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Abstract

SPDY is an application-layer protocol which multiplexes multiple HTTP requests and compresses HTTP headers over a single
TCP connection protected by SSL/TLS encryption. Web applications are ubiquitous, and HTTP headers carry HTTP cookies which
often contain sensitive information which can result in loss of privacy if leaked. We perform a security analysis on the proposed
compression scheme for the next revision of the SPDY protocol, particularly with respect to the previously disclosed CRIME attack
which uses compression-based information leaks. We have identified a new information leakage in the compression scheme of
the proposed and previous versions of the SPDY protocol, which we call PETAL1, which exploits the use of a fixed Huffman
encoding table and the lack of byte-alignment of encoded characters, and we have identified a way to recover cookies using this
information leakage by exploiting the way that multiple HTTP cookies with the same name but different Path attributes are handled
by current web browsers. We perform a detailed analysis of the impact of this information leakage, and find that after considering
practical issues such as the byte-padded nature of network communications, our hypothesized attack only leaks less than 2-bits
of information for 30-character uppercase alphanumeric strings, and does not allow a network attacker to recover meaningful
amounts of information despite our discovered information leakage.
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1 Introduction

SPDY is an application-layer protocol proposed by Google [12] for transporting web content. The goal
of SPDY is to reduce the latency of loading web pages by reducing the number of TCP connections used
to avoid the overheads of TCP Slow Start, and by compressing HTTP headers. SPDY multiplexes HTTP
requests over a single TCP connection, keeping a persistent TCP connection between the web browser and
the web server. By default, SPDY also requires the transport layer to use Secure Sockets Layer/Transport
Layer Security (SSL/TLS) for encryption.

SPDY presents a number of opportunities for malicious attackers. First, SPDY maintains a single
long-lived (relative to setting up one connection per resource loaded) connection and hence a single con-
text for the connection, creating an opportunity for attackers to try to learn about this context and exploit
information learned. Second, SPDY mandates the use of SSL/TLS encrypted transport, presenting oppor-
tunities for interaction between SPDY and SSL/TLS which may give rise to emergent weaknesses due to
interactions between the two protocols. In particular, as SPDY supports the compression of HTTP requests
and responses transported over SPDY, and SPDY mandates the use of encrypted SSL/TLS transport, this
creates the opportunity for information leakage via the length of the transmitted data due to the data being
compressed prior to encryption. Third, a number of SPDY features for consolidation, such as IP pooling
(shared connection for different domains with the same IP address), which were designed with efficiency as
the main goal, may also give rise to emergent behaviors that attackers may exploit.

Currently, the latest version of SPDY deployed in web browsers and servers is SPDY3, while some
older versions of web browsers and servers continue to support SPDY2. SPDY4 is the latest draft of the
SPDY protocol and is under current active development.

In this paper, we perform a detailed analysis of the security of SPDY, and evaluate whether the design
of SPDY gives rise to vulnerabilities in HTTP and in SSL/TLS that an attacker can exploit to compromise
a web connection to learn secrets about a user’s connection, or impersonate or spoof other principals in the
connection. Specifically, we analyzed the interactions between compression in SPDY and encryption in SSL
to identify potential information leakage due to interactions between the two.

In particular, we identified an information leakage vulnerability in the proposed SPDY4 compres-
sion scheme due to its use of a fixed Huffman coding table, and we call this vulnerability PETAL (Preset
Encoding Table Information-Leaks). When combined with a method we identified for injecting multiple
cookies with the same name, it is possible for a network attacker to inject guesses for cookie values in a
SPDY4 connection to mount a chosen plaintext attack. However, after considering practicalities such as the
byte-padding of networked communications, we find that this attack leaks less than 2-bits of information in
a 30-character string, rendering the attack impractical for network attackers.

1.1 Contributions

We summarize our contributions as follows:

• We systematize the known aspects of the CRIME information leakage and partial chosen plaintext
attack against compression used in TLS [11], and show how this applies to the compression used in
SPDY2 and SPDY3. (§2.3.3)

• We describe the new SPDY4 compression scheme, and how it successfully mitigates against CRIME-
like attacks using partial chosen plaintext attacks. (§2.4)

• We demonstrate how to exploit the behavior of cookie handling when there are multiple cookies with
the same name, but different values for the Path attribute, to inject guesses to mount a chosen plaintext
attack against SPDY4. This enables the recovery of the plaintext contents of a cookie. (§3.1.2)
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• We describe a new information leakage vulnerability caused by the use of a fixed Huffman coding
table in SPDY4, and we quantify the amount of information that can be leaked due to this vulnerability.
We also present a hypothesized attack making use of this vulnerability. (§3.2)

• We found that with byte-padding, the information leaked due to the use of a fixed Huffman coding
table in SPDY4 is negligible. Less than 2-bits of information is leaked for a 30-character string,
rendering our attack impractical for network attackers. (§4.3)

1.2 Organization

First, we describe our assumed threat model. Second, we give a detailed description of the features and
architecture of SPDY. Second, we discuss vulnerabilities arising from the interaction of compression and
encryption, and we describe in detail the CRIME attack against the DEFLATE compression used in TLS,
which used the length of encrypted packets to infer encrypted secrets. Third, we describe a framework
for attacking SPDY by leveraging its use of compression over an encrypted transport channel. Fourth, we
describe the newly proposed mitigation measures in SPDY4 and residual vulnerabilities. Then, we discuss
other features of SPDY and potential weaknesses. Finally, we conclude and discuss future work.

2 Background

2.1 Threat Model

The SPDY protocol manages requests below the level of abstraction of the web browser by multiplexing
multiple HTTP requests over a single TCP (SSL/TLS) connection. Hence, we consider web attackers as
being too weak to affect the behavior of SPDY. Instead, we consider the active network attacker, who is able
to intercept, inspect, modify, and spoof packets on the network. However, we consider the cryptographic
state of the underlying SSL/TLS connection to be secure: we assume that the attacker does not have access
to the encryption keys nor the certificate of the victim server, and that the attacker is unable to read or modify
encrypted content. However, due to the format of SSL/TLS data frames, the length of each frame is sent in
the clear in the header of the TLS data frame, and the attacker is able to inspect the lengths of encrypted
packets. In addition, we do not need to assume that the user will ignore SSL/TLS certificate warnings, and
both the existing CRIME attack against SSL/TLS compression and our hypothesized PETAL attack do not
generate SSL/TLS certificate warnings.

2.2 SPDY

SPDY [12] is a web transport protocol proposed by Google, and has been implemented in a number of
major web browsers and web servers. SPDY has four technical goals: (i) Allow multiple concurrent HTTP
requests to use a single TCP connection. (ii) Reduce HTTP bandwidth usage through header compression.
(iii) Make SSL the underlying transport protocol for end-to-end security. (iv) Enable web servers to initiate
communications with the client to allow data push.

SPDY has four key features [12]: (i) Multiplexed requests: An unlimited number of requests can be
issued concurrently over a single SPDY connection. (ii) Prioritized requests: Clients can specify a priority
for requests so that higher priority requests are delivered first. (iii) Compression of HTTP headers. (iv)
Server-pushed streams: Server Push allows servers to push content to clients without a request. SPDY
operates at the Session layer in the OSI model, and is transparent to HTTP, SSL/TLS, and TCP.

When a SPDY client makes a request to a given web page, the client first checks its pool of SPDY
sessions to look for an existing connection to the web server, and it creates a session if it doesn’t already
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exist. The client then sends its request over the SPDY session (either an existing one from a previous request,
or the newly created one), and receives its response. For subsequent requests to the same server and their
responses, the web client continues to use this SPDY session, saving the latency overhead incurred due to
TCP Slow Start.

2.2.1 Sessions and Streams

SPDY sessions are initiated by web clients. In the default configuration, all SPDY sessions must be tunneled
over an TLS/SSL connection. The web client first creates an SSL/TLS session with the web server, before
opening a SPDY session. Then, a web client opens one SPDY session for a given web server, and each
HTTP request and response is sent over a SPDY stream. A SPDY session refers to the persistent connection
between a web client and web server for the duration of a logical transaction during which the client may
request multiple resources for a given web page, or even for subsequent page requests during the course of
the client’s web access. A SPDY stream refers to a single request/response. A SPDY session supports the
sending and receiving of multiple SPDY streams between the client and server.

2.2.2 SPDY Stream Lifecycle

Each SPDY session (connection) multiplexes multiple SPDY streams, and one SPDY stream is created for
each request and its corresponding response. A stream is created by sending a SYN STREAM control frame.
stream IDs must increase monotonically as new streams are created. If the client initiates the connection, the
stream ID must be odd, and if the server initiates, the stream ID must be even. 0 is not a valid stream ID. On
receiving a request on a stream, the recipient responds on the same stream. The receiving end point of the
connection must then send a SYN REPLY in response to the SYN STREAM to acknowledge the creation
of the stream before data can be sent and received. Sending two SYN STREAMs with the same steam ID
is a protocol error, and the recipient must send a stream error using RST STREAM.

2.3 SPDY2/3 Compression: Design and Information Leakage Vulnerabilities

SPDY2 and SPDY3 both implemented compression for the name/value header block sent in the SPDY
SYN STREAM and HEADER control frames. This header block stores the HTTP headers used in the
HTTP requests and responses transported over SPDY’s streams. These headers include high-sensitivity
content, such as HTTP cookies, which can contain user authentication tokens stored by web applications
which can be used to impersonate the user in web application sessions the user is authenticated to.

The original SPDY2 and SPDY3 specifications called for the name/value header blocks to be com-
pressed. Prior to the disclosure of the CRIME attack, the specification called for the header block to be
compressed using ZLIB DEFLATE [7, 6]. The DEFLATE compression uses both Huffman encoding and
the LZ77 compression algorithm, although the use of the Huffman encoding in the DEFLATE implementa-
tion in SPDY2/3 does not rely on a fixed encoding table.

While web clients and servers which have responded to the CRIME attack have already disabled their
use of TLS-DEFLATE compression, SPDY2 and SPDY3 will still be vulnerable to the CRIME attack even
without TLS-DEFLATE, because SPDY carries out its own compression of the name/value header block,
and all name/value headers are compressed together in the same compression context.

2.3.1 ZLIB DEFLATE Compression

ZLIB [7] is a specification for a compressed data format, while DEFLATE [6] in particular specifies the use
of the Huffman encoding [4] and LZ77 compression algorithm [13].
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The Huffman encoding is a prefix-coding whose encoding of characters is given by the nodes of a binary
tree. The tree has interior nodes labelled ‘0’ or ‘1’, and leaf nodes labelled with the characters to be encoded.
Then, the encoding for a given character is given by the binary string obtained from a root-to-leaf traversal
ending in that character. The construction of a Huffman encoding tree is designed to place characters with
the highest occurrence nearer to the root of the tree so that they have shorter encodings, thus saving space.
Huffman trees can be constructed on-demand based on the actual data bytes being compressed, or they can
be constructed based on an empirical or expected frequency table when all the data may not be known in
advance.

LZ77 is a lossless data compression algorithm which uses a sliding window during compression. It
compresses data by replacing repeated occurrences of strings seen in the sliding window with a single copy.
Figure 1 illustrates how LZ77’s sliding window compression works. In the string “Google is so googled”,
the substring “oogle” is repeated and can be replaced by a simple encoding of an instruction to look back a
certain number of characters, and the number of characters from the previous position to consume.

12345678901234567890

Google is so googled

Google is so g(-13,5)d

Figure 1: Example of LZ77 compression (Numbers above are to indicate character positions).

2.3.2 Information Leakage via Compression

The length of the output of compression algorithms, i.e. the compressed length of a given string of plaintext,
reveals information about the plaintext. This is because the length of the compressed text depends on the
contents of the plaintext itself. In general, for a given length of plaintext, shorter lengths of compressed
text indicate greater redundancy within the plaintext, i.e. higher compression ratios (greater compression)
indicate greater redundancy in the plaintext.

Specifically, this general principle of information leakage about the plaintext via compression can be
turned into an attack on encryption if two additional requirements are met: (i) The encryption algorithm
preserves the length of its cipher text, i.e. there is a 1:1 correspondence between the length of the plaintext
and the length of the encrypted cipher text, and (ii) Partial chosen plaintext injection is feasible.

We assume that the goal of the attacker is to extract a given string which exists in a particular cipher
text. Kelsey describes this as a “String Extraction” attack [8]. We also assume that data is compressed prior
to encryption.

The first requirement will allow the attacker to learn the length of the compressed text from the length
of the cipher text. The second requirement allows the attacker to make use of the partial plaintext injected
as a guess for the presence of the injected partial plaintext in the cipher text.

Suppose there is a given plaintext P, which contains secret S such that S ∈ P, and that the attacker is
able to inject a guess, G, to obtain some string P+G where ‘+’ is string concatenation. Then, suppose the
attacker is able to obtain strlen(encrypt(compress(P+G))) for any number of guesses G and fixed plaintext
P containing secret S. Then, if the guess G is such that G = S, this redundancy will be reflected in the length
of the encrypted cipher text, strlen(encrypt(compress(P+G))), and of all the guesses, for the correct guess
G∗, we have:

argmin
G∗
{strlen(encrypt(compress(P+G∗)))}⇒ G∗ = S

i.e. the guess which has the best compression ratio is most likely to be the secret string in the plaintext.
However, this requires that the longest match for guess G is the secret S rather than another string in the
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target plaintext.
Hence, the general scheme of the attack is as follows:

1. For each guess, concatenate guess with plaintext, and inject guess into plaintext to obtain P+G.

2. Obtain the length of the encrypted, compressed cipher text, strlen(encrypt(compress(P+G)))

3. Repeat the above two steps for various guesses. If the guesses cover the entire space of all possible
characters in the secret, then the guess which yields the minimum encrypted-compressed-length (i.e.
has the highest compression ratio) is the secret in the plaintext P.

However, an additional feature is required to make this attack feasible. The partial chosen plaintext
attack described above provides feedback not just for entire guesses of the secret, but also for partial guesses
of the secret. Hence, for a secret of known length, the above algorithm can be iteratively executed as follows:

1. Carry out the above algorithm for to guess the first character, G1.

2. For the character determined to be the correct guess, g∗1, prepend the character to the guess in guessing
the next character, i.e. in the second round, the guesses are constructed as G2 = g∗1 + g2 where g2 is
the new guess.

3. Repeat the above two steps for each subsequent character in the secret that is being guessed, iteratively
concatenating the correctly guessed characters to the current guess.

As the partial chosen plaintext injection attack described above provides partial feedback for correct
guesses of substrings of the secret, this greatly reduces the search space for the secret from an exponential
order of magnitude of the character-set of possible characters, to a polynomial (linear) order of magnitude.
Effectively, for |L |= n and |S|= s, if the attacker gains feedback only if the entire secret is correctly guessed,
then the number of guesses needed is O(ns), but as the attack described above provides partial feedback, the
number of guesses needed is reduced to O(ns).

2.3.3 CRIME Attack Against TLS

The CRIME attack against TLS [11] exploits information leakage due to the DEFLATE compression used in
TLS 1.0 to guess and recover plaintext in an encrypted SSL/TLS stream by observing the length of encrypted
TLS data frames which are sent by attacker-crafted requests which contain guesses of the plaintext. The
CRIME attack requires a network attacker for the following two steps:

1. Inject an IFrame to construct HTTP requests which contain guesses of the secret, and

2. Observe the length of the TLS data frames corresponding to the guess-containing requests.

The attacker does not require access to the encryption keys of the SSL/TLS connection, and there is no
SSL/TLS session termination or any other action which would render an HTTPS warning in the victim’s
web browser.

At their Ekoparty 2012 presentation, Rizzo and Duong described how to extract a cookie string using
the CRIME attack. First, they assume a network attacker who is able to inject JavaScript into the response
stream from the server using a Man-in-the-Middle attack. This code can be injected into the response for
any regular HTTP site, and the malicious code then makes requests to the targeted web server running on
SSL/TLS.

They injected guesses by directly placing them in the HTTP request. They did this by adding the
guess string in the query string of a URL sent to the victim website. For instance, for a victim site http:
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//www.good.com/, the attacker places the guess in the query string to obtain a request URL: http://
www.good.com/?guess_goes_here. Other possible ways of injecting guesses include requesting other
resources such as images, and placing the guess in the query string of the requested URL so that the guess
gets injected into the stream of bytes in the HTTP request. Then, the full HTTP request sent by the browser
to the web server will contain the requested URL, as well as the secret in the cookie string, which will
get compressed together by TLS DEFLATE prior to encryption. Then, as the length of TLS frames are
prepended to the header of each frame in the clear, the network attacker can directly read this length off the
wire to obtain feedback for his guess.

2.3.4 Main Vulnerabilities

Two main conditions enable the partial chosen plaintext attack against the TLS DEFLATE compression
to be practical. First, TLS DEFLATE allows parts of the data compressed, such as the requested URL in
the HTTP request, to be controlled by the attacker. This enables the attacker to insert guesses which are
compressed together with the secret, allowing the attacker to gain feedback about his guesses by observing
the length of the resulting cipher text. The key vulnerability here is caused by a shared compression context
between attacker-controlled bytes and the secret data to be kept confidential, which gives the attacker an
opportunity for choosing a partial plaintext (the guess of the secret) to inject. The compression context here
refers to the bytes which are compressed together using the same compression sliding window in the LZ77
compression algorithm.

Second, the main feature of the information leakage which makes the compression attacks feasible is
that the attacker is able to get feedback for correct guesses of substrings of the plaintext, i.e. the attacker
gets partial feedback for guesses. This helps reduce the number of guesses from being exponential in the
size of the character-set of the secret to being polynomial in the size of the character-set.

2.4 Mitigation: SPDY4 Compression

SPDY4 is the next proposed version of the SPDY protocol. At the time of writing of this paper, SPDY4 is
currently still in draft status and has not been implemented. Nonetheless, in response to the vulnerability
of header compression in SPDY2 and SPDY3 to the CRIME attack, a new compression scheme has been
proposed [10]. Sample code demonstrating this new compression scheme has also been made publicly
available1.

The main idea in the design of the header block compression in SPDY4 is to isolate the compression
contexts for each name/value pair in the block. This is to prevent attacker controlled bytes from being
injected into the compression context of sensitive headers.

In particular, the header compression in SPDY4 has eliminated the use of the LZ77 compression.
Instead, only the Huffman encoding is used. Similarly to SPDY2 and SPDY3, a fixed Huffman code based
on the empirical frequency table in the SPDY protocol specification is used.

In place of the LZ77 compression, the SPDY4 compression introduces a new ‘delta’ compressor [3]
based on a fixed dictionary of header names (or keys) and commonly occurring values, and an internal
compression state consisting of an Least-Recently-Used-evicted (LRU) cache of previously seen key/value
pairs. The delta compressor provides a language which contains 8 operators for operating on the LRU
key/value store. Then, the output of the compressor is a stream of operations on the LRU key/value store to
describe to the recipient how to decompress the stream.

The operations will be explained in the description of the compressor’s behavior, and they are: skvsto
(Stateful Key-Value Store), ekvsto (Ephemeral Key-Value Store), sclone (Stateful Key Clone), eclone

1https://github.com/grmocg/SPDY-Specification/tree/gh-pages/example_code
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(Ephemeral Key Clone), stoggl (Stateful Toggle), etoggl (Ephemeral Toggle), strang (Stateful Toggle
Range), etrang (Ephemeral Toggle Range).

Conceptually, the compression can be described as follows. First, headers are operated on in key/value
pairs, with keys specifying the name of the header, e.g. “User-agent” or “Accept-language”. Second, there
are three possible cases for each key/value pair in the header block:

1. The key and value are both previously unseen.

2. The key is either previously seen, or matches a commonly-used key specified in the fixed dictionary,
but the value is not previously seen.

3. The key and value are previously seen.

If the key and value are both previously unseen, the compressor can decide to either directly output the
key/value pair without storing it to the compression state for keys and values it decides are rare (using the
ekvsto command), or it can issue a command to insert the key and value into the LRU store and insert it
into the stream (using the skvsto command).

If the key is previously seen or matches a commonly-used key specified in the dictionary, but the value
is not matched, then the compressor can either store the value in the LRU index for the key (using the sclon
command) while inserting it in the stream, or it can insert it in the stream without storing it in the LRU
(using the eclon command).

If the key and value are both found in the LRU, then the key/value pair is “switched on”, i.e. it is
copied into the stream by the decompressor (using the stoggl command). The compressor can also disable
previously inserted ephemeral clones or stores (using the etoggl command).

Then, the output of the SPDY4 compression is a series of commands to be interpreted by the decom-
pressor, and this stream of commands contains data where required, e.g. when new keys and values are
specified using the ekvsto,skvsto commands, or when new values are specified for existing keys using
the eclon,sclon commands. Otherwise, for existing key/value pairs in the compressor state, stoggl com-
mands are used to indicate that key/value pairs from the internal compression state are to be inserted into
the data stream of uncompressed data to be returned to the user.

Hence, the SPDY4 compressor and decompressor state both begin from an initial dictionary as specified
in the SPDY4 specification, and this state is then modified by the compressor-issued commands together with
new keys/values to either insert directly into the data stream of uncompressed data to be returned to the user,
or to insert into the internal LRU cache as well.
Treatment of Cookies In SPDY4, all crumbs in a cookie are treated as values belonging to the key “cookie”.
The cookie string is then tokenized by the “;” character, and each crumb, i.e. each part of the cookie string
separated by “;”s are considered as one distinct value. For instance, if a request consists of a cookie with
three crumbs: “cookie1=cookievalue1”, “cookie2=cookievalue2”, and “cookie3=cookievalue3”,
then the HTTP request stream will contain (‘\’ indicates a continuation of the same line):

Cookie: cookie1=cookievalue1 ; \

cookie2=cookievalue2 ; \

cookie3=cookievalue3

Then, the SPDY4 compressor will treat this string as:

cookie = cookie1=cookievalue1

cookie = cookie2=cookievalue2

cookie = cookie3=cookievalue3
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2.5 Compression Contexts in SPDY4

In SPDY2 and SPDY3, the entire name/value header block is in a single compression context, with the
LZ77 compression algorithm applied to the Huffman-encoded version of the entire header block. Hence,
any substring which is repeated in the block is replaced by an encoded version. As parts of the headers
are controllable by attackers (e.g. the URL to retrieve in the HTTP request), this made the partial chosen
plaintext attack feasible.

In SPDY4, the compression context of the header block consists of entire key/value pairs. Each
key/value pair has its own compression context, as it is either unmatched and emitted uncompressed, or
matched fully and emitted as a delta-encoded version (i.e. the LRU index where the key/value pair was
previously written in the compressor’s internal state).

Compression, i.e. replacement with a shorter encoding, in the ‘delta’ compressor occurs only when the
entire key and its corresponding value had previously occurred in the request stream. Sensitive data such as
cookies are stored in the values of name/value pairs. Hence, to induce a “compression”, or replacement of
the secret cookie value with a shorter delta-encoded version, the attacker needs to correctly guess the entire
cookie before he can obtain feedback.

By the analysis in §2.3.2, this would increase the number of guesses needed from O(ns) in SPDY2 and
SPDY3 with compression enabled, to O(ns) under the new delta compressor for SPDY4.

3 Compression Vulnerabilities

3.1 Compression Leaks in SPDY4

SPDY4 is still susceptible to chosen plaintext attacks through information leakage via compression. How-
ever, the attacker will receive feedback only when his entire guess is correct, and the attacker will not receive
any partial feedback on guesses on substrings of the targeted secret in the plaintext. As discussed above, the
number of guesses is exponential in the size of the character set of the secret.

3.1.1 “Duplicate” cookies using the Path attribute

Under the SPDY4 ‘delta’ compressor, the attacker needs to inject a cookie containing his guess of the secret
cookie value. This cookie must have the same name as the cookie containing the secret cookie, and its value
must match the exact secret value exactly. However, if the victim’s browser already contains a cookie with
a given name, setting another cookie with the same name will cause the previous cookie to be overwritten.
Hence, the attacker needs to be able to induce the web browser to send two cookies with the same name
without one overwriting the other.

We have discovered that this can be achieved by making use of the Path attribute of a cookie. We
tested the following approach in both Firefox 14 and Chrome 26. First, two cookies with the same name are
set with different values for the path attributes. Second, when the browser sends subsequent requests to the
site, both cookies with the same name will be sent in the request, but the browser will not send the value of
the Path attribute, which is exactly the behavior we require for the attacker to inject his guesses.

3.1.2 SPDY4 Guess injection using duplicate cookie injection attack

Hence, consider the scenario where the attacker is trying to steal the value of a cookie with name secretcookie
from https://www.good.com/.

First, we assume that the attacker knows the length of the secret contained in the cookie in the plaintext
which he wishes to extract. This can be easily achieved by directly accessing https://www.good.com/ to
discover the format of the secret cookie, such as an MD5 or SHA1 hashed string.
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Figure 2: Calculation for number of possible guesses for one solution to equations 1,2 for strings with
encoded length L for hexadecimal strings with lowercase letters.

Second, the attacker can inject JavaScript into any HTTP request to insert an IFrame which sends a
request to https://www.good.com/, and the attacker observes the network to record the length of the
request sent.

Third, the attacker needs to set a cookie with the name secretcookie with a Path attribute that has
a different value from that of the legitimate cookie set by https://www.good.com/2 for the good.com

domain. The attacker can do this by injecting malicious JavaScript if the victim tries to connect to good.com
using only HTTP without encryption3, or by first carrying out a DNS poisoning attack, or a TLS forwarding
attack, to temporarily redirect good.com to point to the attacker’s servers so that the attacker can set a cookie
with name secretcookie and a different Path attribute value for the good.com domain, and the attacker
sets the cookie to contain the value of his guess of the full contents of the cookie string.

Fourth, the attacker can inject JavaScript into any HTTP request to insert an IFrame which then sends
a request to https://www.good.com/ and the attacker observes the length of the request. Suppose the
length of the observed request in the second step is SR, and the length of the secret cookie to be extracted
has length SS, and that the length of the request in the third step is ST . Then, if ST −SR < SS, we know that
the attacker-injected guess was compressed by the SPDY4 ‘delta’ compressor replaced the inserted attacker
guess with the secret cookie’s LRU entry ID, and that the guess was correct.

Although this allows guesses to still be injected into SPDY4 streams, the attacker can only gain feed-
back for chosen plaintext, but not for partial chosen plaintexts. Hence, the attacker does not gain feedback
for partial guesses, and as described in §2.3.2, the number of guesses will be O(ns) for a secret of length s
with n characters in the character-set of the secret, which is impractical for most actual data.

3.2 Leaks Due to Huffman Encoding in SPDY4

SPDY4 is also susceptible to information leakage due to the use of a fixed Huffman coding table. Different
characters in SPDY4’s fixed Huffman coding table have different encoding lengths. Hence, we can reduce
the search space of possible strings encoded using the fixed Huffman coding table when given the following
pieces of information:

1. Number of characters in the plaintext string

2. Length of the encoded string

3.2.1 Illustration of Information Leakage

We illustrate how a fixed Huffman coding table can result in information leakage using a simple example.
Suppose that there is a fixed Huffman coding table, where character encodings can be 5-, 6-, or 7-bits long.
Table 1 illustrates the number of characters with each encoding length in our example coding table.

2The attacker can first check the attributes of the targeted secretcookie set by https://www.good.com/ to ensure that he
picks a value for the Path attribute that is different.

3As our attacker does not have access to the server’s encryption keys nor certificate, he will not be able to inject any content into
an encrypted stream.
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Encoding length Number of characters
5-bits 2
6-bits 3
7-bits 3

Total characters 8

Table 1: Number of characters with each coding length in our illustration.

Then, suppose that we know that a plaintext string contains 3 characters, and we know that the string
is 15-bits long when encoded using this coding table. Thus, we can conclude that the encoded string must
contain 3 encoded characters which are 5-bits long.

Hence, if we can observe only string lengths, if we observe the length of the unencoded string, the
number of possible strings is 83. However, if we can observe the length of the encoded string, then for a
15-bit encoded string, the number of possible strings is 23, because we know that the string is made up of
the 2 characters whose encodings are 5-bits long.

3.2.2 Quantifying Information Leakage via Fixed Huffman Coding

Next, we describe how to quantify the information leaked due to the use of a fixed Huffman coding table.
We assume that the attacker knows: (i) the number of characters in the secret contained in the plaintext
which the attacker wishes to extract, and (ii) the length of the encoded secret.

We also make use of the possible number of bits in the character encodings in the Huffman table. As
an example, we consider the encodings of hexadecimal string in lowercase, i.e. the character set consists of
0-9a-f. In the fixed Huffman coding given in SPDY4, the lengths of the encoded characters for 0-9a-f
are as shown in Tables 2 and 3.

Character 0 1 2 3 4 5 6 7
Encoding length (bits) 5 5 5 6 7 6 7 6

Character 8 9 a b c d e f
Encoding length (bits) 7 6 5 6 5 6 4 6

Table 2: Number of bits in encoding in fixed Huffman encoding table for SPDY4 for each character.

Number of bits in encoding Number of characters
4 1
5 5
6 7
7 3

Total 16

Table 3: Summary of number of characters with each encoding length for characters used in lowercase
hexadecimal string representations.

Then, given the length of the encoded secret, we can compute the number of characters of each encod-
ing length that could have resulted in an encoded secret with the observed length. For instance, for a 20 char-
acter (lowercase) hexadecimal string, the encoded length can be between 20×4 = 80 bits to 20×7 = 140
bits. Supposing the length of the encoded string is L bits, and denoting the number of characters encoded
with 4, 5, 6, and 7-bits respectively as w,x,y,z, then, the number of characters with 4-bits, 5-bits, 6-bits, and
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7-bits in their encoding are given by the following system of equations:

w+ x+ y+ z = 20 (1)

4w+5x+6y+7z = L (2)

We obtain the possible solutions for this system of equations by a brute-force recursive computation.
Then, we denote the number of characters with k-bit encodings by Ek. Thus, suppose the solutions to
the system of equations above are given by (w1,x1,y1,z1),(w2,x2,y2,z2), . . ., then the number of possible
guesses for the string of length L for each of the solutions (wi,xi,yi,zi) to the above system of equations is
given by the summation in Figure 2.

The computation is similar for other character-sets of target guesses, with the number of variables (i.e.
w,x,y,z) needed equal to the number of distinct encoding lengths in the fixed Huffman encoding table needed
to encode the target character-set of the secret.

In this case, the number of possible strings for a 20-character hexadecimal string is 1620 = 280 ≈ 1024.
However, in the extreme case, if the length L of the 20-character (lowercase) hexadecimal string is 80-bits,
then since there is only one character with a 4-bit encoding, then the search space is immediately narrowed
down to a single possible string. In a less extreme case, suppose the length L of the 20-character (lowercase)
hexadecimal string is 100-bits, then based on the formula in Figure 2, there are 1.22×1019 ≈ 263 possible
strings, and we would have achieved a 17-bit reduction in the search space due to the information leaked
from the length of the encoded string.

3.2.3 Generalizing Quantification of Information Leakage via Fixed Huffman Coding

Next, we generalize the equations in Figure 2 for quantifying the information leakage due to the use of a
fixed Huffman Coding (as compared to an unencoded string with fixed-length characters). First, Figure 3
gives the system of equations which specifies the linear combinations of the number of each of the encoded
characters that can make up an encoded string with length L-bits if it has C characters.

m

∑
j=1

xi, j = C

m

∑
j=1
|l j| · xi, j = L

Figure 3: System of simultaneous equations which gives linear combinations of the number of (encoded)
characters with each encoding length given number of characters in string, C, and length of string, L in bits.
Each ∀ j ∈ [1,m] , l j is a length of encoded characters in the Huffman coding, and |l j| indicates the number
of characters whose encodings are l j long.

Thus, we obtain, from the equations in Figure 3, the n linear combinations ∀i ∈ [1,n] ,xi,1,xi,2, . . . ,xi,m

of the numbers of each encoded character length which makes up the encoded string of length L with C
characters where each xi,1, . . . ,xi,m is one such linear combination. Then, Figure 4 gives the number of
guesses for a string with encoded length L with C characters.

Hence, from Figures 3,4, we denote by G the number of possible guesses for a string with encoded
length L-bits which is known to have C characters. Then, the number of possible strings with C characters
is given by MC. Hence, the amount of information leaked is given by:
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G =
n

∑
i=1

m

∏
j=1

(
L− (∑

j−1
k=1 xi,k)

xi, j

)
· |li|xi, j

Figure 4: General form of equation in Figure 2 for counting number of guesses, where xi, j denotes the j-th
entry in the i-th solution to the system of equations in Figure 3, and li denotes an encoding length and |li|
denotes the number of characters in the character-set with encoding length li.

log(MC−G)

log2

Figure 5: Information leakage due to fixed Huffman coding table.

3.3 Information Leakage in Byte-padded Strings

The amount of information leaked in strings padded to the nearest byte-length is reduced due to the byte-
padding. As the SSL/TLS protocol which SPDY4 is wrapped in specifies that frames are to be padded to the
nearest byte-length, only byte-lengths will be observable. Hence, instead of observing the bit-length L of
the encoded string, an attacker will only be able to observe the byte-length

⌈L
8

⌉
of the encoded string. Thus,

for an observed byte-length L′, the attacker must consider bit-lengths (8× (L′− 1))+ {1,2,3,4,5,6,7,8}
and the possible strings that can be encoded with the given bit-lengths.

4 Exploiting SPDY4 Leakage

4.1 Information Leakage in SPDY4

Next, we applied the equations in Figures 3 and 4 to various possible character-sets for SPDY4, given
the SPDY4 Fixed Huffman Coding table. We used the expression in Figure 5 to compute the number of
bits leaked for various character-sets in SPDY4 given the fixed Huffman coding table specified for SPDY4
requests. In addition, we used the procedure described in §3.3 to consider the amount of information leaked
when only byte-lengths of encoded strings are observable (rather than bit-lengths).

For a given string with C characters for a given character-set, there are a number of possible encoded
string lengths. To summarize our findings, we calculated the expected information leakage, by computing
the information leaked for each possible encoded string length L, and weighting it by the proportion of
strings in the space of all possible strings with that given string length.

We consider various types of character-sets, as the different character-sets have different distributions
of encoding characters of various lengths, which can affect the amount of information leaked for each
character-set. Specifically, we quantified the information leaked due to the fixed Huffman coding for the
following four character-sets:

• Lower-case hexadecimal strings 0-9a-f

• Upper-case hexadecimal strings 0-9A-F

• Lower-case alphanumeric strings 0-9a-z

• Upper-case alphanumeric strings 0-9A-Z

12
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Figure 6: Amount of information leaked due to the use of a fixed Huffman coding table for various types of
character-sets in SPDY4.

Figure 6 shows the amount of information leaked for each of the character-sets we considered. We
computed the amount of information leaked for strings with 1 to 30 characters for 4 possible character-sets
(lowercase and uppercase hexadecimal and alphanumeric strings). We did this in the following procedure.
First, we computed the number of possible strings of each observable byte-length, and the possible bit-
lengths for each observed byte-length. Second, we computed the number of possible plaintext strings with
each encoded length. Third, we computed the conditional expectation of the number of guesses for each
plaintext string conditioned on each observed length of the encoded string. Fourth, we computed the in-
formation leaked as the number of bits needed to represent the difference between the number of possible
plaintext strings of each given plaintext length, and the expected number of guesses for plaintext strings of
the given plaintext length when given the length of the encoded string.

Hence, the information leaked for a plaintext string of length M, measured in bits, where the character-
set has C characters, i represents the observable lengths of the encoded strings, and Gi represents the number
of possible strings with encoded length i (computed from Figure 4), can be computed as follows:

log
(

MC−∑i

(
Gi
MC Gi

))
log2

From Figure 6(a), we can see that the total number of bits leaked increases with increasing length of the
plain-text string. The number of bits leaked is the greatest for uppercase alphanumeric characters, followed
by lowercase alphanumeric characters, while the fewest bits are leaked for hexadecimal strings. This is
because the hexadecimal characters have the smallest variation in the number of bits used to represent the
different characters in its character-set, whereas the variation in the number of bits used to represent the
larger character-sets of the alphanumeric strings gives away more information through the length of the
Huffman-coded strings.

From Figure 6(b), we can see that the number of bits leaked on a per-character basis (i.e. total number
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of bits leaked divided by the number of characters in the plaintext) levels off for all the different character-
sets. This is because as the number of characters in the plaintext string increases, the number of linear
combinations satisfying the equations in Figure 3 increases, increasing the number of possible guesses. The
number of bits leaked per character is highest for alphanumeric strings, and lowest for hexadecimal strings.
This is consistent with our observation above that larger character-sets leak larger amounts of information.

In addition, from Figure 6(a), we can see that the number of bits leaked varies slightly for differing
numbers of characters in the plaintext string. This is because of the interaction between the possible bit-
lengths and the observable byte-lengths. Plaintext strings with a particular number of characters may have
different possible observable byte-lengths, and strings whose encodings have more possible observable byte-
lengths can result in slightly more information leaked.

4.2 Hypothesized Attack

We showed in §4.1 that between 15% to 45% of the number of bits used to encode strings with various
character-sets is leaked. An attack can be mounted against SPDY4 to recover plaintext from encrypted data
using a chosen plaintext attack. This attack requires: (i) Network attack: Observe traffic, and inject data into
unencrypted streams. (ii) No circumvention of encryption: No HTTPS keys needed, no certificate errors
will be caused. (iii) Number of characters in plaintext to be recovered. (iv) Character-set of plaintext.

Then, the attack is a variant on the guess-injection described in §3.1.2. The attacker continues to use
the technique in §3.1.2 to inject guesses, but the guesses are generated as follows:

• After obtaining the length and character-set of the secret cookie, the attacker computes the linear
combinations of the different numbers of each character of each encoding length.

• For each i-th linear combination, the attacker constructs guesses for the linear combination. ∀ j ∈
[1,m] ,xi, j, xi, j specifies the number of characters with encoding lengths l j. Thus, for each j, the
attacker picks xi, j characters from the fixed Huffman-coding table whose encoded lengths are l j.

• From the previous step, the attacker picks the selected characters, and constructs guesses by permu-
tating the selected characters.

4.3 Implications

Quantifying Information Leaked The number of bits leaked increases rapidly for short plaintext strings,
but appears to level off as the plaintext string gets longer. This is likely because as the number of characters
in the plaintext string increases, the number of linear combinations satisfying the equations in Figure 3 in-
creases, increasing the number of possible guesses. The number of bits leaked, as illustrated by Figure 6(a),
levels off around 1.4 bits of information leaked for 30-character plaintext strings consisting of uppercase
alphanumeric characters.
Quantifying Request Volume Required Next, we determined the volume of requests required to generate
sufficient guesses for each plaintext length to be recovered. For this exercise, we focus on strings whose
character-set is made up of uppercase alphanumeric characters. The results for hexadecimal and lowercase
alphanumeric strings is similar, and are a linear factor of the results for uppercase alphanumeric characters.

Figure 7 shows the volume of requests required to be sent to inject each possible guess for both the
brute-force attack and our proposed fixed Huffman-coding attack. We conservatively assume that each
request is 200 bytes in size, and that each guess requires a request to be sent twice, according to our cookie-
overwriting attack described in §3.1.2 and §4.2. We can see that the volume of requests needed is similar
for both brute-force guessing, and when guessing using our information leak. This is because the amount of
information leaked remains small at under 2-bits even for 30-character plaintext strings.
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Figure 7: Volume of data needed to generate requests for all guesses for both brute-force guessing, and for
guessing assisted by information from the observed Huffman coding length for strings of printable charac-
ters.

Quantifying Time Required Next, we quantify the time required to transmit all guesses. We assume a
typical broadband connection, and we optimistically assume a bandwidth of 5.0 megabits per second (or
0.625 megabytes per second). We also assume that the attacker does not take care to reduce his network
footprint by limiting the rate of transmission of guesses. Figure 8 shows the time taken to transmit requests
for all guesses for each plaintext length being guessed. Again, we can see that the time taken for a brute-force
guess is similar to the time taken when guesses are informed by the observed length of the Huffman-coded
string.

5 Related Work

Information Leaks in SSL/TLS Two prominent attacks against the SSL/TLS encryption protocol for trans-
porting encrypted HTTP traffic were the BEAST (Browser Exploit Against SSL/TLS) and CRIME (Com-
pression Ratio Information Leakage Made Easy) attacks [5] which enabled the recovery of HTTP session
cookies using chosen plaintext attacks. These attacks enabled a network attacker with the ability to sniff
network traffic to recover HTTP session cookies from an encrypted SSL/TLS session. The key approach
was to inject guesses of the value of the session cookie from the victim’s host to the target server, and ob-
serve the encrypted traffic for feedback about whether the guess was correct. In BEAST, the feedback was
in the form of the XORed encrypted text matching the guessed value due to the initialization vectors (IVs)
used in the Cipher Block Chaining (CBC) mode being taken from the last plaintext block, which allowed
the attacker to match his guess against a previous block containing the secret. In CRIME, the feedback was
in the form of shorter encrypted text length due to better compression from the injected guess matching the
secret HTTP session cookie value.

Our hypothesized PETAL information-leak attack against the proposed compression scheme in SPDY4
is analogous to the BEAST and CRIME attacks, in that the attacker injects guesses of the HTTP session
cookie string, and receives feedback in some form. In the case of PETAL, the feedback is similar to CRIME:
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Figure 8: Time needed to generate requests for all guesses for both brute-force guessing, and for guessing
assisted by information from the observed Huffman coding length for strings of printable characters.

the attacker can determine if his guess is correct by observing if the length of the encrypted text falls as
compared to other guesses. However, unlike BEAST, PETAL does not rely on the type or mode of the
encryption used in the underlying SSL/TLS layer (Cipher Block Chaining mode). In CRIME, the attacker
is able to receive feedback for correct partial guesses, leading to a highly practical attack which can recover
long strings (e.g. greater than 20 characters long for actual session cookies of current websites), whereas in
PETAL, due to the effective mitigations against partial chosen plaintext attacks in the proposed compression
in SPDY4, the attacker in PETAL is able to receive feedback only for a complete correct guess. However,
the amount of information leaked when the encoded strings are byte-padded is very small, and under 2-bits
even for a 30-character string.
Other SSL/TLS Vulnerabilities A number of other vulnerabilities in SSL/TLS have been discovered. First,
Paterson et al. identified ways an attacker can recover plaintext from a TLS connection when RC4 encryption
is used [9]. These attacks are due to statistical flaws in the keystream generated by RC4 which become
apparent in TLS ciphertext when the same plaintext is repeatedly encrypted at fixed locations across many
TLS sessions. We speculate that using SPDY on top of SSL/TLS is likely to reduce the vulnerability to such
attacks due to SPDY being designed to persist sessions, although attackers can force TLS sessions to be
terminated to cause multiple sessions to be created. The US National Vulnerability Database has assigned a
vulnerability entry to this flaw [1]. Paterson et al. have also identified the Lucky-13 attack [2] which enables
the attacker to guess the contents of ciphertext by sending malformed messages to the server, and observing
the time taken for decryption to fail. The TLS MAC calculation includes 13 bytes of header information, so
the attacker can replace the last few blocks of ciphertext with chosen blocks and observe the time taken for
the server to respond. TLS messages with the correct padding will require less time on the server to process.
Hence, attackers could guess the contents of ciphertext by timing the server’s response time. These attacks
are orthogonal to our PETAL information-leak on SPDY4, as SPDY4 is layered on top of the SSL/TLS
protocols.
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6 Future Work

Our attack is a hypothesized attack against the proposed compression scheme in the next version of the
SPDY protocol. Hence, the attack needs to be verified against a working implementation of the next version
of the protocol.

In addition, we believe that our information-leak attack against fixed encoding tables with differing
lengths of encoded characters can be generalized beyond the SPDY protocol.

7 Conclusion

We have describe the CRIME vulnerability [11] and how it applies to SPDY2/3. We have also described
the mitigations against CRIME-like vulnerabilities in the new compression scheme in SPDY4, and we have
shown that this mitigation is effective against partial chosen plaintext attacks.

In addition, we have described a source of information leakage in SPDY4 due to its use of a fixed
Huffman coding table, which enables a chosen plaintext attack by a network attacker when combined with
our method for sending duplicate cookies with the same name by using a different Path attribute. We have
quantified the implications of the amount of information leaked, and shown that an attack which makes use
of this information leakage is not practical, as it leaks only less than 2-bits of information for 30-character
uppercase alphanumeric strings.
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