for the specific access) the corresponding side-channel defense technique at runtime (e.g.,
protect from or undo speculation [17, 25, 74, 134, 178]). We already demonstrate two security tech-
niques in Section 6.

Garbage collection. MetaSys offers an efficient mechanism to track dead memory regions, un-
reachable objects, or young objects in managed languages. MetaSys is hence a natural substrate to
implement hardware-software cooperative approaches (such as prior work [69, 94, 95]) for garbage
collection. For example, HAMM [69], a hardware-software cooperative technique for reference
counting, tracks the number of references to any object in hardware. It has many of the same
metadata management components as MetaSys. HAMM uses a multi-level metadata cache to man-
age the large amounts of metadata associated with reference counting for each object. MetaSys
was designed with modular interfaces that enable adding more levels to the metadata cache for
such use cases.

OS optimizations. MetaSys can be used to implement OS optimizations that require hardware
performance monitoring of memory access patterns, contention, reuse, and so on [29, 47, 105, 118,
147, 148]. The metadata support in MetaSys can be used to implement this monitoring and then
inform OS optimizations like thread scheduling, I/O scheduling, and page allocation/mapping [40,
56, 77, 102, 105].

Cache optimizations. MetaSys enables various cache optimizations such as cache scrub-
bing [136, 166] and cache prioritization [22, 26, 58, 66, 96, 116, 117, 126, 136, 137, 159, 166, 179].
To implement such optimizations with MetaSys, the CREATE operator is used to specify the ex-
pected reuse of a data object at runtime. For example, objects can be tagged as having no reuse
(e.g., once all threads have completed operations on it). Thus, upon encountering a cache miss (the
trigger event), the cache controller can look up the expected reuse of different cache lines using
MetaSys’s lookup mechanism and then evict the dead cache line. A similar mechanism can be used
to retain cache lines that have high expected cache reuse.

Compressing sparse data structures. MetaSys can be used to support techniques that effi-
ciently compress sparse data structures and accelerate sparse workloads [72, 138]. For example,
SMASH [72] is a hardware-software cooperative technique that efficiently compresses sparse ma-
trices using a hierarchy of bitmaps to encode non-zero cache lines and accelerates the discovery of
the non-zero elements of the sparse matrix. Instead of using specialized hardware, SMASH could
access the hierarchy of bitmaps and identify non-zero elements with MetaSys’ metadata support.

Heterogeneous reliability memory optimizations. MetaSys’ metadata support can be used
by techniques that exploit heterogeneous reliability characteristics of memory devices to improve
performance, power consumption, and system cost [81, 87, 92, 135]. These techniques typically
require support for dynamically looking up the error tolerance characteristics of data structures
to place them in memory to satisfy a target bit error rate. MetaSys’ metadata support is a natural
candidate for providing these techniques with a means to query reliability characteristics of data
structures.

8 LIMITATIONS OF METASYS

Our goal of providing a low-overhead and general system largely tailored for cross-layer perfor-
mance optimization leads to several major limitations in MetaSys. These limitations can be miti-
gated by future work.

Instruction and register tagging are not supported. MetaSys does not currently support
tagging of instructions or registers and thus cannot easily support techniques such as taint-
tracking [37, 149, 154] and security mechanisms that require rule-checking at the instruction/reg-
ister level [44, 45].
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Overheads of fine-granularity memory tagging. While MetaSys supports memory tagging
at flexible granularity, the system is optimized for the larger granularities typically required for
performance optimization (>=64 B) or fine granularities for only some data (e.g., return addresses).
Byte/word granularity tagging for the entire program data may lead to high MMC miss rates and
may thus incur higher overheads with MetaSys.

Limitations on using private metadata tables (PMTs) for runtime profiling. With Meta-
Sys’s existing interfaces, the PMTs cannot be used to collect program information and supply it
back to the application. The PMTs can only be updated by the CREATE operator. This issue can be
mitigated relatively easily in future MetaSys versions.

9 CHARACTERIZING GENERAL METADATA MANAGEMENT SYSTEMS FOR
CROSS-LAYER OPTIMIZATIONS

Our goal in this section is to perform a detailed characterization of the overheads of using a single
common metadata system and interface for multiple cross-layer techniques. Three major chal-
lenges and sources of system overhead include:

(1) Handling dynamic metadata: Communicating metadata at runtime requires execution of ad-
ditional instructions in the program. This incurs performance overheads in the form of CPU
processing cycles and data movement to communicate the metadata to hardware compo-
nents or to save them in memory.

(2) Efficient metadata management and lookups: The communicated metadata must be saved in
memory or specialized caches (the MMC in MetaSys) that overflow to memory. Different
components in the system must then be able to efficiently look up the metadata for perfor-
mance optimization. Storing and retrieving metadata may incur expensive memory accesses
and consume memory bandwidth.

(3) Scaling to multiple components: A general cross-layer interface and metadata system must
be able to serve multiple client components implementing different optimizations in the
caches, the prefetchers, the memory controller, and so on. Multiple components accessing
shared metadata support during program execution poses significant scalability challenges.

The above challenges may impose significant area and performance overheads in the CPU, mak-
ing the feasibility of a common metadata system and interface (as opposed to per-use-case special-
ized interfaces and optimizations) for cross-layer techniques questionable. In this section, we set
out to experimentally quantify these overheads, identify key bottlenecks, and discover and provide
insights on how these challenges affect different workloads and how they can be alleviated.

9.1 Analysis

We perform our characterization using the Polybench [124] and Ligra [145] benchmark suites
along with a set of microbenchmarks (available on Github [57]). Polybench contains building
block kernels frequently used in linear algebra, scientific computation, and machine learning. Ligra
contains widely used graph analytics workloads. The microbenchmarks are designed to intensely
stress the MetaSys system and identify worst-case overheads.

e Stream. This memory-bandwidth-intensive microbenchmark streams through a large
amount of data, accessing it only once. It hence has high spatial locality and no data reuse.

e Linked List Traversal. The microbenchmark mimics typical linked list creation, insertion, and
traversal and emulates the widely seen memory-intensive pointer-chasing operation.

e Random Access. This microbenchmark accesses memory locations within a large array at
random indices and is designed to test an extremely rare worst-case scenario: no pattern in
accesses, no reuse, and no spatial locality.
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Fig. 6. Additional memory accesses introduced by MetaSys metadata lookups.

Three-dimensional array traversal (3D array). This microbenchmark mimics the access pat-
tern and locality seen in applications with multi-dimensional arrays. It traverses a 3D array
first along the third dimension, and then along the second and first (data is contiguously
placed in the first dimension). The access pattern is highly regular but exhibits no spatial
locality.

Section 4 describes the parameters of our baseline system. We summarize our key findings in
Section 9.3. In all evaluations in this section, since we aim to characterize the overheads of the
system itself, we do not implement any cross-layer optimization that improves performance. We
simply implement lookups to the metadata system that an optimization could potentially make.
Since our goal is to stress the system and understand the worst-case overheads, we perform meta-
data lookups for every memory access. In typical use cases, the lookup triggers would be much less
frequent than for every memory access, e.g., lookups on only cache misses for prefetching or only
stores for return address protection.

9.1.1  Performance Overhead Analysis. The performance overheads in MetaSys come from two
major sources: (i) dynamic instructions (MAP and CREATE) and (ii) metadata lookups when a com-
ponent retrieves the tag ID associated with any memory address (from the MMT, cached in the
MMC) and then the corresponding metadata (in the PMT).

Figure 5 depicts the execution time normalized to the baseline system (without MetaSys) for two
scenarios: (i) when performing metadata lookups for every access to the L1 cache (All-Accesses)
and (ii) when performing metadata lookups only on every L1 cache miss (Miss-Only). These stud-
ies were conducted with our baseline 128-entry MMC with a tagging granularity of 512 B (as in
XMem [164]). Figure 6 plots the number of memory accesses, normalized to baseline (the addi-
tional memory accesses come from misses in the MMC). Figure 7 plots the corresponding MMC
hit rates.

We make two major observations from the three figures. First, the overall performance over-
heads from the metadata management system for both designs are low in most workloads with an
average performance overhead of 2.7% (ranging from ~0% up to 14%), excluding the microbench-
marks. The highest overheads observed in the microbenchmarks is 27% for Random and represents
the worst-case overhead. Workloads with the highest overheads (Random, GS, PR, TF) are highly
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Fig. 8. MetaSys performance overhead on systems with varying amounts of memory bandwidth.

memory-intensive and have low spatial and temporal locality, which leads to low hit rates in the
MMC (e.g., ~0% in Random and 24% in GS). This causes a significant increase in accesses to memory
and thus higher performance overheads.

Second, the number of metadata lookups (not shown in the figure) does not have a direct impact
on the overall performance overhead. All-access performs on average 75.2% more lookups than
Miss-only, but incurs an additional overhead of only 0.05%. Miss-only has lower MMC hit rates due
to lower locality in lookups than All-access. Thus, the number of additional memory accesses is
largely the same for both designs, as shown in Figure 6.

Since the major overheads are from additional memory accesses, we evaluate the impact of
available memory bandwidth. Figure 8 depicts the performance overhead of All-access on two
different systems with 0.5x and 2X the memory bandwidth of the baseline system. We observe that,
except for GS, more memory bandwidth significantly reduces any lookup overheads: the average
overhead is only 0.5% on a system with 2x the memory bandwidth. Conversely, in workloads
with higher MMC miss rates (e.g., DSYR2K), performance overheads increase with a reduction in
available memory bandwidth.

We conclude that (i) performance overheads are correlated to the MMC hit rates; (ii) metadata
lookup hardware can be frequently queried with no direct observable impact on performance; and
(iii) overall performance overheads are small when the MMC provides high hit rates.

9.1.2  Effect of the Metadata Mapping Cache (MMC).. Figure 9 shows the impact of the size of
the MMC on performance overhead. We evaluate six sizes for All-access and Figure 9 presents the
resulting execution time (normalized to the baseline system). We make two observations. First, in
most workloads, 128 entries is sufficient to obtain small overheads. This is because with a 512 B
tagging granularity, we can hold tag IDs for 64 KB of memory in the MMC (compared to 16 KB
of L1 cache space). Second, workloads with poor spatial and temporal locality (e.g., Random, GS),
are largely insensitive to the MMC sizes evaluated. Thus, overheads in such workloads cannot be
easily addressed by increasing the MMC size.
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Fig. 11. Impact of tagging granularity on additional TLB misses.

9.1.3  Effect of Metadata Granularity. The granularity at which memory is tagged plays a critical
role in determining the reach of the MMC. Tagging memory at smaller granularities requires more
MMC entries to tag the same amount of memory, but it enables more optimizations (e.g., bounds
checking). Figure 10 presents execution time for different granularities of tagging, normalized
to the baseline system without MetaSys. For most workloads, even the smallest granularity we
evaluated (64 B) has a small impact on performance. Large granularities reduce overheads for all
but Random and GS by significantly increasing the MMC hit rate. A secondary effect in irregular
workloads, such as PR and SSSP, is that small granularities increase the number of TLB misses (by
11% and 13%, respectively), as depicted in Figure 11. The additional MMC misses cause accesses to
the MMT in memory, which requires address translation.

To evaluate the effect of the TLB, we implement a MetaSys design that does not require address
translation to access the MMT (i.e., MMT entries are accessed directly using physical addresses).
Figure 12 presents the resulting normalized execution time without address translation. We ob-
serve a decrease in overhead with this design in the irregular workloads: BFS, CC, Random, and LL
(by 1.9%, 1.8%, 14%, and 1%, respectively).

9.1.4  Effect of Contention for Metadata. To evaluate the scalability of MetaSys with multiple
clients accessing the same metadata support, we evaluate the overheads of two clients performing
frequent metadata lookups: one client on every memory access (with the corresponding memory
address) and another on every TLB miss (with the page table entry address). Since each design
performs lookups with different memory addresses, they do not share entries in the MMC and this
creates a difficult scenario for the shared MMC.
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Fig. 14. Alleviating MMC contention in microbenchmarks.

Figure 13 depicts the resulting execution time for two designs, normalized to the baseline system:
(i) One Client performs metadata lookups on every memory access and (ii) Two Clients performs
metadata lookups on every memory access as well as on every TLB miss. We observe that for all
workloads except the microbenchmarks, increasing the number of clients leads to a small addi-
tional performance overhead (on average 0.3%). This is because the MMC can sufficiently capture
the tag ID working set for both clients. The microbenchmarks designed to stress the system expe-
rience a significant additional performance overhead (up to 34% for Random) as a result of more
misses in the MMC due to more clients.

To investigate mechanisms to alleviate the MMC contention overheads seen in the microbench-
marks, we evaluate three designs in Figure 14: (i) Partitioning the MMC equally between the two
clients; (ii) Prioritized Insertion, where we insert mappings for the client with better locality at a
higher priority in the MMC (such that such mappings are evicted last); and (iii) No stall, where we
do not stall the core on an MMC miss (instead, the optimization performed by the client is delayed).
We observe that Partitioning reduces the overhead for 3D Array and LL by 9% and 4% by avoiding
cache thrashing. Prioritized Insertion helps reduce the overheads in LL (by 8.5%) and Random (by
6%), where one client has more locality than the other in lookups. No Stall significantly reduces the
overhead in Random (by 40%) by mitigating the latency overhead of additional memory accesses.

9.1.5 Evaluating Instruction Overheads. To evaluate the instruction overheads of the dynamic
MAP/CREATE instructions, we present an analysis in Figure 15, where we intensively use these in-
structions: (i) for every eight memory instructions, we add one MAP and one CREATE instructions
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Fig. 15. Performance overhead of MAP/CREATE instructions.

and (ii) for every two memory instructions, we add one MAP and one CREATE instruction. We ob-
serve an average slowdown of 1.4% and 5.7%, respectively, over a baseline without MetaSys. This
indicates that while excessive use of MAP/CREATE instructions can lead to slowdowns, the primary
overheads are still from the metadata lookups, which may lead to additional memory accesses.

We conclude that MetaSys’ metadata support is scalable to multiple components with small im-
pact on performance overheads (except in microbenchmarks). The overheads seen in microbench-
marks are a result of poor MMC hit rates that can be mitigated via techniques such as partitioning,
prioritized insertion, and by not stalling the core on an MMC miss. Since optimizations are trig-
gered by loads/stores in MetaSys, MetaSys can be expected to gracefully scale to more than two
clients as most clients are expected to query the MMC using the same addresses, which are aggre-
gated and thus would not lead to additional lookups.

9.2 Hardware Area Overhead

We synthesized the baseline MetaSys system using the Synopsys DC [155] at 22 nm process tech-
nology to estimate the area overhead. MetaSys incurs small area overhead: 0.03 mm? (0.02% of a
22 nm Intel Ivy Bridge CPU Core [144]).

9.3 Summary of Findings

(1) Despite stressing the metadata support, the overall performance overheads of MetaSys are
very low (2.7% on average, excluding the microbenchmarks). This indicates that using meta-
data systems that are general enough to support a range of use cases is a promising ap-
proach to enabling cross-layer performance optimizations in a general-purpose manner in
real-world applications. The higher overheads seen in microbenchmarks indicate that the
worst-case overheads are however substantially higher (up to 27%).

(2) Our studies indicate that MetaSys’ metadata management is scalable to support multiple
client components that have high rates of metadata access requirements. Performance over-
head is dependent on locality of metadata accesses as opposed to number of metadata ac-
cesses, indicating that the same system can support multiple cross-layer optimizations at
the same time. We propose simple techniques to alleviate metadata contention generated by
multiple clients.

(3) The most critical factor that impacts MetaSys’ performance overhead is the effectiveness of
the Metadata Mapping Cache (MMC). Workloads with low locality in metadata lookups
incur performance overheads from additional memory accesses. The reach of the MMC is
also affected by the granularity at which memory is tagged and hence the MMC hit rate can
be improved with larger granularities. Thus, efficient caching of metadata tags is critical.

(4) Accesses to metadata mappings in memory require address translation and cause TLB misses,
leading to high performance overhead especially in irregular workloads (e.g., Random). We
find that this overhead can be mitigated by using physical addresses to access metadata
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mappings or by storing address translations required to access metadata mappings in a sep-
arate TLB.

10  CONCLUSION

This work introduces MetaSys, the first open-source full-system FPGA-based infrastructure to
rapidly implement and evaluate diverse cross-layer optimizations in real hardware. We demon-
strate MetaSys’s versatility and ease-of-use by implementing and evaluating three new cross-layer
techniques. We believe and hope MetaSys can enable new ideas and their rigorous evaluation on
real hardware.

Using MetaSys, we present the first detailed experimental characterization to evaluate the effi-
ciency and practicality of a single metadata system for cross-layer performance optimization. We
demonstrate that the associated performance and area overheads are small, identify key perfor-
mance bottlenecks, and propose simple techniques to alleviate them. Our characterization thus
indicates that a general hardware-software interface with lightweight metadata management sup-
port offers a promising approach toward enabling general-purpose cross-layer techniques in CPUs.
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