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Abstract

Designing highly dependable systems requires a good understanding of failure characteristics. Unfortunately littleraw data on
failures in large IT installations is publicly available, due to the confidential nature of this data. This paper analyzes soon-to-be-
public failure data covering systems at a large high-performance-computing site. The data has been collected over the past 9 years
at Los Alamos National Laboratory and includes 23000 failures recorded on more than 20 different systems, mostly large clusters of
SMP and NUMA nodes. We study the statistics of the data, including the root cause of failures, the mean time between failures, and
the mean time to repair. We find for example that average failure rates differ wildly across systems, ranging from 20-1000failures
per year, and that time between failures is modeled well by a Weibull distribution with decreasing hazard rate. From one system
to another, mean repair time varies from less than an hour to more than a day, and repair times are well modeled by a lognormal
distribution.
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1 Introduction

Research in the area of dependable computing relies in many ways on a thorough understanding of what
failures in real systems look like. For example, knowledge of failure characteristics can be used in resource
allocation to improve cluster availability [3, 18]. The design and analysis of checkpoint strategies relies on
certain statistical properties of failures [6, 15, 16]. Creating realistic benchmarks and testbeds for reliability
testing requires an understanding of the characteristics of real failures.

Unfortunately, obtaining access to failure data from modern, large-scale systems is difficult, since such
data is often sensitive or classified. Existing studies of failures are often based on only a few months of
data, covering typically only a few hundred failures [14, 17, 12, 13, 11, 5]. Many of the commonly cited
studies on failure analysis stem from the late 80’s and early90’s, when computer systems where significantly
different from today [1, 2, 4, 10, 14, 7, 8]. Finally, none of the raw data used in the above studies has been
made publicly available for use by other researchers.

This paper foreshadows the public release of a large set of failure data. The data was collected over
the past 9 years at Los Alamos National Labs (LANL) and covers22 high-performance-computing (HPC)
systems used at the site, adding up to a total of 4750 machineswith 24101 processors. The data contains an
entry for any failure that occurred during the 9-year time period and that required the attention of a system
administrator. For each failure the data includes start time and end time, the system and node affected, as
well as categorized root cause information. To the best of our knowledge this is the largest set of failure data
studied in the literature to date, both in terms of the time-period it spans, and the number of systems and
processors it covers.

The goal of this paper is to provide a description of the statistical properties of the data, as well as
information for other researchers on how to interpret the data. We first describe the environment the data
comes from, including the systems and the workloads, the process used to collect the data, and the structure
of the data records (Section 2). Section 3 describes the methodology we use in the data analysis. We then
study the data with respect to three important properties ofsystem failures: the root causes (Section 4), the
time between failures (Section 5) and the time to repair (Section 6). Section 7 compares our results to related
work. Section 8 summarizes and concludes.

2 Description of the data and environment

To provide the necessary context for analyzing the data, we describe below the systems the data was collected
on, the workloads those systems are running, and the processused to collect the data.

2.1 The systems

The data spans 22 high-performance-computing systems thathave been in production use at LANL between
1996 and November 2005. Most of these systems are large clusters of either NUMA nodes, or 2-way and
4-way SMP nodes. In total the systems add up to 4750 nodes and 24101 processors. Table 1 gives an
overview description of the 22 systems.

The left half of Table 1 provides high-level information foreach of the 22 systems, including the
hardware architecture (NUMA vs SMP), the total number of nodes and processors in the system, and a
system ID used throughout this paper to refer to a particularsystem. Unfortunately, we are not able to
release vendor specific information on the hardware used in each system. Instead we label system types
using capital letters, such that two systems have the same label when they use identical processor and
memory chip models. We refer to a system’s label as itshardware type.

As the table shows, the LANL site has hosted a very diverse setof systems. Systems vary widely in
size with the number of nodes ranging from 1 to 1024 and the number of processors ranging from 4 to
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(I) High-level system information (II) Information per node category

Archi- Hardw.
ID #Nodes #Procs

#Procs Commiss. Production Mem
#NICs

tecture Type per node Date Time (GB)

SMP

A 1 1 8 8 N/A N/A - Dec-99 16 0
B 2 1 32 32 N/A N/A - Dec-03 8 1
C 3 1 4 4 N/A N/A - Apr-03 1 0

D 4 164 328
2 Mar-01 Apr-01 - now 1 1
2 Dec-02 Dec-02 - now 1 1

E

5 256 1024 4 Oct-01 Dec-01 - now 16 2
6 128 512 4 Aug-01 Sep-01 - Jan-02 16 2

7 1024 4096

4 Mar-02 May-02 - now 8 2
4 Mar-02 May-02 - now 16 2
4 Mar-02 May-02 - now 32 2
4 Mar-02 May-02 - now 352 2

8 1024 4096
4 Aug-02 Oct-02 - now 8 2
4 Aug-02 Oct-02 - now 16 2
4 Aug-02 Oct-02 - now 32 2

9 128 512 4 Aug-03 Sep-03 - now 4 1
10 128 512 4 Aug-03 Sep-03 - now 4 1
11 128 512 4 Aug-03 Sep-03 - now 4 1

12 32 128
4 Aug-03 Sep-03 - now 4 1
4 Aug-03 Sep-03 - now 16 1

F

13 128 256 2 Aug-03 Sep-03 - now 4 1
14 256 512 2 Aug-03 Sep-03 - now 4 1
15 256 512 2 Aug-03 Sep-03 - now 4 1
16 256 512 2 Aug-03 Sep-03 - now 4 1
17 256 512 2 Aug-03 Sep-03 - now 4 1

18 512 1024
2 Aug-03 Sep-03 - now 4 1
2 Mar-05 Mar-05 - Jun-05 4 1

NUMA
G

19 16 2048
128 Oct-96 Dec-96 - Sep-02 32 4
128 Oct-96 Dec-96 - Sep-02 64 4

20 49 6152
128 Nov-96 Jan-97 - now 128 12
128 Nov-96 Jan-97 - Nov-05 32 12
80 Apr-05 Jun-05 - now 80 0

21 5 544

128 Oct-98 Oct-98 - Dec-04 128 4
32 Jan-98 Jan-98 - Dec-04 16 4

128 Nov-02 Nov-02 - now 64 4
128 Nov-02 Nov-05 - Dec-04 32 4

H 22 1 265 256 Nov-04 Nov-04 - now 1024 0

Table 1:Overview of systems

6152. Systems also vary in their hardware architecture. There is a large number of NUMA and SMP based
machines, and a total of eight different processor and memory models (types A-H).

The nodes in a cluster system are not always identical. Whileall the nodes in a system have the same
hardware type, they might differ in the number of processorsand network interfaces (NICs), the amount of
main memory, or in their commission/decommission dates. The right half of Table 1 categorizes the nodes
in a system with respect to these properties. For example, the nodes of system 12 fall into two categories,
differing only in the amount of memory per node (4 vs 16 GB).

While the table includes information on the time a system wascommissioned and the time it actually
went into production, the data includes failure records only for the production time.

2.2 The workloads

The majority of the workloads are large-scale scientific simulations, such as simulations of nuclear stockpile
stability. These applications perform long periods (oftenmonths) of CPU computation, interrupted every few
hours by a few minutes of I/O for check-pointing. Simulationworkloads are often accompanied by scientific
visualization of large-scale data. Visualization workloads are also CPU-intensive, but exhibit more reading
of data from storage than compute workloads. Finally, some nodes are used purely as front-end nodes, and
others run more than one type of workload, for instance, graphics nodes often run compute workloads as
well.

At LANL failure tolerance is frequently implemented through periodic check-pointing. When a node
fails, the job(s) running on it is stopped and restarted on a different set of nodes, either starting from the
most recent checkpoint or from scratch if no check-point exists.
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Starttime Endtime System Node Type of Node
Root cause

High-level Detailed
... ... ... ... ... ... ...

2005-6-21 10:54 2005-6-21 11:00 6 1 graphics.fe Hardware Cooling Fan
2005-6-21 15:54 2005-6-21 16:41 10 93 compute Software OS Software

... ... ... ... ... ... ...

Table 2:Sample failure records.

2.3 Data collection

The data is based on a “remedy” database created at LANL in June 1996. At that time, LANL introduced
a site-wide policy that for any system failure requiring theintervention of a system administrator a record
describing the failure has to be entered into the remedy database. Consequentially, the database today
contains a record for every failure that occurred in LANL’s HPC systems since June 1996 and that required
intervention of a system administrator.

Table 2 shows some sample records. A failure record containsthe time when the failure started (Start-
time), the time when it was resolved (Endtime), the system and node affected, the type of workload running
on the node and the root cause. The workload is eithercomputefor computational workloads,graphicsfor
visualization workloads, orfe for front-end. Root causes fall in one of the following five high-level cate-
gories:Humanerror; Environment, including for example power outages or A/C failures;Networkfailure;
Softwarefailure; andHardwarefailure. In addition, more detailed information on the rootcause is captured,
such as the particular hardware component affected by aHardware failure. The failure classification and
rules for assigning failures to categories were developed jointly by hardware engineers, administrators and
operations staff at LANL.

Failure reporting at LANL follows the following protocol. Failures are detected by an automated
monitoring system that pages operations staff whenever a node is down. The operations staff then create a
failure record in the database specifying the Starttime of the failure, and the system and node affected, then
turn the node over to a system administrator for repair. Uponrepair, the system administrator notifies the
operations staff who then put the node back into the job mix and fill in the Endtime of the failure record.
If the system administrator was able to identify the root cause of the problem he provides operations staff
with the appropriate information for the “root cause” field of the failure record. Otherwise the root cause is
specified as “Unknown”. Operations staff and system administrators have occasionally follow-up meetings
for failures with “Unknown” root cause. If through those meetings or other ways the root cause becomes
clear later on, the corresponding failure record gets amended accordingly.

Two implications follow from the way the data was collected.First, this data is very different from
the error logs used in many other studies. Error logs are automatically generated and track any exceptional
events in the system, not only errors resulting in system failure. Moreover, error logs often contain multiple
entries for the same error event.

Second, since the data was created manually by system administrators, the data quality depends on
the accuracy of the administrators’ reporting. Two potential problems in human created failure data are
underreporting of failure events and misreporting of root cause. For the LANL data we don’t consider
underreporting (i.e. a failure does not get reported at all)a serious concern, since failure detection is initiated
by automatic monitoring and failure reporting involves several people from different administrative domains
(operations staff and system administrators). While misdiagnosis can never be ruled out completely, its
frequency depends on the skills of the system administrator. LANL employs highly-trained staff backed
by a well-funded cutting edge technology integration team,often pulling new technology into existence in
collaboration with vendors.
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Figure 1:The breakdown of failures into root causes (left) and the breakdown of downtime into root causes
(right). Each graph shows the breakdown for systems of type D, E, F, G, and H and aggregate statistics
across all systems (A-H).

3 Methodology

We characterize an empirical distribution using three import metrics: the mean, the median, and the squared
coefficient of variation (C2). The squared coefficient of variation is a measure of the variability of a distribu-
tion and is defined as the squared standard deviation dividedby the squared mean. The advantage of using
the squared coefficient of variation as a measure of variability, rather than the variance or the standard devi-
ation, is that it is normalized by the mean, and hence allows comparison of variability across distributions
with different means.

We also consider the empirical cumulative distribution function (CDF) and how well it is fit by four
probability distributions commonly used in reliability theory1: the exponential distribution; the Weibull
distribution; the gamma distribution; and the lognormal distribution. We parameterize the distributions
through maximum likelihood estimation and evaluate the goodness of fit both by visual inspection and the
negative log-likelihood test.

Note that the goodness of fit that a distribution achieves depends on the degrees of freedom that this
distribution offers. For example, a phase-type distribution with an arbitrary number of phases would likely
give a better fit than any of the above standard distributions, which are limited to one or two parameters.
Whenever the quality of fit allows, we prefer the simplest standard distribution because these are well un-
derstood, simple to use and can be generated and fit efficiently. In our analysis of this data we have so far
not found any reason to depend on more degrees of freedom.

4 Root cause breakdown

An obvious question when studying failures in computer systems is what caused the failures. In this section
we study the root causes as reported in the root cause field of the data.

We first look at the relative frequency of the six high-level categories for root cause: human, environ-
ment, network, software, hardware, and unknown. Figure 1 (left) shows the percentage of failures in each
of the six categories. The right-most bar describes the breakdown across all failure records in the data set.
Each of the five bars to the left presents the breakdown acrossall failure records for systems of a particular
hardware type.

Figure 1 indicates that while the actual breakdown varies across systems with different hardware type,

1We also considered another distribution, which has recently been found to be useful in characterizing various aspects of
computer systems, the Pareto distribution. However, we didn’t find it to be a better fit than any of the four standard distributions for
our data and therefore did not include it in these results.
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the basic trends are similar. Hardware is the single largestcomponent, with the actual percentage ranging
from 30% to more than 60%. Software is the second largest contributor in all cases, with percentages ranging
from 5% to 24%. Systems of type D differ most from the other systems, in that hardware and software are
almost equally frequently reported as root cause.

It is important to observe that in most systems the root causeremained undetermined for 20-30% of
the failures (except for type E systems, where less then 5% ofroot causes are unknown). Since the fraction
of hardware failures is in all systems larger than the fraction of undetermined failures, and the fraction of
software failures is close to that of undetermined failures, we can still conclude that hardware and software
are among the largest contributors to failures. However, wecan not conclude that any of the other failure
sources (Human, Environment, Network) is insignificant.

In addition to the relative frequency of the different root causes, we also consider how much each of
them contributes to the total downtime. Figure 1 (right) shows the total downtime per hardware type broken
down into the root cause that caused the downtime. The basic trends are similar to the root cause breakdown
by frequency: hardware tends to be the single largest component, followed by software. Interestingly, for
most systems the failures with unknown root cause account for less than 5% of the total downtime, despite
the fact that the percentage of unknown root causes is higher. Only systems of type D and G have more than
5% of downtime with unknown root cause.

The reason for the higher fraction of downtime with unknown root cause for systems of type D and
G lies in the circumstances surrounding their initial deployment. Systems of type G were the first NUMA
based clusters at the site and were commissioned at a time when LANL just started to systematically record
failure data. As a result in the beginning of those systems’ lifetime the fraction of root causes that remained
undetermined was very high (> 90%), but dropped to less than 10% within 2 years, as administrators’ gained
more experience with the new system and the root cause analysis involved with it. Similarly, the system of
type D was the first large-scale SMP cluster at LANL, so initially the number of failures with unknown root
cause was high, but then quickly dropped.

In addition to the breakdown of the root cause into the five high-level categories, we also looked at the
more detailed failure categorization. We find that for all systems, memory related hardware failures make
up a significant portion of all failures. For all systems morethan 10% of all failures (not only hardware
failures) were due to memory, in the case of system F and H evenmore than 25%. In fact, for all systems,
except for system E, memory was the single most common ”low-level” root cause. System E experienced a
very high percentage (more than 50%) of CPU related failures, due to a major flaw in the design of the type
of CPU used in systems of type E.

The detailed breakdown for software related failures varies more across systems. For system F the most
common software failure was related to the parallel file system, for system H to the scheduler software and
for system E to the operating system. For system D and G a largeportion of the software failures were not
specified further.

5 Analysis of failure rates

5.1 Failure rate as a function of system and node

This section looks at how failure rates vary across different systems, and across the nodes within the same
system. Studying failure rates across different systems isinteresting since it provides insights on the effect of
parameters such as system size and hardware type. Knowledgeon how failure rates vary across the nodes in
a system can be utilized in job scheduling, for instance by assigning critical jobs or jobs with high recovery
time to more reliable nodes.

Figure 2 (left) shows for each of the 22 systems the average number of failures recorded per year during
the system’s production time. The yearly failure rate varies widely across systems, ranging from only 17
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Figure 2:Average number of failures for each system per year (left). Average number of failures for each
system per year normalized by number of nodes in the system (right). Bars of systems that use the same
hardware type have the same color.
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Figure 3:Number of failures per node for system 20 as a function of nodeID (left) and the corresponding
CDF, fitted with a Poisson, normal and lognormal distribution (right).

failures per year for system 2, to an average of 1159 failuresper year for system 7. In fact, variability in the
failure rate is high even among systems of the same hardware type.

The main reason for the vast differences in failure rate across systems is that the systems vary widely
in size. Figure 2 (right), shows for each system the average number of failures per year normalized by the
number of nodes in the system. The normalized failure rates have relatively small variability for systems of
the same hardware For example, all systems of type E (systems5-12) exhibit a similar average failure rate
per year per node2, despite the fact that they range in size from 128 to 1024 nodes. The same holds for type
F systems. This indicates that failure rates don’t grow significantly faster than linearly with the number of
nodes in a system.

We next concentrate on the distribution of failures over thenodes within a given system. Figure 3
shows the total number of failures for each node of system 20 during the entire lifetime of the system. We
find a relatively uniform distribution of failures across nodes, except for nodes 21-23, which experienced
a significantly higher number of failures than the other nodes. While nodes 21-23 make up only 6% of all
nodes, they account for 20% of all failures in the system.

One reason for the above non-uniformity might be that nodes 21-23 differ from the other nodes in the
workloads they run. Node 21-23 are the only nodes used for visualization, as well as computation, resulting
in a more varied and interactive workload compared to the other nodes. We make similar observations for
other systems, where failure rates vary significantly depending on a node’s workload. For example, for
systems E and F, the front-end nodes, which run a more varied,interactive workload, exhibit a much higher
failure rate than the other nodes in the same system.

While it seems clear from Figure 3 that the graphics nodes have a very different behavior from the
other nodes, a remaining question is how similar the failurerates of the remaining (compute-only) nodes

2Except for system 6, which is an unusual case in that it was in production for only 5 months before it was decommissioned.
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Figure 4: Two representative examples for how the failure rate changes as a function of system age (in
months). The curve on the left corresponds to system 19 whichis representative for systems of type D and
G. The curve on the right corresponds to system 5 which is representative for systems of type E and F.

are to each other. Figure 3 (right) shows the CDF of the measured number of failures per node for compute
nodes, with three different distributions fitted to it: the Poisson distribution, the normal distribution, and the
lognormal distribution. If the failure rate at all nodes followed a Poisson process with the same mean (as
often assumed e.g. in work on check-pointing protocols), the distribution of failures across nodes would be
expected to match a Poisson distribution. Instead we find that the Poisson distribution is a poor fit, mostly
because the measured data seems to have a higher variabilitythan that of the Poisson fit. The normal and
lognormal distribution are a much better fit, both visually as well as measured by the negative log-likelihood.
This indicates that the assumption of Poisson failure rateswith equal means across nodes is not likely to be
realistic.

5.2 Failure rate at different time scales

This section looks at how failure rates vary across different time scales, from very large (system lifetime)
to very short (daily and weekly). Knowing how failure rates vary as a function of time is important for
generating realistic failure workloads and for optimizingrecovery mechanisms.

We begin with the largest possible time-scale by looking at failure rates over the entire lifetime of a
system. We find that for all systems in our data set the curve for the failure rate as a function of system age
follows one of two shapes. Figure 4 shows a representative example for each shape.

Figure 4 (right) shows the number of failures per month for system 5, starting at production time. The
basic characteristic of the curve is that failure rates are high initially, and then drop significantly during the
first 3-4 months of production use. The shape of this curve is the most common one and is representative of
all systems of type E and F.

The shape of this curve is intuitive in that the failure rate drops during the early age of a system, as
initial hardware and software bugs are detected and fixed andadministrators gain experience in running
the system. One might wonder why the initial problems were not solved during the 1-2 months of testing
before production time. The reason is that many problems in hardware, software and configuration are only
exposed by real user code in the production workloads.

The curve in Figure 4 (left) corresponds to the failures observed over the lifetime of system 19 and
represents the other commonly observed shape. The shape of this curve is representative for systems of type
D and G, and is less intuitive: The failure rate actually grows over a period of nearly 20 months, before it
eventually starts dropping. One possible explanation for this behavior is that getting these systems into full
production was a slow and painful process.

The systems of type G were the first systems of the NUMA era at LANL and the first systems ever that
arranged such a large number of NUMA machines in a cluster. Asa result the first 2 years still involved a
lot of development work among the administrators of the system, the vendors, and the users. Administrators
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Figure 5:Number of failures by hour of the day (left) and the day of the week (right).

had to develop new software for managing the system and providing the infrastructure to run large parallel
applications. Users developed new large-scale applications that wouldn’t have been feasible to run on any
of the previous systems. With the slower development process it took longer until the systems were running
the full variety of production workloads and the majority ofthe initial bugs were exposed and fixed. The
case for the system of type D was similar in that it was the firstlarge-scale SMP cluster at the site.

Our above explanation for the failure rate curves of systemsof type D and G is supported by two
other observations. First, the failure rate curve for otherSMP clusters (systems of type E and F) that were
introduced later and were running full production workloads earlier in their life follows the more traditional
pattern in Figure 4 (right). Second, system 21, which was introduced 2 years after the two other systems of
type G, exhibits a failure rate curve much closer to Fig 4 (right).

Next we look at how failure rates vary over smaller time scales. It is well known that usage patterns of
systems vary with the time of the day and the day of the week. The question we are interested in is whether
there are similar patterns for failure rates. Figure 5 categorizes all failures in the data by hour of the day
(left) and by day of the week (right). We observe a strong correlation in both cases. During peak hours of
the day the failure rate is two times higher than during the night. Similarly the failure rate during weekdays
is nearly two times as high as during the weekend. We interpret this as a correlation between the failure
rate of a system and the workload run on the system, since we know based on general usage patterns (not
specifically LANL) that the workload intensity and the variety of workloads is lower during the night and
weekend.

Note that another possible explanation for the observations in Figure 5 would be that failure rates
during the night and weekends are not lower, but that the detection of those failures is simply delayed
until the beginning of the next (week-)day. We consider thisexplanation less likely, since failures are
detected automatically by a monitoring system, and not by users or system administrators. Moreover, if
delayed detection was the reason, one would expect a large peak on Mondays, and lower failure rates on the
following days, which is not the case in this data.

5.3 Statistical properties of time between failures

In this section we view the sequence of failure events as a stochastic process and study the distribution of its
inter-arrival times, i.e. the time between failures. We take two different views of the failure process: (i) the
view as seen by an individual node, i.e. we study the time between failures that affect only this particular
node; (ii) and the view as seen by the whole system, i.e. we study the time between subsequent failures that
affect any node in the system.

Since failure rates vary across the lifetime of a system (recall Figure 4), the time between failures also
varies accordingly. We therefore analyze the time between failures separately for the early production time
during which failure rates are high and the remaining life ofthe system when failure rates have come down.

We begin with the view of the time between failures as seen by an individual node. Figure 6 shows the
corresponding empirical distribution as seen by node 22 in system 20 during the years 1996-1999 (left) and
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Figure 6:Empirical CDF for inter-arrival times of failures on node 22in system 20 early in production (left)
and late in production (right).
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Figure 7:Empirical CDF for inter-arrival times of failures for the system wide view of failures in system 20
early in production (left) and late in production (right).

the years 2000-2005 (right), fitted by four standard distributions. We observe that during years 2000-2005
the distribution between failures is well modeled by a Weibull or gamma distribution. Both distributions
create an equally good visual fit and the same negative log-likelihood. The simpler exponential distribution
is a poor fit, as itsC2 of 1 is lower than the data’sC2 of 1.9.

For a given failure interarrival distribution it is useful to know how the time since the last failure
influences the expected time until the next failure. This notion is captured by a distribution’s hazard rate
function. An increasing hazard rate function predicts thatif the time since a failure is long then the next
failure is coming soon. And a decreasing hazard rate function predicts the reverse. Figure 6 (right) is well
fit by a Weibull distribution with shape parameter 0.7, indicating that the hazard rate function is decreasing,
i.e. not seeing a failure for a long time decreases the chanceof seeing one in the near future.

During years 1997-1999 the empirical distribution of the time between failures at node 22 looks quite
different (Figure 6 (left)) from the 2000-2005 period. During this time period the best fit is provided by the
lognormal distribution, followed by the Weibull and the gamma distribution. The exponential distribution
is an even poorer fit here than it was during the second half of the node’s lifetime. The reason lies in the
higher variability of the time between failures with aC2 of 3.9. This high variability might not be surprising
given the variability in monthly failure rates we observed in Figure 4 for systems of this type during this
time period.

Next we move to the system wide view of the failures in system 20, shown in Figure 7. The basic trend
for the years 2000-05 (Figure 7 (right)) is similar to the pernode view during the same time. The Weibull
and gamma distribution are the best fit, while the lognormal and exponential fits are significantly worse.
Again the hazard rate function is decreasing (Weibull shapeparameter of 0.78).

The system wide view during years 1997-1999 (Figure 7 (left)) exhibits a distribution that is very
different from the others we have seen and is not well captured by any of the standard distributions. The
reason is an exceptionally large number (> 30%) of inter-arrival times that are zero, indicating that two
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Unknown Human Env. Netw. Softw. Hardw. All
Mean (min) 398 163 572 247 369 342 355

Median (min) 32 44 269 70 33 64 54
Std. Dev. (min) 6099 418 808 720 6316 4202 4854
Variability (C2) 234 6 2 8 293 151 187

Table 3:Statistical properties of time to repair as a function of theroot cause of the failure.

failures occurred at the same time. Since for a given node there are never two failures recorded at the
same time, a zero inter-arrival time is caused by simultaneous failures in two different nodes. While we did
not perform a rigorous analysis of correlations between nodes3, this high number of simultaneous failures
indicates the existence of a correlation.

6 Analysis of repair times

This section considers a second important metric in system reliability, the time to repair. We first study how
parameters such as the root cause of a failure and system parameters affect repair times. We then study the
statistical properties of repair times, including their distribution and variability.

Table 3 shows the median and mean of time to repair as a function of the root cause, and as an aggregate
across all failure records. We find that both the median and the mean time to repair vary significantly
depending on the root cause of the failure. The mean time to repair ranges from less than 3 hours for failures
caused by human error, to nearly 10 hours for failures due to environmental problems. The mean time to
repair for the other root cause categories varies between 4 and 6 hours. In comparison, the mean repair
time across all failures (independent of root cause) is close to 6 hours. The reason is that it’s dominated by
hardware and software failures which are the most frequent types of failures and exhibit mean repair times
around 6 hours.

An important observation is that the time to repair for all types of failures is extremely variable, except
for environmental problems. For example in the case of software failures the median time to repair is about
10 times lower than the mean, and in the case of hardware failures it is 4 times lower than the mean. This
high variability is also reflected in extremely largeC2 values, as shown in the bottom row of Table 3.

One explanation for the extreme variability in the repair times of software and hardware failures might
be the diverse set of problems that can cause these failures.For example, the root cause information for
hardware failures spans 99 different sub-categories, compared to only two (power outage and A/C failure) for
environmental problems. To test the validity of this explanation we determined theC2 for several particular
types of hardware problems. We find that even within one type of hardware problem the variability can be
high. For example, theC2 for repair times of CPU, memory, and node interconnect problems is 36, 87, and
154, respectively. This leads us to conclude that there are other factors contributing to the high variability.

Figure 8 (left) shows the empirical CDF for the repair times across all failures in the data, as well
as four standard distributions fitted to the data. The exponential distribution is a very poor fit to the data,
which is not surprising given the high variability in the repair times. Among all distributions the lognormal
distribution is the best fit, both visually as well as measured by the negative log-likelihood. The Weibull
distribution and the gamma distribution are weaker fits thanthe lognormal distribution, but still considerably
better than the exponential distribution.

Finally, we consider how repair times vary for different systems. Figure 9 shows the mean and median
time to repair for each of the 22 systems. The figure indicatesthat the hardware type has a major effect on

3The reason is that simply computing the cross-correlation over the data is not sufficient, since other correlations, e.g. with time
of the day, would blur the results.
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Figure 8:Empirical CDF of repair times across all systems (left) and for systems of type E (right).
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Figure 9:Mean repair time for each system (left) and median repair time for each system (right).

repair times. While systems of the same hardware type exhibit similar mean and median time to repair4,
repair times vary significantly across systems of differenttype,

Figure 9 also indicates that system size is not a significant factor in repair time. For example, type E
systems range from 128 to 1024 nodes, but still exhibit similar repair times. In fact, systems 7 and 8, the
largest systems of type E, are among the ones with the lowest median repair time.

The relatively consistent repair times across systems of the same hardware type are also reflected in the
empirical CDF. Figure 8 (right) shows the CDF for the repair times of all systems of type E. The CDF is
less variable than that taken across all systems (compare with Figure 8 (left)) which results in an improved
(albeit still sub-optimal) fit by the exponential distribution.

7 Comparison with related work

Work on characterizing failures in computer systems falls in different categories depending on the type of
data used; the type and number of systems under study; the time of data collection; and the number of failure
or error records in the data set. Table 4 gives an overview of several commonly cited studies of failure data.

Four of the above studies include root cause statistics [2, 10, 12, 5]. The percentage of software-related
failures is reported to be around 20% [1, 10, 12] to 50% [2, 5].Hardware is reported to make up 10-30%
of all failures [2, 10, 12, 5]. Environment problems are reported to account for around 5% [2]. Network
problems are reported to make up between 20% [12] and 40% [5].Gray [2] reports 10-15% of problems
due to human error, while Oppenheimer et al. [12] report 14-30%. The main difference to our results is the
lower percentage of human error and network problems in our work. There are two possible explanations.
First, the root cause of 20-30% of failures in our data is unknown and could lie in the human or network
category. Second, the LANL environment is an expensive and very controlled environment with national
safety obligations and priorities, in which greater effortmay be put into these parts of the infrastructure than
in commercial environments.

4With the exception of system 13, which experienced three unusual months-long downtimes
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Study Date Length Environment Type of Data # Failures Statistics

[1, 2] 1990 3 years Tandem systems Customer data 800 Root cause
[5] 1999 6 months 70 Windows NT mail server Error logs 1100 Root cause
[12] 2003 3-6 months 3000 machines in Internet services Error logs 501 Root cause
[10] 1995 7 years VAX systems Field data N/A Root cause
[14] 1990 8 months 7 VAX systems Error logs 364 TBF
[7] 1990 22 months 13 VICE file servers Error logs 300 TBF
[4] 1986 3 years 2 IBM 370/169 mainframes Error logs 456 TBF
[13] 2004 1 year 395 nodes in machine room Error logs 1285 TBF
[3] 2002 1-36 months 70 nodes in university and Internet services Error logs 3200 TBF
[17] 1999 4 months 503 nodes in corporate envr. Error logs 2127 TBF

Table 4:Overview of related studies

Several studies analyze the time between failures [13, 14, 3, 17]. Three of the studies use distribution
fitting and find the Weibull distribution to be a good fit [3, 17,7], which agrees with our results. All four
studies looked at the hazard rate function, but come to different conclusions. Three of them [3, 17, 7] find
decreasing hazard rates (Weibull shape parameter< 0.5). Others find that hazard rates are flat [14], or
increasing [13]. We find decreasing hazard rates with Weibull shape parameter of 0.7-0.8.

Two other studies [4, 13] report correlation between workload and failure rate. Sahoo et al. [13]
conclude that there is a correlation between the type of workload and the failure rate, while Iyer et al. report
a correlation between the workload intensity (CPU utilization) and the failure rate. We find evidence for
both correlations, in that we observe different failure rates for compute, graphics, and front-end nodes, and
different failure rates for different hours of the day and days of the week.

Sahoo et al.[13] also study the correlations of failure ratewith hour of the day and the distribution of
failures across cluster nodes and find even stronger correlations than we do. They report that less than 4%
of the nodes in a machine room experience almost 70% of the failures and find hourly failure rates during
the day to be four times higher than during the night.

We are not aware of any studies that report failure rates overthe entire lifetime of large systems.
However, there exist commonly used models for individual software or hardware components. The failures
over the lifecycle of hardware components are often assumedto follow a “bathtub curve” with high failure
rates at the beginning (infant mortality) and the end (wear-out) of the lifecycle. The failure rate curve for
software products is often assumed to drop over time (as morebugs are detected and removed), with the
exception of some spikes caused by the release of new versions of the software [10, 9]. We find that the
failure rate over the lifetime of large-scale HPC systems can differ significantly from the above two patterns
(recall Figure 4).

8 Summary

Many researchers have pointed out the importance of analyzing failure data and the need for a public data
repository of failure data [12]. In this paper we study a large set of failure data that was collected over the
past decade at a high-performance computing site and will soon be made publicly available. We hope that
this data might serve as a first step towards a public data repository and encourage efforts at other sites to
collect and clear data for public release.

Below we summarize a few of the findings of our study.

• Mean failure rates vary widely across systems, ranging from20 to more than 1000 failures per year.
The failure rate depends mostly on the size of a system and less on the particular hardware.

• There’s evidence of a correlation between the failure rate of a system and the type and intensity of the
workload running on the system.
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• The curve of the failure rate over the lifetime of an HPC system looks often very different from
lifecycle curves reported in the literature for individualhardware or software components.

• Interarrival times of failures at individual nodes, as wellas at an entire system are fit well by a gamma
distribution or a Weibull distribution with decreasing hazard rate.

• Mean repair times vary widely across systems, ranging from 1hour to more than a day. Repair times
depend mostly on the type of the system, and are relatively insensitive to the size of a system.

• Repair times are extremely variable, even within one system, and hence poorly modeled by an expo-
nential distribution. We find the best fit to be a lognormal distribution.

Our study is only a first step in analyzing the wealth of information provided by the data. There are
many different ways in which the data could be used in future work.

An important question we haven’t touched on is what the underlying correlation structures in the mea-
sured failure processes look like, including for example correlation between failures at the same node and
correlations across nodes. An interesting study would be touse statistical methods from time-series analysis
to identify the underlying correlation structures.

Another interesting question is how the data could be used tocreate realistic simulators or benchmarks.
This involves the question of whether using simple distributions under the i.i.d. assumption is sufficient to
achieve realistic results, or whether more complex models are necessary.

Finally, an interesting avenue for future work would be a detailed study of the relationship between the
workload of a system and its failure rate. Our results indicate that the workload intensity as well as the type
of workload affect failure rates. It would be interesting tosystematically characterize this relationship and
develop models that capture it.
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