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Abstract

Replicated client-server systems are often based on underlying group communication protocols that provide totally ordered, reliable delivery of mes-
sages. However, in the face of a performance fault (e.g, memory leak, packet loss) at a single node, group communication protocols can cause correlated
performance degradations at non-faulty nodes. We explore the impact of performance-degradation faults on token-ringand quorum-based group commu-
nication protocols in replicated systems. By empirically evaluating these protocols, in the presence of a variety of injected faults, we investigate which
metrics are the most/least appropriate for failure diagnosis. We show that group communication protocols can both helpand obscure root-cause analy-
sis, and present an approach for fingerpointing the faulty node by monitoring OS-level and protocol-level metrics. Our empirical evaluation suggests that
the root-cause of the failure is either the node exhibiting the most anomalies in a given window of time or the node with an “odd-man-out” behavior, e.g., if
a node displays a surge in context-switch rate while the other nodes display a dip in the same metric.
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1. Introduction
Distributed systems contain multiple components that can
interact across multiple nodes in sometimes unforeseen and
complicated ways. As a result, determining the root cause
of failures in these systems can be frustrating, and might
take several hours or even days. Delays in determining the
root-cause of faults can adversely impact system availabil-
ity. Fingerpointing, also known as root-cause analysis or
failure diagnosis, involves detecting errors and/or failures
and assigning blame to their underlying cause. Fingerpoint-
ing in distributed systems has mostly been studied in enter-
prise systems with databases that protect data in the case of
failures. Our goal is to study fingerpointing in distributed,
replicated systems with the aim of improving system avail-
ability and providing better fault containment.

Replication is a common technique used for provid-
ing fault-tolerance to distributed, client-server applications.
The idea behind replication is to provide multiple copies,
or replicas, of servers so that even if one replica crashes or
fails, another replica can take over to continue the opera-
tion. This means that replicas must be consistent in state
and behavior, i.e., they must be substitutable for each other
even if they run on different nodes in the system. To accom-
plish this, replicated systems often exploit group communi-
cation protocols [7] as an underlying building-block for pro-
viding totally ordered, reliable message delivery of all mes-
sages.

Fingerpointing makes a difference in distributed, repli-
cated systems because it can facilitate proactive and tar-
geted fault-recovery. First, if the root-cause of a failurecan
be diagnosed quickly, this gives us a window of opportu-
nity to initiate recovery proactively, instead of waiting for
the failure to be detected through the timeout or member-
ship mechanisms of the group communication protocols.
Secondly, knowledge of the root-cause can assist in de-
ciding the appropriate course of action for recovery; if the
root-cause is a CPU overload on some node, load-balancing
might be more appropriate from a system-availability view-
point than rebooting/removing the node (as group commu-
nication protocols are prone to do). While fingerpointing
is clearly useful in distributed, replicated systems, the use
of group communication protocols in these systems can of-
ten aggravate the process of diagnosing the root-cause of
failures. These protocols inevitably introduce some form of
coupling between nodes in the system. In fact, as our exper-
imental results show, this innate coupling can cause fault-
manifestations to “travel” across the distributed system.As
hidden dependencies and coupling in a distributed system
increase, fingerpointing is likely to become harder.

In this paper, we focus on fingerpointing performance
problems in distributed, replicated systems. We perform our
investigations for client-server applications that use two dif-
ferent group communication protocols, namely, a token-

ring protocol called Spread [3] and a quorum-based pro-
tocol called Castro-Liskov BFT [6]. We inject a variety
of performance-degrading faults (such as a memory leak,
process hangs, packet-loss and abrupt crashes) into our tar-
get systems. We investigate the effectiveness of a black-box
fingerpointing approach, where our root-cause analysis is
driven solely by the behavior of operating-system (OS) per-
formance metrics such as CPU and memory usage. We de-
termine what kinds of faults can and cannot be diagnosed
using this black-box approach, and then discuss a white-box
fingerpointing approach, where we can exploit group com-
munication metrics for more effective failure diagnosis. The
main contributions of this paper are:
Influence of group communication protocols on failure-
masking and fingerpointing. We evaluate the behav-
ior of two group communication protocols under various
performance-degrading faults. The two protocols (Spread
and BFT) were independently developed, are based on dif-
ferent algorithms (token-ring vs. quorum), and are imple-
mented differently (daemon vs. library). We discuss how
the underlying protocol influences failure-masking and fin-
gerpointing.
Influence of group communication protocols on finger-
pointing. We evaluate the behavior of two group commu-
nication protocols under various performance-degrading
faults. The two protocols (Spread and BFT) were inde-
pendently developed, are based on different algorithms
(token-ring vs. quorum), and are implemented differ-
ently (daemon vs. library). We discuss how the underlying
protocol influences fingerpointing, and how our finger-
pointing approach complements and improves upon the
protocols own failure-detection mechanisms.

This paper is organized as follows: Section 2 provides
a brief description of Spread and BFT; Section 3 defines the
problem and gives motivating examples for our fingerpoint-
ing approach; Section 4 presents our monitoring framework,
fault-injection strategy and fingerpointing algorithm. Sec-
tion 5 details our empirical evaluation, Section 6 discusses
related work, and Section 7 outlines our conclusions.

2. Group Communication Protocols
Group communication systems [7] provide support for
group membership and reliable, totally ordered mes-
sage delivery. A node group consists of all of the nodes in
the system, with each group receiving the same set of mes-
sages in the same system-wide (i.e., total) order. A
replica group, layered on top of the node-group member-
ship, is a virtual addressing mechanism that corresponds
to a unique replicated server at the application level, with
the group’s members corresponding to the server’s repli-
cas. Node-group (replica-group) membership keeps track
of which nodes (replicas) are in the group, and provides no-
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tifications when a node (replica) is added or removed. The
application does not need to be concerned with the loca-
tion or number of the replicas; the protocol handles these
details transparently by maintaining membership informa-
tion and routing messages appropriately.

Guaranteeing system-wide consistent views of
group membership and providing reliable, totally or-
dered message-delivery requires consensus or agreement
protocols. These can be expensive, and can also intro-
duce coupling between nodes participating in the consen-
sus algorithms. We investigate how this coupling influences
failure-masking and fingerpointing in actively repli-
cated client-server systems built on top of the Spread [3]
and Castro-Liskov BFT [6] group communication pro-
tocols. Our observations are not an indictment against
either protocol or against group communication in gen-
eral; in fact, both Spread and BFT are well-engineered
and effective at supporting active replication. Our fo-
cus instead is to investigate if and how these protocols im-
pact the failure-masking and timing properties that we have
come to expect of active replication.

We briefly describe token-ring and quorum-based
group communication protocols, with particular fo-
cus on how Spread and BFT implement group membership
and message retransmissions.

2.1. Token-Ring Protocols
Token-ring protocols impose alogical ring on the set of
nodes constituting the node-group membership. A special
message called the token circulates within the node-group,
sequentially from one node to the next, using a point-
to-point connection between each adjacent pair of nodes
within the virtual ring. A node is allowed to broadcast mes-
sages to the other nodes only when it holds the token; af-
ter each node is done broadcasting its messages, it passes
the token onto the next node in the ring. The token car-
ries enough information to allow messages to be ordered
as the token “visits” each node in turn; the token’s circula-
tion is critical to achieving consensus on the system-wide
(i.e., ring-wide) membership and ordering of messages.

Spread [3] is a token-ring protocol that provides reli-
able, totally ordered message delivery, in the face of crash
faults, communication faults and network partitions. On
every node that is a member of the ring, there runs a Spread
daemon that allows multiple local processes to obtain ac-
cess to group communication services. A node is, thus, syn-
onymous with its Spread daemon. In a fault-tolerant client-
server application, each server replica and each client must
be connected to a Spread daemon, although not necessar-
ily to a unique one;f+1 server replicas are required to tol-
eratef crash faults.

Group-membership changes can be triggered by a num-
ber of factors: a timeout expiring that indicates that a node

might have crashed, a new message from a non-member,
a request from a member to leave the group, etc. A
group-membership change can take time, and can pre-
vent the application from making progress until the mem-
bership process converges to install a new view of the
ring’s membership; thus, membership changes can be detri-
mental to real-time operation. Spread ensures that
membership-changes converge by excluding, from the new
ring’s membership, any nodes that are suspected of fail-
ure during an ongoing membership-change. Once a ring
is formed, each node in the ring keeps track of the se-
quence numbers of the messages that it receives. Spread
uses the token to track the highest sequence num-
ber of all messages that have been broadcast within the
ring, and handles message losses through retransmis-
sions.

2.2. Quorum-Based Protocols
A quorum-based system for a replicated server is a collec-
tion of subsets (known as quorums) of the server replicas,
where all pairs of subsets intersect. Each quorum can pro-
vide sufficient availability for the system, while operations
on distinct quorums preserve consistency. Castro-Liskov
BFT [6] is a quorum-based group communication protocol
that tolerates crash, communication and Byzantine/arbitrary
faults. Tolerating Byzantine faults requires a greater degree
of replication, i.e.,3f+1 replicas to toleratef faults. Each
application process must be compiled with the BFT library,
in order to access group communication services.

BFT uses quorums (containing2f+1 replicas each) to
totally order messages despite failures. During fault-free
operation, the client uses a point-to-point connection to send
a request to a designated leader replica. The leader then
uses a 3-phase protocol to multicast the message to follower
replicas, thereby enforcing a specific ordering of messages.
Each replica processes the request according to the total or-
der and sends a reply directly to the client. The client waits
to receivef+1 identical replies from the server replicas be-
fore processing them. If the client does not receive a reply
within a specified amount of time, it re-broadcasts its re-
quest, but now to all server replicas. The follower replicas
unicast this request to the primary and wait for a timeout to
expire. If the timeout expires before a follower receives new
requests for execution from the leader, the follower mul-
ticasts a view-change message (BFT view-changes corre-
spond to Spread’s node-group membership-changes). If this
view change is valid, a new leader is elected. The new leader
then initiates a 3-phase protocol for system-wide agreement
on the set of pending messages to be delivered in the old
view, and then installs the new view. Message losses are
handled through retransmissions.

Although BFT tolerates Byzantine faults, our focus is
on performance failures that can be compared across BFT
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and Spread. Thus, malicious faults are currently outside the
scope of our experiments.

3. The Case for Fingerpointing
Group communication protocols use timeouts to detect fail-
ures, and attempt to reduce all failures to membership
changes, e.g., a slow node, a lossy network all ultimately
provoke a membership change. However, some faults can
hide under the radar of the protocol’s timeouts and cause
lingering performance problems to exist and even propagate
while within the system, as shown in the motivating exam-
ples below. In such cases, active replication’s failure mask-
ing (and therefore, its support for real-time fault-tolerant op-
eration) might be compromised. The addition of a finger-
pointing strategy to active replication can allow us to iden-
tify the root-cause of such performance problems ahead of
the underlying protocol’s mechanisms; this advance detec-
tion can facilitate proactive recovery and lead to real-time
fault-tolerant behavior.

Example 1: Propagation of performance problems.Due to
the inherent coupling between nodes in a group communi-
cation protocol, faults that originate at a single node can
propagate to other nodes in the system. For instance, the
circulating token described in Section 2.1 can lead to per-
formance side-effects. A slow node can retard the circula-
tion of the token. The token’s slowdown might lead a node
to suspect a token-loss if it does not receive the token over a
period of time (called the token-loss timeout,Ttoken−loss).
This suspecting node will simply assume that the token loss
was due to the crash of its preceding node in the ring, and
will then initiate a membership change to eject the suppos-
edly crashed node to form a new ring.

However, the slow node might continue sending mes-
sages. If one of these messages is seen by the new ring’s
members, the latter will initiate yet another membership-
change to re-include the ejected node. Spread ensures that
membership-changes converge, but a faulty node can trigger
subsequent membership changes once the ring is formed.
This sequence of repeated ring formations can repeat indef-
initely, with the node-group membership continually thrash-
ing and no useful application-level progress being made.
Thus, a performance slowdown in a single node can degrade
the entire system’s responsiveness and availability.

Figure 1 shows the oscillating node-group member-
ship when we injected a performance-degradation fault at
nodeX by dropping 20% of its network traffic. Because
Ttoken−loss expires, a membership change is initiated to
eject nodeX. The new ring contains nodes that respond
within the membership-change timeout,Tmemb. NodeX

somehow manages to respond withinTmemb and is in-
cluded in the new ring. Once in the new ring, nodeX

“acts up” again, leading to yet another membership change.
Only once did we see nodeX not respond withinTmemb,
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Figure 1. Thrashing membership due to a
slow node (from the slow node’s viewpoint).

thereby inducing a network partition, where only some
nodes “saw” nodeX. Even in this case, nodeX trig-
gered a new membership-change by sending a “foreign”
message to the other partition. The membership oscilla-
tion is shown in the bottom half of Figure 1. The ARU
(all received upto) counter on the y-axis indicates
the sequence number upto which all reliable ordered mes-
sages have been received by all nodes in the ring, i.e., there
are no gaps in the sequence numbers of messages received
by nodes upto this point. The ARU resets to zero with each
new ring, and increases monotonically while that ring ex-
ists (as seen by the saw-tooth graph in the bottom half of
Figure 1).

Thus, a slow node is indistinguishable from a crashed
one through the failure-detectors (i.e., timeouts) that group
communication protocols use. A truly crashed node would
not induce thrashing membership; it is the alive-but-limping
node that is detrimental to the performance of the system.
The strategy of tuning the failure-detectors, i.e., using larger
timeouts, would makes us less vulnerable to thrashing mem-
bership, but would imply longer fault-detection latencies.
Even with larger timeouts, a slow node can cause a perfor-
mance degradation by triggering protocol-level flow-control
mechanisms that reduce the non-faulty nodes’ sending rates
so as not to overwhelm a slow receiver.

Example 2: Proactive reconfiguration.BFT has mech-
anisms in place to detect the crash/slowdown of a
leader but no explicit mechanisms in place to detect
the crash/slowdown of a follower; the sytem will con-
tinue to function as long as the threshold (f ) for the num-
ber of faulty nodes has not been violated. However, it might
be possible to exploit protocol- and OS-level metrics to de-
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tect failures in the followers and proactively reconfigure
the system to stay within the threshold,f. For instance, con-
sider a replicated system that tolerates 2 arbitrary faults
(i.e., with 3f+1 = 7 server replicas) where one of the fol-
lower nodes becomes faulty. Because the fault lies in a
follower, no view change occurs but the system now re-
duces to tolerating only 1 arbitrary fault (because only 6
good replicas are left). By monitoring performance met-
rics, it might be possible to fingerpoint the follower and
migrate it to another node, thereby sustaining the sys-
tem’s ability to tolerate 2 arbitrary faults.

3.1. Motivation
These examples show that, in the presence of performance
problems, group communication protocols might not have
sufficient knowledge to isolate the faulty node. In fact, a sin-
gle faulty node can cause problems (e.g., performance slow-
downs, missed deadlines) at even non-faulty nodes. Thus,
any active replication strategy layered on top of these proto-
cols might not mask failures adequately or in time. Finger-
pointing techniques can complement the protocol’s fault-
tolerance mechanisms to provide a more responsive strat-
egy.

Proactive reconfiguration might be possible where suf-
ficient system information exists to enable us to finger-
point the faulty node/process ahead of the protocol. For
some kinds of failures, performance metrics can exhibit
a discernible build-up (or pre-cursors) to the failure. The
analysis of these metrics can lead to early failure detec-
tion (potentially before the protocol’s timeouts expire, ini-
tiating membership changes) and, therefore, preemptive re-
covery and better availability. However, fingerpointing re-
quires care in the presence of the protocols’ coupling be-
havior: we need to be able to monitor the right system indi-
cators or we might mis-diagnose the problem.

4. Fingerpointing Approach
Our system consists of an instrumentation framework,
an anomaly-detection algorithm and a fingerpointing al-
gorithm. The framework collects application-, OS- and
protocol-level metrics at runtime and records them in a log
that we subsequently analyze using our fingerpointing al-
gorithm. In this paper, we perform our investigations on ac-
tively replicated systems implemented using Spread and
BFT. For our evaluation of Spread, we use the MEAD repli-
cation middleware [13] with CORBA client-server appli-
cations. For BFT, we used the native active replication
support packaged with the software. We used default mem-
bership timeouts (5 seconds) for both Spread and BFT.

We make the following assumptions in our experimen-
tal investigations: (i) our fault model covers process-crash,
node-crash, message-loss and resource-exhaustion faults,
(ii) we inject only a single, independent fault at a time into
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Figure 2. Instrumentation and logging.

one of the nodes, (iii) the client-server application has a con-
stant workload and is deterministic, (iv) clocks are synchro-
nized across nodes in order to correlate the node-level met-
ric logs for the purpose of fingerpointing.

4.1. Instrumentation Framework
We collect the statistics of various performance metrics un-
der both fault-free and injected faulty conditions. Our data
is of two forms: time-series and event-series. With time-
series data, the metric of interest, say, CPU usage, is sam-
pled and recorded on a periodic basis. The event-series data
arises because we gather information when specific events
occur in the system, e.g., when the client receives a reply
from the server. A node’s total available memory, context-
switch rate, CPU usage and network-traffic rate represent
time-series data. The application- and protocol-level met-
rics represent event-series data. To enable the time-wise cor-
relation of metrics across nodes, we convert all the event-
series data (except for group-membership changes) into
time-series data by aggregating these metrics over a spe-
cific time-period, e.g., by converting the client-side round-
trip time into requests/sec. Ourunoptimizedinstrumentation
overhead is 28% for Spread and 12% for BFT, with the for-
mer being higher due to monitoring the token. Because our
current fingerpointing granularity is the node, we focus on
node-level metrics and do not consider process-level met-
rics.

OS-level metrics.We monitor node-level resource usage
by retrieving the resource-usage statistics from each node’s
/proc pseudo-filesystem [9] every second. We monitor
the following OS-level metrics on every node:
I CPU usage (%): Percentage of time that the node’s CPU
is busy executing both user and kernel tasks.
I Available memory (bytes): Sum of the node’s free and
the cached memory. Cached memory is used by Linux for
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the disk cache, and can be replaced quickly if a running/new
program needs memory.
I Context-switch rate (per second): Number of context
switches on the node in one second. A context switch oc-
curs when a currently executing process is swapped out so
that the CPU can execute a different process.

We monitor the network using thelibpcap packet-
capture facility, which provides a high-level interface to
capture a node’s incoming and outgoing network traffic. We
record a timestamp for every new packet seen on the wire.

Application metrics:We monitor the response time in the
client-side of the application. This is an event-series of the
time intervals between the client’s transmission of a request
to, and its receipt of a reply from, the replicated servers.
With Spread application, the client selects the first reply that
it receives from any replica, while in BFT, the client waits
for f+1 identical replies, one from each replica.

Protocol metrics:For Spread, we monitor the token-
interarrival time, the message-retransmission rate and
membership changes. For BFT, we monitor the check-
point frequency, the message-retransmission rate and mem-
bership changes.

4.2. Fault Injection
We injected a variety of performance-degrading faults at

one of the nodes hosting a server replica in our replicated
system through an interceptor that exploits the library inter-
positioning facilities [12] of the OS linker-loader.
I Memory leak: We inject a memory leak by bypassing
thefree() system call using the interceptor. To acceler-
ate the rate of the leak, we modify our application to allo-
cate/deallocate 96kB with each request, as a part of normal
application behavior. This fault studies the effect of gradu-
ally loading a node and starving the protocols of memory.
I Process hang: We intercept the application’sread()
system call and block the application for several minutes.
The fault investigates the effect of a slow receiver on the
protocol’s flow control.
I Abrupt crash fault: We abruptly kill one of the replicas.
I Packet-loss fault: We intercept the protocol’ssend()
andrecv() calls and randomly drop incoming and outgo-
ing packets at packet-loss rates of 1% and 20% of the pack-
ets at the node. This fault investigates the effect of message
retransmissions and network partitions in the protocol.

4.3. Anomaly Detection
We use a simple standard-deviation-based approach to de-
tect anomalies in the metrics that we log. First, we desig-
nate an initial, fault-free training period,trainingWin, when
we compute an initial mean,µ, and standard deviation,σ,
for each metric. In our experiments, ourtrainingWin used
10% of the data samples. After the initial training, we adapt
to changes in the metric’s value by updatingµ (andσ) based

Algorithm 1 Anomaly Detection
trainingWin= T {length of fault-free training period}
µ = mean of metric overtrainingWin
σ = standard deviation of metric overtrainingWin
λ = 0.95{weighting factor}
thresholdAnomaly= 6σ {anomaly-detection threshold}
anomalyWin= 7 {anomaly-detection window}
thresholdNoise= 3 {filters out noise from “true” anomalies}

for eachmetricSampleaftertrainingWindo
if |µ - metricSample| < thresholdAnomalythen

µ = λµ + (1 − λ)metricSample
σ = λσ2 + (1 − λ)(metricSample− µ)2

else
flag anomaly in metric at currentmetricSample

end if
end for
for eachmetricSampleaftertrainingWindo

if anomaly has been detected at the currentmetricSample
then

numAnomalies= number of anomalies inanomalyWin
centered at currentmetricSample
if numAnomalies< thresholdNoisethen

unflag anomaly in metric at currentmetricSample
end if

end if
end for

on the current observation plus a weighted previousµ (and
σ), with λ being the weighting factor. We flag as anomalies
any values that fall beyond upper (+6σ) and lower (−6σ)
anomaly-detection thresholds (see Algorithm 1).

Next, we reduce the noise in the metrics by defin-
ing an anomaly-detection window,anomalyWin, and ig-
noring anomalies that fall below a certain anomaly-count,
thresholdNoise, in that window. In our experiments, we
usedanomalyWin= 7 data samples, andthresholdNoise=
3 anomalies. These parameters were chosen because they
yielded a false-positive rate of less than 5% in anom-
aly detection. We derive anomaly logs for the following
metrics: memory, packets/sec, context-switches/sec and re-
quests/sec. CPU usage both at the OS- and process-level
displayed a high variance and proved to be unreliable for
anomaly detection. In contrast, some metrics, such as mem-
ory usage, were fairly constant and ourσ-based anomaly
detection yielded overly tight thresholds with a high false-
positive rate. Thus, for memory usage, we used an alter-
native, mean-based, approach, specifically, using athresh-
oldAnomalyof 0.5% of µ, instead of6σ, to detect anom-
alies.

4.4. Fingerpointing
The anomaly-detection process in Section 4.3 serves as a
preparatory phase for our fingerpointing algorithm. Due to
the inherent coupling in group communication protocols,
we fingerpoint the faulty node by comparing deviations in

5



Algorithm 2 Fingerpointing
fingerpointWin= 15{fingerpointing window}
thresholdFingerpoint= 8 {number of anomalies infinger-
pointWinneeded to flag a problem}

for eachfingerpointWindo
for each server nodedo

for each metricdo
num= number of anomalies in metric infingerpointWin
if num> thresholdFingerpointthen

flag problem in metric in node infingerpointWin
else

ignore anomalies in metric in node infingerpointWin
end if

end for
end for
if problem in any metric(s) is flagged in only one nodethen

fingerpoint that node
else ifproblem in metric(s) is flagged in multiple nodesthen

if there exists a node with anomalies in most number of
metricsthen

fingerpoint that node
else ifthere exists a node with most number of anomalous
metrics and that has previously shown anomaliesthen

fingerpoint that node
else

cannot fingerpoint the faulty node
end if

end if
advancefingerpointWin

end for

behavior across the server nodes in the system, instead of
focusing on the behavior of only a single node1.

Our empirical evaluation suggests that the root-cause of
the failure is either the node exhibiting the most anomalies
in a given window of time or the node with an “odd-man-
out” behavior, e.g., if a node displays a surge in context-
switch rate while the other nodes display a dip in the same
metric. Our fingerpointing algorithm is based on the as-
sumption that the node with the most anomalous behavior
is the root-cause of the failure. We outline our fingerpoint-
ing algorithm in Algorithm 2. To perform fingerpointing
across the server nodes, we synchronize our anomaly logs
across the nodes using timestamps. We then bin the anom-
aly data for each metric into fingerpointing-windows,fin-
gerpointWin, of 15 data samples each, and count the num-
ber of anomalies in each bin. If more thanthresholdFin-
gerpointentries in a bin are anomalous, we flag a potential
problem with this metric for that node.

1 We ignore anomalies on the client’s node because our faults are in-
jected only on nodes hosting server replicas.
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Figure 3. Metrics across nodes for a memory-
leak fault at a Spread-hosted server.

5. Empirical Observations
Testbed.We conducted our experiments in the Emulab dis-
tributed testbed [15]. We used 5 nodes (850MHz processor,
256kB cache, 512MB RAM, RedHat Linux kernel 2.4.18)
interconnected by a 100Mbps LAN. Our test application
consisted of a simple actively-replicated client-server appli-
cation, with one client and four server replicas, each on its
own node. The client sends 1024 bytes of data to the server
at a rate of∼50 requests/sec. Each experimental run covers
30,000 round-trip client requests and runs for∼10 minutes.
We collect traces for the metrics identified in Section 4.1,
and inject the 5 faults identified in Section 4.2. We run each
experiment 5 times, yielding a total of 60 runs per exper-
iment (i.e., 2 protocols * (5 faulty + 1 fault-free) runs * 5
times).

5.1. Insights from Data Traces

Independent failures, correlated manifestations.Figure 3
and Figure 4 show the progression of a memory-leak fault,
injected at∼400 seconds, in the Spread-hostedserver4
and the BFT leaderserver4, respectively. In both cases,
available memory is first metric to exhibit an anomaly. The
memory leak eventually slows downserver4 due to in-
creased paging and CPU activity asserver4 runs out of
memory;server4 finally crashes at∼600 seconds, and
is subsequently restarted. Even though we have only one
faulty replica, the client-side response time increases over
the fault-injection duration, indicating that the client per-
ceivesall of the server replicas to have problems. Addition-
ally, at the point of the crash, a large spike in client-side
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Figure 4. Metrics across nodes for a memory-
leak fault at the BFT leader.

response time is observed, corresponding to a membership
change in Spread or a view change in BFT.

In Spread, the memory-leak inserver4 results in a
slowdown in the token’s circulation, and a resulting drop
in network-traffic and context-switch rates at even the non-
faulty nodes. The client observes increased response times,
even though this is an actively replicated server with the
client simply picking the first response that it receives from
any of the server replicas. We can clearly see the increas-
ingly anomalous behavior in the metrics as the fault pro-
gresses. Note that the context-switch rate in the non-faulty
nodes reduces while that at the faulty one increases. This
suggests that we could refine our fingerpointing algorithm
to examine whether anomalies are due an increase or de-
crease in metric values, rather than simply counting the sum
of anomalies in a fingerpointing-window.

In the BFT case, performance degradations at the
leader node can degrade the performance of the en-
tire system. Performance slowdowns in the follower do
not seem to disrupt the system as much but can be de-
tected by our fingerpointing algorithm due to increased
message retransmissions at the non-faulty servers. The
new leader after the view change isserver3. The pro-
nounced drop in network-traffic atserver4 after the
view change is due to increased paging atserver4. How-
ever,server4 continues requesting retransmissions, and
hence, the increased network traffic at the non-faulty nodes.

5.2. Insights from Anomaly Detection and
Fingerpointing

System-level metrics can assist in anomaly detection and
fingerpointing.The context-switch rate on a node and the

client’s request rate seem to be closely correlated to the
network-traffic (packets/sec) observed at the node. Faults
(such as packet losses) that manifest solely on these met-
rics are difficult to fingerpoint because they lead to corre-
lated fault-manifestations across all nodes. However, faults,
such as memory leaks, that manifest on other metrics in ad-
dition to network traffic are easier to fingerpoint because
they lead to noticeable differences in behavior across the
faulty and non-faulty nodes (see Figure 4).

Figure 5(a) gives insight into our strategy that finger-
points the node with the most anomalous metrics as the
root-cause of the failure. For the memory leak in Spread,
memory usage onserver4 exhibits the most anomalies
from the time of fault-injection to node-crash, thereby lead-
ing to our fingerpointingserver4. Note that we also
flag anomalies in packets/sec, context-switch rate and re-
quests/sec as the memory-leak progresses.

With the memory leak in the BFT leader in Figure 5(b),
we similarly fingerpointserver4 as the root cause. How-
ever, unlike Spread, the anomalies in the context-switch rate
on the non-faultyserver2 andserver3 are high. We
hypothesize that these are due to increased message retrans-
missions at the non-faulty servers and the view change be-
fore server4 crashes.server1 is not flagged for any
anomalies although its context-switching behavior is simi-
lar toserver2 andserver3 (see Figure 4) because its
context-switching activity does not deviate enough to ex-
ceed our anomaly-detection thresholds.

Althoughserver4’s context-switch rate was signif-
icantly higher than that of the non-faulty nodes, its anom-
aly count was lower than that of the non-faulty nodes be-
cause we use a single threshold to detect anomalies. This
suggests that the accuracy and precision of our fingerpoint-
ing might be improved if we weighted anomalies by the ex-
tent to which they violate our thresholds. For example, we
could assign a higher weight in the fingerpointing algorithm
to a metric that violates its threshold by 9σ as opposed to
6σ. Figure 5(c) represents the anomaly count for a memory
leak in the BFT leader. Again,server4 is fingerpointed.

Figure 6 shows the progress of our fingerpointing algo-
rithm for the memory leak in the Spread case. We observe a
false positive (since an anomaly is flagged even before the
fault is injected) in requests/sec, packets/sec and context-
switch rate at∼150 seconds. This anomaly is flagged on
all nodes in the system due to the coupling of the token-
ring protocol. Anomalies in memory are flagged once we
inject the fault. At∼30 seconds beforeserver4’s crash,
just whenserver4’s node starts to run out of memory, we
start to flag anomalies in packets/sec, context-switch rate
and requests/sec because of the increased paging activity
and the slowed-down token. The anomalies in memory on
server4 persist for some period even after the node re-
covers due to the altered memory usage atserver4’s node
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Figure 5. Sum of anomalies from our fin-
gerpointing algorithm in the window of time
between fault injection to node-crash, for a
memory leak in Spread and BFT.
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Figure 6. Progress of fingerpointing for the
case shown in Figure 3.

after the membership change. Our adaptive algorithm does
not fold in the altered memory profile and instead flags it as
a series of anomalies; this suggests a need to retrain our al-
gorithm after membership changes.

5.3. Insights from Protocols
The underlying protocol (token ring vs. quorum) and its
implementation (library vs. daemon) influence the result
of our fingerpointing. To illustrate this, we run further ex-
periments to examine protocol-level metrics for packet-loss
faults since these resulted in the highest number of false
positives in our fingerpointing algorithm (see Table 1).

Figure 7(a) shows the anomaly count over the dura-
tion of a 20% packet-loss fault inserver4 in the Spread
case. The circulating token leads to correlated manifesta-
tions of the fault on packets/sec, context switch rate and re-
quests/sec. Packets/sec drops due to the slower token cir-
culation, leading to a corresponding drop in context-switch
rate across all nodes because every packet processed by
Spread requires a context switch due to Spread’s daemon
architecture. While we can detect that there is a problem in
the system because of the correlated anomalies on OS-level
metrics, we cannot fingerpoint the guilty node.

Despite the high packet-loss rate, the number of anom-
alies in message retransmissions was zero! Examining the
absolute number of retransmissions during this 2-minute
fault-injection duration, we observed 13 retransmissionsat
the client and 4 retransmission requests at the faulty server.
These retransmissions seemed to be insufficient to trigger
our anomaly-detection algorithm. We hypothesize that this
is because (i) a low retransmission rate results because our
system has moderate load and we are more likely to drop a
token than a message, and (ii) Spread sends a token twice
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(c) BFT Follower

Figure 7. Sum of anomalies from our finger-
pointing algorithm in the window of time be-
tween fault injection to node crash for a 20%
packet-loss fault in Spread and BFT.

when it suspects a lossy network. This suggests that re-
transmission rate might be a useful fingerpointing metric
at higher loads or higher packet-loss rates. During the same
duration, there were 2 membership changes and the faulty
server kept getting included in the formation of the new ring
because it responded within the membership-change time-
outs. This thrashing-membership behavior hinders the fin-
gerpointing process.

Figure 7(b) and Figure 7(c) show the anomaly count
for the 20% packet-loss fault at the BFT leader and fol-
lower. Our fingerpointing algorithm was able to fingerpoint
the faulty BFT leader using OS-level metrics alone. How-
ever, the algorithm was unable to diagnose the root-cause in
the BFT-follower case because the follower is not in the crit-
ical path of client-server communication. If we examine the
protocol-level metrics in addition to the OS-level metrics,
we are able to fingerpoint the guilty BFT follower using an
odd-man-out approach (rather than the anomaly-count ap-
proach).

5.4. Results of Fingerpointing Algorithm
While we discussed memory-leak and packet-loss faults
in detail, Table 1 summarizes our results for fingerpoint-
ing various faults through OS-level metrics. In this sec-
tion alone, we use the term “window” to refer to the
fingerpointing-window. The following criteria help to eval-
uate the effectiveness of our approach:
I False positive rate: Average fraction of windows where
we incorrectly fingerpoint a node, prior to fault injection.
Because our false-positive rate was zero, we exclude this
information from the table.
I True positive rate (Accuracy): Average fraction of win-
dows, over the fault-injection duration, where we correctly
fingerpoint the guilty node. We count all fingerpointing win-
dows from the time of fault-injection up to 3 windows after
the fault stopped.
I False negative rate: Average fraction of windows, over
the fault-injection duration, where fingerpointing was un-
successful, i.e., we either did not fingerpoint any nodes or
we fingerpointed innocent nodes.
I Obscuring rate: Average fraction of windows, over the
fault-injection duration, where we fingerpointed both the
guilty node and innocent ones, i.e., we could not tell which
node was the true root-cause.
I Fault detection latency (secs): Average time from fault-
injection until the problem was detected (but not finger-
pointed) on any node in the system.
I Fingerpointing latency (secs): Average time from fault-
injection until successful fingerpointing of the guilty node.
A ’–’ indicates that we did not fingerpoint the faulty node.
I Window of opportunity (secs): Average time elapsed
from the time we fingerpoint the faulty node to the time the
node crashes or fault-injection stops. A positive value is in-
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Fault Protocol True Posi-
tive Rate

False Neg-
ative Rate

Obscuring
Rate

Detection
Latency
(sec)

Fingerpoint
Latency
(sec)

Window of
Opportu-
nity (sec)

Memory Leak
Spread 0.95 0.05 0 14.30 14.30 +120.70
BFT Leader 0.70 0.03 0.27 13.78 58.78 +61.22
BFT Follower 1.0 0 0 13.95 13.95 +76.05

Hang
Spread 0.76 0.24 0 40.75 40.75 +49.25
BFT Leader 0.95 0.05 0 13.53 13.53 +121.47
BFT Follower 0 0 1 13.68 – –

Crash
Spread 0 1 0 12.09 – –
BFT Leader 0.89 0.11 0 13.60 13.60 -13.60
BFT Follower 0.67 0 0.33 13.42 28.2 -28.2

1 % Pkt Loss
Spread 0 0.31 0.69 15.30 – –
BFT Leader 0 0.74 0.27 14.13 – –
BFT Follower 0 0.23 0.74 9.14 – –

20% Pkt Loss
Spread 0 0.28 0.72 16.35 – –
BFT Leader 0 0.23 0.78 9.14 – –
BFT Follower 0.89 0.11 0 14.08 14.08 +75.92

Table 1. Results of fingerpointing approach with OS-level me trics.

dicative of how much time we have for proactive recovery.
A negative value indicates that we fingerpointed the faulty
node after the node crashed. A ’–’ indicates that we did not
fingerpoint the faulty node.

Fingerpointing out-performs protocols:Our fingerpoint-
ing algorithm could diagnose certain performance failures
ahead of the protocol, and provide a window of opportu-
nity for proactive recovery that could mitigate the impact of
faults on the system’s real-time behavior. We correctly di-
agnosed memory-leaks for both protocols, process-hangs
in Spread, and crash and 20% packet-loss faults in the
BFT follower. The protocol’s mechanisms were able to di-
agnose the memory-leak for Spread and the BFT leader;
the process-hang in Spread and faults in the BFT fol-
lower were not diagnosed by the protocol’s mechanisms.

The process-hang fault highlights a difference be-
tween the daemon (Spread) and. library (BFT) pro-
tocols. In Spread, a process hang does not affect the
progress of the underlying daemon that represents the pro-
tocol. Our algorithm can detect and fingerpoint the
fault because the process-hang fault induces a mes-
sage backlog in the faulty process. We fingerpoint the fault
ahead of the protocol’s mechanisms because the back-
log causes the faulty node’s memory profile to change.
Once the faulty process’ backlog reaches a certain limit,
Spread disconnects the process to avoid being hin-
dered by a slow receiver; this local disconnection has lit-
tle effect on the other nodes. A process hang in the
BFT leader provokes a view-change once the client de-
tects the non-responsiveness of the leader. Thus, the
protocol’s mechanisms diagnose the fault ahead of our fin-
gerpointing algorithm.

Protocols out-perform fingerpointing:The protocol was
better at detecting faults that abruptly stop its progress,e.g.,

crash fault in Spread and BFT leader, and process-hang in
BFT leader. The process-crash fault also illustrates the dif-
ference between daemon and library protocol implementa-
tions. In Spread, this fault is neither detected nor diagnosed
by our algorithms in 2 out of 5 runs. We incorrectly finger-
point nodes in the remaining 3 runs. This occurs because a
process-crash is a local disconnection from the Spread dae-
mon and does not perturb the system much, i.e., Spread di-
agnosed the fault 0.05 seconds after crash. On the other
hand, crash of the BFT leader results in a view change 5.3
seconds after the crash.

Both protocols and fingerpointing are inadequate:The
process hang in the BFT follower was detected, but
mis-diagnosed, by our fingerpointing algorithm. This oc-
curred due to a drop in network traffic across all nodes be-
cause the hung process stops sending messages. This
drop in network traffic is most pronounced at the faulty
node, but our current algorithm is unable to detect this be-
cause we do not consider the extent to which a metric devi-
ates from the threshold. The protocol’s mechanisms did not
diagnose the process-hang in the follower.

The packet-loss fault in both Spread and BFT was de-
tected but was difficult to fingerpoint using the OS-level
metrics that we monitored. This fault is especially difficult
to diagnose in Spread because the circulating token causes
correlated fault-manifestations on all nodes. The factorsun-
derlying the fingerpointing of this fault were discussed in
greater detail in Section 5.3 for both Spread and BFT. The
packet-loss faults did not trigger membership changes with
the exception of the 20% packet-loss in Spread (1-2 mem-
bership changes occurred during each run). Even in these
cases, the membership mechanisms could not diagnose the
fault either because the faulty node responded within the
membership timeouts and was included in the new ring. We
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hypothesize that some of these faults might be diagnosable
if we increased the level of protocol instrumentation.

6. Related Work
Current research in application-level root-cause analysis
centers on identifying the faulty components along the
causal request path. Aguileraet al. [1] isolate performance
problems by treating the system nodes as “black-boxes” and
using message-level traces to passively ascribe performance
problems to specific nodes on the causal request path. Sailer
et al. use request-dependency tracking to identify the root-
cause of response time violations in e-commerce applica-
tions. Magpie [4] captures the control-path and resource de-
mands of application requests as they are serviced across
components and nodes in a distributed system. They use
behavioral clustering to construct representative workload
models that can be used for anomaly detection. Cohen et al.
[8] present a (not as tightly coupled) system that uses ma-
chine learning to identify system metrics that are most cor-
related with SLO violations. Based on this, they extract in-
dexable failure signatures for root-cause analysis.

However, components along the causal request path
whose behavior is identified as anomalous may not always
be the source of the problem. This may occur due to hid-
den dependencies between nodes that are not directly re-
lated to the request call-graph. Our approach provides in-
sight on how to diagnose such failures in distributed, repli-
cated systems.

Kiciman and Fox [11] determine the cause of partial
failures in J2EE environments by monitoring the flow of re-
quests through the system. They build reference models of
the component interactions based on historical behavior as
well as the behavior of replicated peers. Our approach also
uses peer comparison to diagnose faults in a system. How-
ever, we focus on diagnosing performance problems, as op-
posed to partial failures in the application.

Several fault-injection studies have been conducted on
group communication systems. Joshi et al. [10] study the
unavailability induced by group communication protocols
during membership changes triggered by crash faults. Ra-
masamy et al. [14] investigate the overhead of providing
intrusion-tolerance mechanisms in group communication
protocols. Our approach, on the other hand, investigates the
propagation of performance problems in replicated applica-
tions that rely on an underlying group membership proto-
col. We also present an approach for diagnosing these prob-
lems even in the absence of a membership change.

Basile et al. [5] conducted a fault-injection study of
the Ensemble group communication system. They injected
memory- and message-corruption faults and showed that
error propagation can occur in group communication sys-
tems. We use a different fault model (namely, performance-
degrading failures). We show that performance problems

can propagate in a group communication system and then
present a fingerpointing approach.

Alvarez et al [2] used simulation-based testing to val-
idate two group membership protocol implementations.
They injected both crash and performance failures to de-
termine whether the systems violated their specification.
Our fault-injection is not targeted at testing the correct-
ness of the protocols, but rather at determining whether
we can improve system availability and provide bet-
ter fault containment through fingerpointing.

7. Conclusion
We investigated the influence of an underlying group com-
munication protocol on the ability to detect and fingerpoint
faulty nodes in a distributed, replicated system. We con-
ducted our investigations on two different group commu-
nication protocols, namely, the token-protocol, Spread, and
the quorum-based Castro-Liskov BFT. Our empirical eval-
uation shows that these protocols can aggravate root-cause
analysis because their innate coupling across nodes causes
fault-manifestations to “travel” across the distributed sys-
tem. We present a protocol-agnostic anomaly detection and
fingerpointing approach for identifying the root-cause of
performance problems. The goal of our fingerpointing ap-
proach is to complement the group communication proto-
cols failure detection mechanisms, and to provide better
system availability and enable proactive recovery in the face
of performance failures.

Our main insight is that, in order to diagnose perfor-
mance problems in replicated systems using a consensus-
based protocol, we need to compare anomalous behavior
across nodes because focusing only on anomalies on a sin-
gle node can lead to misdiagnosis due to the inherent cou-
pling in these systems. Furthermore, because group com-
munication protocols involve network-intensive (message-
passing) coordination, faults (e.g., packet losses) that man-
ifest solely on network-related metrics are difficult to diag-
nose using a black-box approach alone because these faults
lead to correlated manifestations across the entire system.

The daemon vs. library implementation of the pro-
tocol also influences failure-masking and fingerpoint-
ing. Spread is a daemon-based implementation therefore
faults that manifest solely at the application-level are bet-
ter contained and lead to light-weight process-group mem-
bership changes. BFT is a library-based implementation
therefore the application is integrated with the group mem-
bership service. Therefore, an application-level fault can
cause heavyweight processor-group membership changes.
Daemon-based architectures also provide the possibil-
ity of finer grained fingerpointing in which we could
use process-level metrics to distinguish between faults at
the application and faults in the group membership ser-
vice.
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Group communication protocols (e.g., BFT) that as-
sign different roles to processes, such as leader and fol-
lower roles, can ease the task of fingerpointing because the
asymmetry can help to identify the root-cause of the failure.
Faults in the leader are easier to fingerpoint with a black-
box approach, while those in the follower require additional
help from protocol-level metrics. For example, if we no-
tice a performance problem that propagates to all the nodes
in the system, we can assume that the most likely culprit is
the current leader of the group. Faults in follower nodes are
more difficult to diagnose and may require further instru-
mentation of GCP metrics. In token-ring protocols, faults
that hinder the progress of the protocol, e.g., by retarding
the token, will result in the correlated manifestation of the
fault on all of the nodes in the system, making fingerpoint-
ing difficult.

As a part of our future work, we intend to explore
finer-grained fingerpointing using process-level metrics.We
would also like to investigate the effect on fingerpointing of
varying the protocol’s configuration, e.g., the membership
timeouts. We are currently developing a dynamic finger-
pointing algorithm that deals with varying workloads (e.g.,
changing number of clients and request rates), and that can
distinguish between a true anomaly and a change in work-
load. We would like to evaluate the effect of gossip-based
protocols on real-time fault-tolerant operation, as well as
the overheads and impact of running our fingerpointing al-
gorithm online.
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