
Ganesha: Black-Box Fault Diagnosis for MapReduce
Systems

Xinghao Pan, Jiaqi Tan, Soila Kavulya, Rajeev Gandhi, Priya Narasimhan

CMU-PDL-08-112

September 2008

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Ganesha aims to diagnose faults transparently in MapReduce systems, by analyzing OS-level metrics alone. Ganesha’s approach
is based on peer-symmetry under fault-free conditions, and can diagnose faults that manifest asymmetrically at nodes within a
MapReduce system. While our training is performed on smaller Hadoop clusters and for specific workloads, our approach allows
us to diagnose faults in larger Hadoop clusters and for unencountered workloads. We also candidly highlight faults that escape
Ganesha’s black-box diagnosis.

Acknowledgements: This work is partially supported by the NSF CAREER Award CCR-0238381, NSF Award CCF-0621508, and the Army
Research Office grant number DAAD19-02-1-0389 ("Perpetually Available and Secure Information Systems") to the Center forComputer and
Communications Security at Carnegie Mellon University.

Keywords: Hadoop, Fault diagnosis, Clustering

1 Introduction

Performance problems in distributed systems can be hard to diagnose and to localize to a specific node or a
set of nodes. There are many challenges in problem localization (i.e., tracing the problem back to the culprit
node) and root-cause analysis (i.e., tracing the problem further to the underlying code-level fault or bug,
e.g., memory leak, deadlock). As we show, performance problems can originate at one node in the system
and then start to manifest at other nodes as well, due to the inherent communication across components–this
can make it hard to discover the original culprit node.

A black-boxdiagnostic approach aims to discover the culprit node by analyzing performance data
from the OS or network, without having to instrument the application or to understand its semantics. The
most interesting problems to diagnose are not necessarily the outright crash (fail-stop) failures, but rather
those that result in a “limping-but-alive” system, i.e., the system continues to operate, but with degraded
performance.

We describe Ganesha, our black-box diagnostic approach that we apply to diagnose such performance
problems in Hadoop [12], the open-source implementation of MapReduce [7]. Ganesha is based on our
hypothesis (borne out by observation) that fault-free nodes in MapReduce behave similarly. Ganesha looks
for asymmetric behavior across nodes to perform its diagnosis. Inevitably, this black-box approach will
not have coverage—faults that do not result in a consistent asymmetry across nodes will escape Ganesha’s
diagnosis.

Black-box diagnosis is not new. Other black-box diagnostic techniques [2, 4, 6] determine the root-
cause of a problem, given the knowledge that there is a problem in the system (the techniques differ in
how they “know” that a problem exists). In a MapReduce system with its potentially long-running jobs, the
system might not provide us with quick indications of a job experiencing a problem. Thus, in contrast with
other techniques, Ganesha attempts to determine, for itself, whether a problem exists and, if so, traces the
problem to the culprit node(s).

In this paper, we explore when such a black-box diagnostic approach can and cannot work, based on our
hypotheses of MapReduce system behavior. We demonstrate the black-box diagnosis of faults that manifest
asymmetrically at “peer” nodes in the system. More interestingly, we can diagnose: (i) different faults by
training on fault-free data, (ii) faults in larger MapReduce clusters although we train on smaller MapReduce
clusters, (iii) faults for unencountered workloads, although we train on specific workloads. We candidly
discuss our experiences with faults (such as those that manifest symmetrically at all nodes, or those that
travel around the system) that escape Ganesha’s diagnosis, and suggest ways in which we can address them.

2 Target System: MapReduce

Hadoop [12] is an open-source implementation of Google’s MapReduce [7] framework that enables dis-
tributed, data-intensive, parallel applications by decomposing a massive job into smaller tasks and a massive
data-set into smaller partitions, such that each task processes a different partition in parallel. Hadoop uses
the Hadoop Distributed File System (HDFS), an implementation of the Google Filesystem [18], to share
data amongst the distributed tasks in the system. HDFS splits and stores files as fixed-size blocks (except
for the last block).

Hadoop uses a master-slave architecture, as shown in Figure1, with a unique master host and multiple
slave hosts. The master host typically runs two daemons: (1) the JobTracker that schedules and manages
all of the tasks belonging to a running job; and (2) the NameNode that manages the HDFS namespace by
providing a filename-to-block mapping, and regulates access to files by clients (i.e., the executing tasks).
Each slave host runs two daemons: (1) the TaskTracker that launchestasks on its host, as directed by the
JobTracker; the TaskTracker also tracks the progress of each taskon its host; and (2) the DataNode that

1

.

MASTER SLAVES

sadc
vectors

sadc
vectors

TaskTracker

Maps

DataNode

Reduces

TaskTracker

Maps

DataNode

Reduces

JobTracker

NameNode

Operating System Operating System Operating System

Data
Blocks

Data
Blocks

Figure 1: Architecture of Hadoop, showing our instrumentation points.

serves data blocks (on its local disk) to HDFS clients.
We explore fault-diagnosis for three candidate MapReduce workloads,of which the first two are com-

monly used to benchmark Hadoop:
• RandWriter: write 32 GB of random data to disk;
• Sort: sort 3 GB of records;
• Nutch: open-source distributed web crawler for Hadoop [13] representative of a real-world workload

3 Problem Statement & Approach

We seek to understand whether Ganesha can localize performance problems accurately and non-invasively,
and whether Ganesha can assist us in understanding the limitations of black-box diagnosis for MapReduce
systems.

Hypotheses. We hypothesize that MapReduce nodes exhibit a small number of distinct behaviors, from
the perspective of black-box metrics. In a short interval (e.g. 1s) of time, the system’s performance tends to
be dominated by one of these behaviors. We also hypothesize that, under fault-free operation, MapReduce
slave nodes will exhibit similar behavior over moderately long durations. We exploit thispeer-symmetryfor
Ganesha’s fault diagnosis. We make no claims about the symmetry or lack thereof under faulty conditions.

Goals. Ganesha should run transparently to, and not require any modifications of, both the hosted appli-
cations and any middleware that they might use. Ganesha should be usable inproduction environments,
where administrators might not have the luxury of instrumenting applications butcould instead leverage
other (black-box) data. Ganesha should producelow false-positive rates, in the face of a variety of work-
loads for the system under diagnosis, and more importantly, even if these workloads fluctuate1, as in the
case of Nutch. Ganesha’s data-collection should impose minimal instrumentationoverheads on the system
under diagnosis.

Non-Goals. Ganesha currently aims for (coarse-grained) problem diagnosis by identifying the culprit
slave node(s). Clearly, this differs from (fine-grained) root-causeanalysis, which would aim to identify
the underlying fault or bug, possibly even down to the offending line of code. While Ganesha can be sup-
ported online, this paper is intentionally focused on Ganesha’s offline analysis for problem diagnosis. We
also do not target faults on the master node.

1Workload fluctuations can often be mistaken for anomalous behavior, if the system’s behavior is characterized in terms of OS
metrics alone. Ganesha, however, can discriminate between the two because fault-free peer nodes track each other in workload
fluctuations.

2

user % CPU time in user-space
system % CPU time in kernel-space
iowait % CPU time waiting for I/O job
ctxt Context switches per second

runq-sz Number of processes waiting to run
plist-sz Total number of processes and threads
ldavg-1 system load average for the last minute

eth-rxbyt Network bytes received per second
eth-txbyt Network bytes transmitted per second
pgpgin KBytes paged in from disk per second
pgpgout KBytes paged out to disk per second

fault Page faults (major+minor) per second
bread Total bytes read from disk per second
bwrtn Total bytes written to disk per second

Table 1: Gathered black-box metrics (sadc-vector).

[Source] Reported Failure [Fault Name] Fault Injected
[Hadoop users’ mailing list, Sep 13 2007] CPU bottleneck resulted
from running master and slave daemons on same machine

[CPUHog] Emulate a CPU-intensive task that con-
sumes 70% CPU utilization

[Hadoop users’ mailing list, Sep 26 2007] Excessive messages
logged to file during startup

[DiskHog] Sequential disk workload wrote 20GB
of data to filesystem

[HADOOP-2956] Degraded network connectivity between DataN-
odes results in long block transfer times

[PacketLoss] 50% packet loss

[HADOOP-1036] Infinite loop at slave node due to an unhandled
exception from a Hadoop subtask that terminates unexpectedly. The
offending slave node sends heartbeats although the subtask has ter-
minated.

[HADOOP-1036] Revert to older version and trig-
ger bug by throwing NullPointerException

Table 2: Injected faults, and the reported failures that they simulate. HADOOP-xxxx represents a Hadoop
JIRA entry.

Assumptions. We assume that the target MapReduce system is the dominant source of activity on every
node. We assume that a majority of the MapReduce nodes are problem-freeand that all nodes are homoge-
neous in hardware. We also assume that MapReduce’s speculative execution is disabled.

4 Diagnostic Approach

For our problem diagnosis, we gather and analyze black-box (i.e., OS-level) performance metrics, without
requiring any modifications to Hadoop, its applications or the OS to collect thesemetrics. For black-box
data collection, we usesysstat’s sadc program [14] to periodically gather a number of metrics (14, to be
exact, as listed in Table1) from /proc, at a sampling interval of one second. We use the termsadc-vector to
denote a vector containing samples of these 14 metrics, all extracted at the same instant of time. We collect
the time-series ofsadc-vector samples from each slave node and then perform our analyses to determine
whether there is a performance problem in the system, and then to trace the problem back to the culprit slave
node.

4.1 Approach

From our hypothesis, Hadoop’s performance, over a short intervalof time, can be classified intoK distinct
profiles. Effectively, these profiles are a way to classify the observedsadc-vectors intoK clusters (or cen-
troids). While profiles do not represent semantically meaningful information, they are motivated by our ob-

3

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.

.
.

.
.

.

C
la

s
s
if
ic

a
ti
o

n

DEPLOYMENT

T
R

A
IN

IN
G

H
is

to
g

ra
m

 C
o

n
s
tr

u
c
ti
o

n

H
is

to
g

ra
m

 C
o

m
p

a
ri
s
o

n

D
ia

g
n

o
s
is

time-series of
-vectors

from
slave nodes

for

sadc

n
one job

K profiles (from
training phase)

multiple jobs
multiple workloads

(gathered under
fault-free operation)

Random
writer

Sort Nutch

any
generated

alarms

indictment
of culprit

slave node

..2,2,3..

n

1

2 ..2,3,2..

..3,2,2..

K-means clustering

initial centroid selection

EM clustering

Figure 2: Ganesha’s approach.

servation that, over a short interval of time, each Hadoop slave node performs specific resource-related activ-
ities, e.g., computations (CPU-intensive), transfering data (network-intensive), disk access (I/O-intensive).
The profiles, thus, represent a way to capture Hadoop’s different behaviors, as manifested simultaneously
on all of the 14 metrics. We usen to denote the number of slave nodes.

There are two phases to our approach—training and deployment—as shown in Figure2. In the training
phase, we learn the profiles of Hadoop by analyzingsadc-vector samples from slave nodes, gathered over
multiple jobs and multiple workloads in the fault-free case. In the deployment phase, we determine whether
there is a problem for a given job, and if so, which slave node is the culprit.Note that we train on multiple
workloads, but can test with any given workload—this is a fairly important aspect of our technique. We val-
idate Ganesha’s approach by injecting various faults at one of the Hadoop slave nodes, and then determining
whether we can indeed diagnose the culprit node correctly. The results of our validation are described in
Section5.2.

Preprocessing First, prior to using received trace data, all nodes must have an equal number of samples
spaced at equal intervals. While we collected data at a rate of 1 sample per second, this collection was
best-effort and samples could have been missed. We performed a LocallyWeighted Linear Regression to
interpolate data before processing (Figure3).

Next, we normalized the data by taking the logarithms of each value (Figure4). We observed that
samples with large values in particular metrics corresponded to high levels of activity with respect to the
metrics, and small values corresponded to low levels of activity. The sample values also tended to have
higher variance during high levels of activity as compared to the variance of sample values during low
levels of activity. Since the metric values are larger during periods of high levels of activity, by taking the

4

logarithm of the metrics, we are able to greatly reduce the variance during periods of high activity. Hence,
the logarithm of the metrics during periods of both high and low activities have similar variances.

Finally, we normalized the logarithms of the values by the standard deviations ofeach metric as ob-
served in the training data. InK-means clustering, the Euclidean distance is used as the distance measure
between data points. By normalizing all values by the standard deviations, weprevent the scenario where a
few metrics of large variance dominate theK-means process. We can thus be more confident that the resul-
tantK-means clusters are truly representative of the distinct behaviors, rather than a separation of samples
based on the few dominant metrics.

Training. We apply machine-learning techniques to learn theK profiles that capture Hadoop’s behavior
(Figure6). We model our training data (a collection ofsadc-vector time-series of fault-free experimental
runs ofSort, RandWriterandNutch) as a mixture ofK Gaussian distributions. The fault-free training data
is used to compute the parameters—means and covariance matrices—of theK Gaussians. We enforce an
equal prior over theK Gaussians, since the prior distributions of theK Gaussians may differ over different
workloads. We donot assume that our training data is labeled, i.e., we do not know, a priori, which of the
K Gaussians each gatheredsadc-vector is associated with. Instead, we use the expectation-maximization
(EM) algorithm [1] to learn the values of the unknown parameters in the mixture of Gaussians. Since the
convergence time of the EM algorithm depends on the “goodness” of the initial values of these unknown
parameters, we useK-means clustering to determine the initial values for the EM algorithm. In fact, we
run theK-means clustering multiple times, with different initializations for theK-means clustering, in order
to choose the best resulting centroid values (i.e., those with minimum distortion) asthe initial values for
the EM algorithm. The output of the EM algorithm consists of the means and covariance matrices,(µi ,Σi),
respectively of each of theK Gaussians. We chose a value ofK = 6 in our experiments.

Deployment. Our test data consists ofsadc-vectors collected from then slave nodes, under a single job
of a given workload. At every sampling interval, Ganesha classifies the test sadc-vector samples from
each slave node into one of theK profiles, i.e., each testsadc-vector is mapped to the best Gaussian,
(µi ,Σi) (Figure5). If the testsadc-vector differs significantly from all of theK Gaussians, it is classified
as “unknown”. Next, in the deployed phase (Figure7), Ganesha examines these classifications of each of
the data points. For each of then slave nodes, we maintain a histogram of all of the Gaussian labels seen
so far. Upon receiving a new classifiedsadc-vector for a slave nodej, Ganesha incrementally updates
the associated histogram,H j , as follows. The histogram count values of all the labels are multiplied by an
exponential decay factor, and 1 is added to the count value of the label that classifies the currentsadc-vector.
From our hypothesis, slave nodes should exhibit similar behavior over moderately long durations; thus, we
expect the histograms to be similar across all of then slave nodes. If a slave node’s histogram differs from
the other nodes in a statistical sense, then, Ganesha can indict that “odd-slave-out” as the culprit.

To accomplish this, at each time instant, we perform a pairwise comparison of the histogram,H j ,
with the remaining histograms,Hl , l 6= j, of the other slave nodes,l . The square root of the Jensen-Shannon
divergence, which is a symmetric version of the Kullback-Leibler divergence [8] and is known to be metric2,
is used as the distance measure to compute the pairwise histogram distance between slave nodes. An alarm
is raised for a slave node if its pairwise distance is more than a threshold valuewith more thann−1

2 slave
nodes. An alarm is treated merely as a suspicion; repeated alarms are needed for indicting a node. Thus,
Ganesha maintains an exponentially weighted alarm-count raised for each of the slave nodes in the system.
Ganesha indicts a node as the culprit if that node’s exponentially weighted alarm-count exceeds a predefined
threhold value.

2A distance between two objects is "metric" if it has the properties of symmetry, triangular inequality, and non-negativity.

5

1: function FILL DATA (sampleTimes, data)
2: initialize completeSampleTimes← 0
3: initialize completeData← 0
4: for all t from mini sampleTimesi to maxi sampleTimesi do
5: if t 6∈ sampleTimesthen
6: h← 3rd smallest value in{abs(s− t) : s∈ sampleTimes}
7: for all t ′ ∈ sampleTimesdo

8: weight(t ′)← exp
(

− (t ′−t)2

2h2

)

9: end for
10: d← LWLR(t,weights,sampleTimes,data)
11: else
12: d← datai , wheret = sampleTimesi
13: end if
14: completeSampleTimest ← t
15: completeDatat ← d
16: end for
17: return (completeSampleTimes, completeData)
18: end function

Figure 3: Fill in missing data points using locally weighted linear regression. Note: LWLR(t,weights,~X,~Y)
performs locally weighted linear regression using the training set{(xi ,yi)} where each data point(xi ,yi) has
weightweighti . The function returns the predicted value fory whenx = t.

1: function NORMALIZEDATA (data)
2: for all d in datado
3: d← log(d+1)/σ
4: end for
5: return data
6: end function

Figure 4: Normalize a given set of data

1: function CLASSIFYDATA (data, µ, Σ)
2: for i from 1 tosize(µ) do
3: wi ← 1√

|Σi |
exp

{

−1
2(data−µi)

TΣ−1
i (data−µi)

}

4: (U,Λ) = eig(Σi) such thatΣi = UΛUT = UΛ1/2(UΛ1/2)T

5: disti ← (UΛ1/2)−1(data−µi)
6: end for
7: label←maxi wi

8: if distlabel > fixed thresholdthen
9: label← size(µ)+1

10: end if
11: return label
12: end function

Figure 5: Classify data point to a cluster (or identify as unknown behavior)

6

1: function TRAINING(sadc_data, K) ⊲ sadc_data is a set ofsadc-vectors, i.e. eachsadc_datai is a
sadc-vector

2: M← size(sadc_data)
3: σ ← standardDeviation(log(sadc_data+1))
4: trainingData← normalizeData(sadc_data,σ)
5: for i from 1 to 5do
6: (centriodsi , labelsi)← kMeans(trainingData,K)
7: distortioni ← ∑M

j=1abs(trainingDataj −centriodsi(labelsi(j)))
8: end for
9: index← argmini distortioni

10: µ̃ ← centriodsindex

11: for i from 1 toK do
12: Σ̃(i)← covariance({trainingDataj : labelsindex(j) = i})
13: end for
14: (µ,Σ)← EM-GMM(trainingData,K, µ̃, Σ̃)
15: return (σ ,µ,Σ)
16: end function

Figure 6: Training phase

1: procedure GANESHA(σ , µ, Σ, λ , {sampleTimesi ,sadc_datai}N, threshold)
2: for i from 1 toN do
3: initialize Hi ← 0
4: datai ← normalizeData(sadc_datai ,σ)
5: (sampleTimesi ,datai)← f illData(sampleTimesi ,datai)
6: end for
7: for all time t do
8: for i from 1 toN do
9: labeli ← classi f yData(datai(t),µ,Σ)

10: Hi ← λHi

11: Hi(labeli)← Hi(labeli)+1
12: end for
13: for all node pairi, j do
14: distMatrix(i, j)←

√

JSD(Hi ,H j)
15: end for
16: for all nodei do
17: if countj(distMatrix(i, j) > threshold) > 1

2N then
18: raise alarm at nodei
19: if 20 consecutive alarms raisedthen
20: indict nodei
21: end if
22: end if
23: end for
24: end for
25: end procedure

Figure 7: Deployed phase. Note:JSD(Hi ,H j) is the Jensen-Shannon divergence between the histograms at
nodesi and j.

7

small-cluster small-cluster cross-validated
Injected Fault RandWriter Sort Nutch RandWriter Sort Nutch

Fault Manifestation TP FP TP FP TP FP TP FP TP FP TP FP
CPUHog Static asymmetric 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0.03 1.0 0
DiskHog Static asymmetric 1.0 0.03 1.0 0.03 1.0 0 1.0 0 0.9 0.2 1.0 0

PacketLoss Traveling asymmetric 0.7 0.03 0.6 0.2 0.7 0.33 0.6 0 1.0 0.48 0.7 0.4
HADOOP-1036 Symmetric 1.0 0 0 0 0 0 0.9 0 0 0 0 0

large-cluster large-cluster cross-validated
CPUHog Static asymmetric 0.9 0.03 1.0 0 1.0 0.04 1.0 0.05 1.0 0.11 1.0 0.04
DiskHog Static asymmetric 1.0 0.06 1.0 0 1.0 0.01 1.0 0.05 1.0 0.07 1.0 0.01

PacketLoss Traveling asymmetric 0.5 0.06 0.9 0.53 0.7 0.06 0.5 0.04 1.0 0.63 0.8 0.09
HADOOP-1036 Symmetric 1.0 0.02 0 0 0 0 1.0 0.04 0.4 0.06 0 0

Table 3: Diagnosis results for Ganesha on faults injected in Hadoop for fault-workload pairs;TP = true-
positive ratio,FP = false-positive ratio. Traveling asymmetric and symmetric fault-manifestations are
grayed-out because they are outside Ganesha’s current diagnosis.

5 Experimental Validation

We analyzed system metrics from two Hadoop 0.12.3 clusters3: small-cluster (6-node: 5-slave, 1-
master) andlarge-cluster (16-node: 15-slave, 1-master). Each node consisted of an AMD Opeteron
1220 dual-core CPU with 4GB of memory, Gigabit Ethernet, and a dedicated 320GB disk for Hadoop,
running amd64 Debian/GNU Linux 4.0.

We selected our candidate faults from real-world problems reported by Hadoop users and developers
in: (i) the Hadoop issue tracker [11] from October 1, 2006 to December 1, 2007, and (ii) 40 postings
from the Hadoop users’ mailing list from September to November 2007. We describe our results for the
injection of the four specific faults listed in Table2. We intentionally chose these four faults for discussion
in this paper to show where Ganesha works (CPUHogandDiskHog), where it does not (PacketLossand
HADOOP-1036), and to describe why. We describe our goals for experimentation.

[Goal #1] What kinds of faults escape Ganesha’s diagnosis? We sought to explore what kinds of faults
manifested in a way that escaped our diagnosis, namely, (i) faults that manifested symmetrically across
all nodes (violating our hypothesis) or (ii) faults that manifested asymmetrically, but where the fault-
manifestation traveled across the system.

[Goal #2] Can we train on fault-free data alone and diagnose a variety of faults on Hadoop clusters?
We performed our training on fault-free runs. We then deployed Ganesha on the fault-injected runs. The
goal was to study Ganesha’s ability to diagnose faults without needing to trainon them.

[Goal #3] Can we train on smaller Hadoop clusters and diagnose faults on larger Hadoop clusters? We
performed our training on fault-free runs on thesmall-cluster for each of the three workloads (30 runs
total). We then deployed Ganesha on 10 fault-injected runs for each fault-workload pair onlarge-cluster.
The goal was to study Ganesha’s ability to diagnose faults on a cluster of 16nodes, when training was
performed on a 6-node Hadoop cluster.

[Goal #4] Can we train on any two workloads, and then diagnose faults for the third workload? We
termed this phase of evaluationcross-validation. We performed our training on 10 fault-freesmall-cluster
runs of only two of the three workloads (20 runs total), and then deployedGanesha for 10 fault-injected runs
for the third workload on thesmall-cluster. The goal was to assess Ganesha’s ability to diagnose faults
for unencountered (untrained) workloads.

We then combined goals #2, #3 and #4 to extrapolate our diagnosis to larger clusters and to unencoun-

3We recognize that 16 nodes is, by no means, a realistically large Hadoop cluster. We use the adjectives “large” and “small”
simply to denote the clusters of two different sizes.

8

tered workloads, both at once, while avoiding the need to gather fault-induced training data.

5.1 [Goal #1] Fault-Manifestation Types

With the fault injected only on a single node, we were able to observe interesting fault manifestations.
Static, asymmetric manifestation: The culprit node behaves differently from other nodes, and this mani-
festation does not travel to other nodes. Examples areCPUHogandDiskHog. These faults are detectable
and diagnosable correctly by Ganesha, based on our hypotheses of similar slave-node behavior.
Traveling, asymmetric manifestation: Nodes affected by the fault behave asymmetrically, but the asym-
metry travels to nodes other than the culprit. An example isPacketLoss, where nodes that attempt to com-
municate with the culprit node also exhibit slowdown in activity as they wait on theculprit node. These
faults are detectable, but not diagnosable, by Ganesha.
Symmetric manifestation: All nodes are affected by the fault, leading to symmetric (faulty) behavior. An
example isHADOOP-1036. These faults are not detectable or diagnosable by Ganesha. However, this fault
was detectable for theRandWriterworkload, because the workload is such that each node independently
writes random data to disk, so that only the culprit node halted processing,while the remaining nodes did
not.

Thus, there are different kinds of fault manifestations, from a black-box viewpoint. Based on our peer-
similarity hypothesis, only some of them are detectable and diagnosable by Ganesha’s black-box approach.

5.2 Results

We evaluated Ganesha’s approach using the true-positive (TP) and false-positive (FP) ratios [9] across all
runs for each fault-workload pair. Table3 summarizes our results. A node with an injected fault that is
correctly indicted is a true-positive, while a node without an injected fault that is incorrectly indicted is a
false-positive. Thus, the true-positive and false-positive ratios are computed as:

TP =
faulty nodes correctly indicted

nodes with injected faults

FP =
nodes without faults incorrectly indicted

nodes without injected faults

In addition, we compute the the false-alarm rate to be the proportion of slave nodes indicted in fault-
free runs. Table4 summarizes these results. The low false-alarm rates suggest that, in the case where nodes
are indicted by Ganesha, a fault is truly present in the system, albeit not necessarily at the node(s) indicted
by Ganesha.

[Goal #2] Table3 demonstrates that we can, indeed, train on fault-free data alone to diagnose faults. We
achieved high TP ratios and low FP ratios for faults with static asymmetric manifestations.

[Goal #3] Ganesha was successful at diagnosing faults with static asymmetric manifestations, achieving
TP ratio≤ 0.9 across all workloads with very low FP ratios, in thesmall-cluster (non cross-validated)
case. This applied also to thelarge-cluster case, demonstrating Ganesha’s ability to extrapolate from
behaviors learned from a small cluster to diagnose faults on a larger cluster.

[Goal #4] Ganesha was able to extrapolate its diagnosis across workloads; TP ratiosremained high and FP
ratios remained very low, in moving from diagnosing using non-cross-validated to the cross-validated cases.
This extrapolation across workloads was effective even when extrapolating to the size of the cluster, as the
TP ratios remained≤ 0.9, and FP ratios remained low across all workloads, going from thesmall-cluster

cross-validated to thelarge-cluster cross-validated cases.

9

Non cross-validated Cross-validated
Workload 6-node 16-node 6-node 16-node

RandWriter 0 0.05 0 0.04
Sort 0 0.02 0 0

Nutch 0 0.05 0 0.04

Table 4: False alarm rates on fault-free runs.

6 Related Work

Diagnosing faults in distributed systems involves: (i) collecting data about the system, (ii) localizing faults
to individual requests or nodes, and (iii) identifying root-causes of these problems. We compare Ganesha’s
approach with recent work. We note that Ganesha targets systems with long-lived jobs, as compared to work
on Internet services with many short-lived jobs [4, 6, 5, 2, 15].

Instrumentation sources. Both Ganesha and Magpie [4] use black-box system metrics. Magpie uses
expert-input to associate resource-usage with individual user requests, while Ganesha does not need expert-
input as we extract coarse-grained aggregate observations. Pip [17], X-trace [10] and Pinpoint [15] extract
white-box metrics about individual request paths through systems by tagging messages between compo-
nents. [2] infers request paths from unmodified messaging layer messages. While X-trace modifies the
messaging layer in the system, Ganesha is transparent to the system.

Fault localization. Pip identifies failed requests via violations of programmer-inserted expectations. Mag-
pie clusters fine-grained resource-usage profiles of requests, andcan identify anomalous ones with large
numbers of observed requests. [6] uses externally-supplied violations ofa priori performance thresholds
to identify failures, while in many Internet-service systems dealt with by current techniques, failed requests
are easily detected at egress points [5, 2, 15]. Current techniques do not identify problems before requests
fail. This is difficult because problems can occur at many points. Ganeshadetects and localizes problems in
such systems.

Root-cause analysis. Given knowledge of failed requests, [6, 5] perform root-cause analysis on requests
known to have failed by using clustering and decision trees respectively.[15, 2] identify components along
request paths that contribute to failures or slowdowns. These techniques uncover root-causes of a failure
given known failed requests, while Ganesha identifies problematic requests in systems where this is hard.

In addition, X-trace has been applied to MapReduce systems to build and visualize request paths [16],
but not yet to automatically detect problems. Ganesha automatically identifies nodes on which problems
occurred.

7 Conclusion and Future Work

We describe Ganesha, a black-box diagnosis technique that examines OS-level metrics to detect and diag-
nose faults in MapReduce systems. Ganesha relies on peer-symmetry to diagnose faults. Ganesha is able to
extrapolate its fault diagnosis to larger MapReduce clusters and to unseenworkloads.

We propose to diagnose faults with traveling asymmetric manifestations by identifying fault propaga-
tions using data- and control-flow dependencies extracted using white-box information that we previously
explored [19]. Also, we intend to extend Ganesha to include white-box metrics, which may enable extended
diagnosis. Also, Ganesha’s learning phase of Ganesha assumes metricswith Gaussian distributions; we plan
to investigate if the diagnosis can be improved by using other, possibly non-parametric, forms of cluster-
ing. We also expect to run our diagnosis online by deploying Ganesha as amodule in our ASDF online
problem-diagnosis framework [3].
Symmetric Ganesha was not able to detect symmetric failures, achieving TP rates of nearly 0, as we rely

10

on detecting nodes with behaviors significantly different from other nodes, so that such symmetric mani-
festations escape our diagnosis. However, the symmetric failure was detected on theRandWriterworkload,
because the workload is a special case in which each node independentlywrote random data to disk, so that
only the node with the injected failure stopped processing, while the remaining nodes did not depend on it.

References

[1] D. Rubin A. Dempster, N. Laird. Maximum likelihood from incomplete data viathe em algorithm.
Journal of the Royal Statistical Society, 39:1,38, 1977.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen. Performance de-
bugging for distributed system of black boxes. InACM Symposium on Operating Systems Principles,
pages 74–89, Bolton Landing, NY, Oct 2003.

[3] K. Bare, M. Kasick, S. Kavulya, E. Marinelli, X. Pan, J. Tan, R. Gandhi, and P. Narasimhan. ASDF:
Automated online fingerpointing for Hadoop. Technical Report CMU-PDL-08-104, Carnegie Mellon
University PDL, May 2008.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request extraction and workload
modelling. InUSENIX Symposium on Operating Systems Design and Implementation, San Francisco,
CA, Dec 2004.

[5] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure diagnosis using decision trees.
In International Conference on Autonomic Computing, pages 36–43, New York, NY, May 2004.

[6] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.Capturing, indexing, clustering,
and retrieving system history. InACM Symposium on Operating Systems Principles, pages 105–118,
Brighton, United Kingdom, Oct 2005.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. InUSENIX
Symposium on Operating Systems Design and Implementation, pages 137–150, San Francisco, CA,
Dec 2004.

[8] D. M. Endres and J. E. Schindelin. A new metric for probability distributions. Information Theory,
IEEE Transactions on, 49(7):1858–1860, 2003.

[9] T. Fawcett. An introduction to ROC analysis.Pattern Recognition Letters, 27:861–874, 2006.

[10] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-Trace: A pervasive network tracing
framework. InUSENIX Symposium on Networked Systems Design and Implementation, Cambridge,
MA, Apr 2007.

[11] The Apache Software Foundation. Apache’s JIRA issue tracker, 2006.
https://issues.apache.org/jira.

[12] The Apache Software Foundation. Hadoop, 2007.http://hadoop.apache.org/core.

[13] The Apache Software Foundation. Nutch, 2007.http://lucene.apache.org/nutch.

[14] S. Godard. SYSSTAT, 2008.http://pagesperso-orange.fr/sebastien.godard.

11

https://issues.apache.org/jira
http://hadoop.apache.org/core
http://lucene.apache.org/nutch
http://pagesperso-orange.fr/sebastien.godard

[15] E. Kiciman and A. Fox. Detecting application-level failures in component-based internet services.
IEEE Trans. on Neural Networks: Special Issue on Adaptive Learning Systems in Communication
Networks, 16(5):1027– 1041, Sep 2005.

[16] A. Konwinski, M. Zaharia, R. Katz, and I. Stoica. X-tracing Hadoop. Hadoop Summit, Mar 2008.

[17] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah, and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. InUSENIX Symposium on Networked Systems Design and Implementation, San
Jose, CA, May 2006.

[18] H. Gobioff S. Ghemawat and S. Leung. The Google file system. InACM Symposium on Operating
Systems Principles, pages 29 – 43, Lake George, NY, Oct 2003.

[19] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. SALSA: Analyzing Logs As State Ma-
chines. Technical Report CMU-PDL-08-111, Carnegie Mellon University PDL, Sep 2008.

12

	Introduction
	Target System: MapReduce
	Problem Statement & Approach
	Diagnostic Approach
	Approach

	Experimental Validation
	[Goal #1] Fault-Manifestation Types
	Results

	Related Work
	Conclusion and Future Work

