
No Downtime for Data Conversions: Rethinking Hot
Upgrades

Tudor Dumitraş and Priya Narasimhan
Carnegie Mellon University

Pittsburgh, PA 15217
tudor@cmu.edu priya@cs.cmu.edu

CMU-PDL-09-106

July 2009

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Unavailability in enterprise systems is usually the result of planned events, such as upgrades, rather than failures. Major system
upgrades entail complex data conversions that are difficult to perform on the fly, in the face of live workloads. Minimizing the
downtime imposed by such conversions is a time-intensive and error-prone manual process. We present Imago, a system that aims
to simplify the upgrade process, and we show that it can eliminate all the causes of planned downtime recorded during the upgrade
history of one of the ten most popular websites. Building on the lessons learned from past research on live upgrades in middleware
systems, Imago trades off a need for additional storage resources for the ability to perform end-to-end, enterprise upgrades online,
with minimal application-specific knowledge.

Acknowledgements: We would like to thank Alan Downing, Jim Stamos and Byron Wang of Oracle for their feedback during the early stage
of this research project.

tudor@cmu.edu
priya@cs.cmu.edu

1 Introduction

Software upgrades are unavoidable in enterprise
systems. For example, business reasons sometimes
mandate switching vendors; responding to customer
expectations and conforming with government reg-
ulations can require new functionality. Moreover,
many enterprises can no longer afford to incur the
high cost of downtime [14] and must perform such
upgrades online, without stopping their systems.
While fault-tolerance mechanisms focus almost en-
tirely on responding to, avoiding, or tolerating unex-
pected faults or security violations, system unavail-
ability is usually the result of planned events, such
as upgrades. A 1998 survey of 426 sites with high-
availability applications, using servers from IBM,
Sun, Compaq, HP, DEC, and Tandem, showed that
75% of nearly 6000 outages were due to planned
hardware and software maintenance and that such
planned outages typically lasted twice as long as un-
planned ones [12].

Enterprise-system upgrades often require com-
plex data conversions for changing the data schema
or for migrating to a different data store. Such
upgrades are costly; for example, upgrading en-
terprise resource planning (ERP) systems can cost
up to 30% of the price of the original implementa-
tion ($40M – $240M) [3]. Because some data con-
versions are difficult to perform on the fly, in the
face of live workloads, and owing to concerns about
overloading the production system, upgrades that
involve computationally-intensive data conversions
currently necessitate planned downtime, ranging
from tens of hours to several days. Conversely, sys-
tem administrators often avoid complex upgrades,
which might impose an unacceptable downtime,
and preserve database schemas that provide sub-
optimal performance and that cannot support new,
user-requested features. Despite previous work on
schema evolution, determining the leading causes
of planned downtime in enterprise systems remains
an open question.

There is a tension between the upgrade atomic-
ity and the system availability during the upgrade.
In practice, enterprise-system administrators often
favor the atomicity, by upgrading inter-dependent
components and data objects together, and intro-
duce planned downtime [8]. Previous approaches

for online upgrades [5, 11] favor the availability
and introduce mixed, interacting versions, which
synchronize their states in the back-end. Ensur-
ing the correctness of the mixed-version interactions
requires a time-consuming and error-prone manual
process. Both these approaches assume that an up-
grade must be performed in-place, replacing the ex-
isting system. We show that, at the expense of addi-
tional storage and computational resources, the ten-
sion between upgrade atomicity and availability can
be resolved.

We believe that an upgrade mechanism that re-
quires careful manual intervention and in-depth
knowledge of the application’s interaction with the
data store is much less likely to become successful.
We especially wish to avoid the need to establish
correctness constraints for the mixed-version inter-
actions or to track the old version’s data dependen-
cies. Therefore, a meta-goal for our research is to
assess the effort required to implement and coordi-
nate a complex online-upgrade and to evaluate how
close we can get to the zero-downtime ideal.

We have two goals in this paper:

• Identify the common causes of planned down-
time from the upgrade history of Wikipedia,
one of the ten most popular websites to date;
• Rethink online upgrades in order to eliminate

the leading causes of planned downtime and to
reduce the effort required for ensuring that the
persistent data will be correctly converted into
the new format.

2 Causes of planned downtime
Wikipedia (http://www.wikipedia.org) is one
of the ten most popular websites to date,1 providing
a multi-language, free encyclopedia. The English-
language Wikipedia has 2.9 million articles, with
content stored in a 1 TB database and 850,000 files
(e.g. images). The web site is supported by an in-
frastructure (Figure 1) running on 352 servers, in-
cluding 23 MySQL database servers configured for
master/slave replication. The master database re-
ceives the write queries and propagates the updates
to the slave, which handle read-only queries. A wiki

1According to http://www.alexa.com. Wikipedia han-
dles peak loads of 70,000 HTTP requests/s.

1

http://www.wikipedia.org
http://www.alexa.com

Internet frontend Backend

C
ore services

M
iscellaneous

services

WAP SSL

Apple Search

Nagios

Subversion

Ganglia

IRC

Scratch hostsBatch jobs

LoggingLDAP/NIS

Network tools

DNS

NTP, SSH

APT repositories

HTML

Media files

W
iki

tex
t

Image
files

files

Image files

D
at

ab
as

e
du

m
ps

Static dumps

Media Upload

Media files

Database dumps

Search tasksHTML + Media files

Search tasks

Toolserver DBs

Index updates

DB replication

SQL queries

Master DB Slave DB Apache Text squid Upload squid Load Balancer Search host Search indexer File server Image scaler Web service Mail/IRC service Network sevice

PDF

Toolserver

http://upload.wikimedia.org/wikipedia/commons/4/4f/Wikimedia-servers...

1 of 1 6/21/2009 6:09 AM

Source: http://meta.wikimedia.org/wiki/Wikimedia_servers

Figure 1: Wikipedia architecture.

engine called MediaWiki, implemented as a set of
PHP scripts, accesses the database and generates the
content of the articles. In addition to Wikipedia,
MediaWiki drives over 15,000 other wikis,2 which
makes it a representative case study for enterprise-
system upgrades.

We study the upgrade history of Wikipedia
by combining data from a rigorous study of
Wikipedia’s schema evolution [7] with information
from design documents and archived discussions.
Between 2003 and 2008, MediaWiki’s database
schema has gone through 171 evolution steps [7]
in the main development branch. During this time,
the project has released eleven versions (1.1 – 1.11)
of the wiki engine. Minor versions (e.g., the 1.4.x
series) do not introduce schema changes; upgrad-
ing to a new version within the same release series
requires only replacing the PHP code on the ap-
plication servers. However, upgrading to a differ-
ent major version (e.g. from 1.4 to 1.5) can require
database changes.

Example of planned downtime. Figure 2 illus-
trates a simple schema upgrade proposed for Medi-

2According to http://s23.org/wikistats/.

a

X

ba

Y

b

X.a=Y.a

Y.b

1

2

3

Figure 2: Replacing a column 1© with another one
2©, initialized with data from a different table 3©.

aWiki 1.4 that was rejected because it would have
imposed downtime on upgrade (we adapted this ex-
ample to simplify its presentation). After 1© drop-
ping column a from table X, some queries issued by
the old MediaWiki version will produce SQL errors.
Furthermore, if 2© the schema upgrade also adds a
column X.b, the new MediaWiki version will likely
be unable to operate on the old schema. To pre-
vent exposing the clients to these errors, the upgrade
should be performed in two steps: (i) add column
X.b and upgrade the wiki engine, in an atomic op-
eration; (ii) drop column X.b. During the first step,
the clients must not access the system to avoid pro-
ducing errors.

Instead of atomically upgrading the schema and
the business logic, several approaches have been
proposed [5, 11] for allowing mixed versions to co-
exist during the upgrade. However, dependencies
among the old and new data further complicate the
upgrade procedure. For example, 3© let the new col-
umn X.b be initialized with the contents of a column
from a different table, Y.b, selected by joining ta-
bles X and Y on the column a. The offline schema
upgrade uses three SQL commands:

ALTER TABLE X ADD COLUMN b INT(8) NOT NULL;
UPDATE X,Y SET X.b=Y.b WHERE X.a=Y.a;
ALTER TABLE X DROP COLUMN a;

However, in an online upgrade, the clients can ac-
cess the system during these operations. The online-
upgrade procedure must take into account the effect
of the INSERT/UPDATE/DELETE queries issued by the
live workload and must synchronize the data in the
new column, X.b. This requires reevaluating the
join condition X.a=Y.a for each live query to de-
termine if the value of X.b must be updated, in the
row changed by the query or in some other row of

2

http://meta.wikimedia.org/wiki/Wikimedia_servers
http://s23.org/wikistats/

table X. This example illustrates that synchronizing
multiple versions during an online upgrade requires
additional development effort, is error-prone due to
its complexity and can impose a high run-time over-
head on the production system.

Figure 3 illustrates the most complex schema
change, introduced in MediaWiki 1.5. Prior to this
version, the cur table stored the content and meta-
data of the current revisions of Wikipedia articles,
and table old stored the previous revisions. The
1.5 upgrade moved the article-specific metadata into
the page table, the revision-specific metadata into
the revision table and the content of the revisions
into the text table. The goals of this major re-
structuring were to improve performance (e.g., by
separating metadata from content to allow faster ag-
gregation) and to support new features (e.g. renam-
ing articles without having to modify all their past
revisions). This change was implemented by five
developers over a period of one year. During the
upgrade, Wikipedia was locked for editing, and the
schema was converted to the new version in about
22 hours [1].

Conversely, complex database changes have of-
ten been avoided because they might impose down-
time. For instance, the MediaWiki developers have
repeatedly rejected requests for features that would
require major schema reorganizations [2], and have
rolled back schema changes that would impose
downtime on upgrade (e.g., the change described in
Figure 2). Such rollbacks account for 8.8% of the
changes from MediaWiki’s schema evolution [7].

Current upgrade approaches. With a single
database server in the back-end, downtime is hard
to avoid during an upgrade. In some situations,
it is possible to allow read-only access concur-
rently with the upgrade procedure. MediaWiki pro-
vides a configuration parameter ($wgReadOnly) that
places a site in read-only mode for such planned-
maintenance activities.

When the wiki uses a replicated database, it is
possible to avoid downtime through a rolling up-
grade [4, 13]. In Wikipedia, a rolling upgrade
removes slave nodes one-by-one from replication
group, applies the schema changes, and then restarts
the replication [2]. The rolling upgrade swaps
database masters before completing the schema up-

grade, to avoid re-applying the changes through the
replication protocol. The application servers are
upgraded in a similar fashion, in a wave rolling
through the data center.

To support rolling upgrades, the database replica-
tion mechanism must allow source and target tables
that do not have identical definitions. In MySQL,
for instance, a table on the master can have more
or fewer columns than the slave’s copy, or the cor-
responding columns on the master and the slave can
use different data types. In general, rolling upgrades
require the upgrade to be backwards-compatible [4],
excluding changes such as the one from Figure 2.

Index and data-type changes. Index changes,
implemented for performance-tuning purposes, ac-
count for 40.3% of the schema changes in Medi-
aWiki [7]. While some commercial database servers
support online index-definition, MySQL locks a ta-
ble in order to rebuild its index. These common
changes impose downtime for wikis with a sin-
gle database node. In Wikipedia, however, such
changes are performed online, through a rolling-
upgrade, because they do not require application
modifications. Moreover, rolling upgrades allow
simple data-type conversions (12.8% of schema
changes [7]), such as increasing the size of a nu-
meric type (e.g., INT(8) 7→ INT(16)).

Schema changes. Curino et al. show that the 171
evolution steps of MediaWiki’s database schema
can be modeled using 11 schema-modification oper-
ators (SMOs) [7]. These SMOs, defined in Table 1,
specify how the upgrade converts the database to
a new schema. Four SMOs, DROP TABLE, RENAME

TABLE, MERGE TABLE, RENAME COLUMN, create new
schemas that prevent restarting the MySQL repli-
cation during a rolling upgrade, and, therefore, im-
pose downtime. Five additional SMOs cannot be
supported during a rolling upgrade because (i) the
old application would be unable to query the new
schema (DROP COLUMN, MOVE COLUMN); (ii) UPDATE

queries would attempt to access rows that do not
exist anymore (DISTRIBUTE TABLE); or (iii) data
dependencies would be broken because changes
would be applied only to the source column (COPY
COLUMN, MOVE COLUMN). The most common opera-
tor, ADD COLUMN, is usually compatible with rolling
upgrades because it inserts constant values into

3

Database-schema definition
Old schema

CREATE TABLE cur (
* cur_id INT(8) UNSIGNED
* NOT NULL auto_increment,
* cur_namespace TINYINT(2) UNSIGNED
* NOT NULL default ’0’,
* cur_title VARCHAR(255) binary
* NOT NULL default ’’,
‡ cur_text MEDIUMTEXT NOT NULL default ’’,
† cur_comment TINYBLOB NOT NULL default ’’,
† cur_user INT(5) UNSIGNED
† NOT NULL default ’0’,
...
PRIMARY KEY cur_id (cur_id)

);

CREATE TABLE old (
old_id INT(8) UNSIGNED

NOT NULL auto_increment,
* old_namespace TINYINT(2) UNSIGNED
* NOT NULL default ’0’,
* old_title VARCHAR(255) binary
* NOT NULL default ’’,
‡ old_text MEDIUMTEXT NOT NULL default ’’,
† old_comment TINYBLOB NOT NULL default ’’,
† old_user INT(5) UNSIGNED
† NOT NULL default ’0’,
...
PRIMARY KEY old_id (old_id)

);

New schema

CREATE TABLE page (
* page_id INT(8) UNSIGNED
* NOT NULL auto_increment,
* page_namespace TINYINT NOT NULL,
* page_title VARCHAR(255) binary NOT NULL,

page_latest INT(8) UNSIGNED NOT NULL,
...

PRIMARY KEY page_id (page_id)
);

CREATE TABLE revision (
rev_id INT(8) UNSIGNED

NOT NULL auto_increment,
† rev_page INT(8) UNSIGNED NOT NULL,
† rev_comment TINYBLOB NOT NULL default ’’,
† rev_user INT(5) UNSIGNED
† NOT NULL default ’0’,
...

PRIMARY KEY rev_page_id (rev_page,
rev_id)

);

CREATE TABLE text (
old_id INT(8) UNSIGNED

NOT NULL auto_increment,
‡ old_text MEDIUMTEXT NOT NULL default ’’,
...

PRIMARY KEY old_id (old_id)
);

Upgrade pseudocode

DO_SCHEMA_RESTRUCTURING

1 Check duplicate <title, namespace> entries
in cur and remove all but the most recent ones

2 Create page and revision tables
3 Lock page, revision, old, cur tables for

writing
4 maxold← MAX(old.old_id)
5 Insert contents of cur, other than cur_id, into

old (old_id is auto-incremented)
6 Insert cur 1 title

namespace
old into revision

(† fields from old; rev_id← old_id;
rev_page← cur_id)

7 Insert cur 1 cur_id=rev_page
rev_id>maxold

revision (i.e. the

rows that originated from cur) into page
(* fields from cur; page_latest← rev_id)

8 Unlock tables
9 Rename table old to text

* columns moved to the page table; † columns moved to the revision table; ‡ columns moved to the text table.

Figure 3: MediaWiki schema restructuring from version 1.5.

the new column. However, in a few cases, ADD

COLUMN adds data dependencies, by inserting val-
ues based on other columns from the same table, or
creates columns with values incremented automat-
ically, which might not produce the same ordering
on the master and the slave.

In a sequence of schema modifications (e.g., to
describe a MediaWiki upgrade from V1.4 to V1.5),
a SMO can cancel the effects of a previous one; for
instance, if CREATE TABLE X precedes DROP TABLE

X, these changes do not impose downtime during
the upgrade. While Wikipedia always uses the
most recent MediaWiki version and has deployed
all the past versions of the wiki engine sequentially,
in practice software upgrades often skip versions.
We consider the SMO sequences that define all the
possible upgrades among MediaWiki versions V1.1
– V1.11 (we do not consider downgrades, which
would require the inverse operations).

Figure 4 shows the likely outcome of these up-
grades. 38 out of the 55 upgrades would introduce
changes that prevent restarting the MySQL replica-
tion, and in 12 additional cases the changes would
prevent a rolling upgrade. These upgrades impose

Upgrade from version

U
pg

ra
de

 to
 v

er
si

on

V1.1

V1.2

V1.3

V1.4

V1.5

V1.6

V1.7

V1.8

V1.9

V1.10

V1.11

V1.1 V1.2 V1.3 V1.4 V1.5 V1.6 V1.7 V1.8 V1.9 V1.10V1.11

Rolling upgrade possibleDB replication possibleDowntime required

Figure 4: Downtime imposed by MediaWiki up-
grades.

downtime. Only 5 MediaWiki upgrades can be per-
formed online, through a rolling upgrade. These
situations typically correspond to upgrades between
subsequent versions of MediaWiki. However, the
major changes introduced in versions 1.5 and 1.7
are incompatible with the database replication. Ad-
ditionally, versions 1.4 and 1.10 introduced auto-
incremented columns, version 1.3 dropped a col-
umn, and version 1.6 added a column with depen-

4

Table 1: Schema Modification Operators (SMOs).
SMO (%) Description Rep RU
CREATE TABLE (4.9%) Creates new, empty

table.
Y Y

DROP TABLE (1.8%) Remove existing ta-
ble.

N N

RENAME TABLE (0.6%) Rename table,
without affecting
the data.

N N

DISTRIBUTE
TABLE
(0%)

Distribute rows of
a source table into
two new tables, ac-
cording to a condi-
tion.

Y N

MERGE TABLE (0.8%) Create a new table
as the union of two
tables with the same
schema.

N N

COPY TABLE (1.2%) Duplicate existing
table.

Y Y

ADD COLUMN (21.2%) Add column and
populate it with
values generated
by a constant or a
function.

Y Y/N

DROP COLUMN (14.5%) Remove existing
column.

Y N

RENAME COLUMN
(8.8%) Change column

name, without
affecting the data.

N N

COPY COLUMN (0.8%) Copy column into
another table, ac-
cording to a join
condition.

Y N

MOVE COLUMN (0.2%) COPY COLUMN, then
drop the original.

Y N

Rep = Supported by MySQL replication (Yes/No).
RU = Supported during a rolling upgrade (Yes/No).

dencies on other columns.

Data conversions. In MediaWiki’s version his-
tory, one upgrade has required converting the
text from all the article revisions recorded in the
database. Starting from version 1.5, MediaWiki
supports only the UTF-8 character set, and older
wikis using Latin-1 were required to convert their
data to the new encoding. This is a long-running
operation, which competes with the live workload
for querying and modifying the database and which
can impose a significant performance overhead.

Competitive upgrades. Sometimes, instead of
switching to a newer version, the upgrade aims to
replace the existing system with a completely differ-

ent one, which provides similar or equivalent func-
tionality. These upgrades occur when an enterprise
changes vendors, and they usually impose down-
time because of incompatibilities between the two
systems. Wikipedia has performed two such com-
petitive upgrades: when it switched from UseMod-
Wiki to a custom-built wiki engine, remembered as
“Phase II,” and when this code base was rewritten
and became MediaWiki.

Summary. We summarize our findings as fol-
lows:
• Database indexes cannot be redefined online in

some open-source databases, but this common
change is supported through rolling upgrades;
• Incompatible schema changes (e.g., renaming

tables in the database) prevent rolling upgrades
and require upgrading the schema and the ap-
plication in an atomic step;
• Data dependencies (e.g., resulting from table

joins) are hard to synchronize in response to
updates issued by the live workload and can
impose a high runtime overhead;
• Long-running data conversions compete with

the live workload and might overload the
database;
• Competitive upgrades require data conversions

and typically impose downtime.

3 Online upgrades with Imago

We present Imago (Figure 5), a system for perform-
ing online upgrades with complex data conversions.
Imago installs the new version in a parallel universe
Unew– a logically distinct collection of resources,
realized either using different hardware or through
virtualization.

Parallel Universe (Unew)

HTTP

Universe of the Original System (Uold)

Differences:
• Data-formats
• APIs
• Behaviors

Application flow

Upgrade flow

I

E

Ingress interceptor

Egress interceptor

Legend
Data

Conversion
Driver

Persistent
Data

- Performance
metrics

- Updates

Compare
engine

Replies

Requests

Sh
un

t

Data
storeI E

Front-end

Figure 5: Online upgrades with Imago.
5

Imago uses a procedure with five phases: boot-
strapping, data-transfer, termination, testing, and
switchover [10]. Imago opportunistically transfers
the persistent data from the production system in
Uold to the new version in Unew, performs data con-
versions, monitors the updates reaching Uold’s data
store, and identifies which objects it must re-transfer
in order to prevent data-staleness. The live work-
load accesses Uold’s data store concurrently with
the data-transfer process. To avoid locking objects,
Imago queries Uold’s data store under snapshot iso-
lation. Imago monitors Uold’s data-store activity to
ensure that all of the updated or new data objects
are eventually (re)-transferred to Unew. Moreover,
Imago monitors the load and the performance of
Uold’s data store and regulates its data-transfer rate
to avoid disrupting the live workload.

The upgrade will eventually terminate if the
transfer rate exceeds the rate at which Uold’s data
is modified (this is easily achieved for read-mostly
workloads). Imago also supports a series of itera-
tive testing phases, which do not interfere with the
production system from Uold. After adequate test-
ing, the upgrade can be rolled back, by simply dis-
carding the Unew universe, or committed, by making
Unew the production system, completing the atomic
switchover to the new version. By reducing the risk
of breaking hidden dependencies, Imago reduces
the unplanned downtime due to major upgrades [9].

Data conversions supported. Imago also reduces
the planned downtime by performing an online up-
grade in the presence of data conversions. Unlike
a rolling upgrade, Imago does not upgrade the sys-
tem in place. Because the application never inter-
acts with a data schema belonging to a different
version, Imago trivially supports the DROP TABLE,

RENAME TABLE, DROP COLUMN, and RENAME COLUMN

schema changes. Moreover, the live workload ac-
cesses either the old or the new version, but not
both, which simplifies the data conversion. Figure 6
shows how Imago handles the other schema changes
that commonly impose downtime. For new auto-
incremented columns, Imago assigns the new value
during the data transfer. For new columns initial-
ized with a function based on other columns from
the same table, Imago monitors the updates to the
table and applies the updates correctly, to the source

DISTRIBUTE TABLE R INTO S with condition, T

1 if condition
2 then Apply change to S
3 else Apply change to T

MERGE TABLE S,T INTO R

1 Apply update to new table R

ADD COLUMN C auto-increment INTO R

1 Assign auto-incremented value during data transfer

ADD COLUMN C FUNC(A) INTO R

1 if A is updated
2 then C← FUNC(A)

COPY COLUMN C FROM R INTO S WHERE join-cond

1 if transfer of R and S is complete
2 then Compute R 1join-cond S at the destination
3 else Save the update and apply it later

Figure 6: SMO handlers in Imago.

and destination columns.

COPY COLUMN is a more complex transformation
because it joins two tables to determine which val-
ues are copied into the new column. If the trans-
fer of tables R and S from Uold is ongoing, Imago
saves the stream of updates for applying it later; oth-
erwise, Imago applies the update and re-evaluates
the set of values that must be copied into the new
column. We implement these schema transforma-
tions using the GORDA API [6], which provides
a uniform reflective interface for several database
servers. For instance, we monitor the data up-
dates performed by the live workload by retriev-
ing the object-sets from the executor stage of Uold’s
database.

Similarly, Imago can perform computationally-
intensive data transformations during the online
upgrade, because these operations do not inter-
fere with the production data store. These facili-
ties can also be exploited for performing compet-
itive upgrades. In the future, we plan to reduce
Imago’s spatial overhead (additional hardware and
storage requirements) through virtualization. Addi-
tional storage space and compute cycles could be
hired, for the duration of the upgrade, from exist-
ing cloud-computing infrastructures (e.g. Amazon’s
EC2). This suggests that Imago is the first step to-
ward an upgrade-as-a-service model, making com-
plex upgrades practical for a wide range of enter-
prise systems.

6

4 Discussion

Imago builds upon (and, in some sense, goes be-
yond) our observations and experiences with a pre-
vious online-upgrade approach, Eternal [11], nearly
a decade ago.

Eternal was developed first as a transparent repli-
cation middleware for CORBA and Java applica-
tions. Eternal used this infrastructure for providing
online upgrades, leveraging the presence of repli-
cas to upgrade a component, one replica at a time,
without disrupting its service or its availability to
the clients. A pre-processor front-end automatically
parsed the old and the new versions of each compo-
nent’s source-code, and then created an intermedi-
ate version that supported both the old and the new
interfaces of the the component. This intermedi-
ate version acted as a staging area, where the old
and the new versions could co-exist and where state
could be transferred between them, in the presence
of a live workload.

As automated as the pre-processor could be, there
were some inevitable hurdles that required careful
manual intervention. Eternal orchestrated an atomic
upgrade of the old version’s replicas, along with all
their dependencies. However, some of these depen-
dencies only manifested dynamically, or at runtime.
In such cases, the pre-processor was unable to pro-
ceed, without manual assistance (e.g., an in-depth
pointer analysis), to understand the nature and depth
of the dependency chain. Recent commercial prod-
ucts for rolling upgrades continue to exhibit a simi-
lar problem, by requiring the application developers
to determine if the interactions among mixed ver-
sions are safe [13].

Imago attempts to take the goal of transparency
even further. While mixed versions operating on
the same database save storage space because the
upgrade is only concerned with the parts of the data
schema that change between versions, they present
the risk of breaking hidden dependencies [9]. In
contrast, Imago requires additional resources in or-
der to simplify the preparatory phase of resolv-
ing and understanding dependencies, and it elim-
inates mixed-version interactions. Imago trades
off spatial overhead for a data-conversion proce-
dure that makes it easier to implement online up-
grades correctly. Moreover, Imago prevents over-

loading the production system by performing the
computationally-intensive data conversions down-
stream, on the target nodes.

These design choices are based on the intuition,
from our previous experience with Eternal, that
new hardware costs less than the process of plan-
ning an in-place, online upgrade. Enterprises some-
times take advantage of a software upgrade to re-
new their hardware as well [8, 15]. This prac-
tice is supported by the fact that the new func-
tionality included in software upgrades usually im-
poses higher demands on the infrastructure.3 More-
over, we note that Imago requires additional re-
sources only for implementing and testing the on-
line upgrade. Once the upgraded system is in place
and has been tested adequately, the additional re-
sources can be freed up once more, which sug-
gests that our upgrading approach could be in-
tegrated with existing cloud-computing infrastruc-
tures. Thus, the lessons learned from developing
Eternal have informed and improved our approach
with Imago, while retaining the essential ingredi-
ents (e.g., the atomic switchover) that are useful in
both approaches. Imago is likely to be more prac-
tically usable, less error-prone and better suited to
fast upgrade cycles.

5 Conclusions

We study upgrade the history of Wikipedia to deter-
mine the causes of planned downtime. Incompatible
schema changes and data conversions often impose
downtime, because of the need to perform upgrade
the schema and the application in one atomic step,
and owing to concerns about overloading the pro-
duction system. We describe the design of Imago,
which trades off spatial overhead (additional hard-
ware and storage resources) for a data-conversion
procedure that makes it easier to implement on-
line upgrades correctly. We show that Imago can
help avoid, with minimal operator interventions, the
common causes of planned downtime.

3For example, a Gartner study has found that upgrading
SAP R/3 version 3 to version 4 requires 87% more CPU cy-
cles, 72% more memory and 33% more storage space [3].

7

References
[1] MediaWiki 1.5 upgrade. http://meta.wikimedia.

org/wiki/MediaWiki_1.5_upgrade, 2005.

[2] Wikipedia village pump #46. http://en.wikipedia.
org/wiki/Wikipedia:Village_pump_(technical)
/Archive_46#Watchlist_individual_sections_
of_article_and_talk_pages.3F, 2008. Discussion
among Wikipedia contributors about the technical rea-
sons for not implementing the perennial request of being
able to watchlist individual sections of a page.

[3] R. C. Beatty and C. D. Williams. ERP II: best practices
for successfully implementing an ERP upgrade. Commu-
nication of the ACM, 49(3):105–109, Mar 2006.

[4] E. A. Brewer. Lessons from giant-scale services. IEEE
Internet Computing, 5(4):46–55, 2001.

[5] C. Boyapati et al. Lazy modular upgrades in persistent
object stores. In Object-Oriented Programing, Systems,
Languages and Applications, pages 403–417, Anaheim,
CA, Oct 2003.

[6] N. Carvalho, A. C. Jr., J. Pereira, L. Rodrigues,
R. Oliveira, and S. Guedes. On the use of a reflective
architecture to augment database management systems.
Journal of Universal Computer Science, 13(8):1110–
1135, 2007.

[7] C. A. Curino, H. J. Moon, L. Tanca, and C. Zaniolo.
Schema evolution in Wikipedia: toward a Web informa-
tion system benchmark. In International Conference on
Enterprise Information Systems, Barcelona, Spain, Jun
2008.

[8] A. Downing. Oracle. Personal communication, 2008.

[9] T. Dumitraş and P. Narasimhan. Why do upgrades fail and
what can we do about it? In Middleware’09, submitted.

[10] T. Dumitraş, J. Tan, Z. Gho, and P. Narasimhan. No
more HotDependencies: Toward dependency-agnostic
upgrades in distributed systems. In Workshop on Hot
Topics in System Dependability, Edinburgh, Scotland, Jun
2007.

[11] L. Moser et al. Eternal: fault tolerance and live upgrades
for distributed object systems. In Information Survivabil-
ity Conference and Exposition, pages 184 – 196, Hilton
Head, SC, Jan 2000.

[12] D. Lowell, Y. Saito, and E. Samberg. Devirtualizable
virtual machines enabling general, single-node, online
maintenance. ACM SIGOPS Operating Systems Review,
38(5):211–223, 2004.

[13] Oracle Corporation. Rolling upgrades of stateful J2EE
applications in Oracle Application Server. White Paper,
Aug 2005.

[14] D. Patterson. A simple way to estimate the cost of down-
time. In Large Installation System Administration Con-
ference, pages 185–188, Philadelphia, PA, Nov 2002.

[15] I. Zolti, Accenture. Personal communication, 2006.

8

http://meta.wikimedia.org/wiki/MediaWiki_1.5_upgrade
http://meta.wikimedia.org/wiki/MediaWiki_1.5_upgrade
http://en.wikipedia.org/wiki/Wikipedia:Village_pump_(technical)/Archive_46#Watchlist_individual_sections_of_article_and_talk_pages.3F
http://en.wikipedia.org/wiki/Wikipedia:Village_pump_(technical)/Archive_46#Watchlist_individual_sections_of_article_and_talk_pages.3F
http://en.wikipedia.org/wiki/Wikipedia:Village_pump_(technical)/Archive_46#Watchlist_individual_sections_of_article_and_talk_pages.3F
http://en.wikipedia.org/wiki/Wikipedia:Village_pump_(technical)/Archive_46#Watchlist_individual_sections_of_article_and_talk_pages.3F

	Introduction
	Causes of planned downtime
	Online upgrades with Imago
	Discussion
	Conclusions

