
RipTide
A programmable, energy-minimal dataflow compiler and architecture

Graham Gobieski,∗ Souradip Ghosh,∗ Marijn Heule,∗ Todd Mowry,∗ Tony Nowatzki,† Nathan Beckmann,∗ Brandon Lucia∗
∗ Carnegie Mellon University † University of California at Los Angeles

{gobieski, souradip}@cmu.edu tjn@cs.ucla.edu {mheule, tcm, beckmann}@cs.cmu.edu blucia@andrew.cmu.edu

Abstract—Emerging sensing applications create an unprece-
dented need for energy efficiency in programmable processors.
To achieve useful multi-year deployments on a small battery
or energy harvester, these applications must avoid off-device
communication and instead process most data locally. Recent
work has proven coarse-grained reconfigurable arrays (CGRAs)
as a promising architecture for this domain. Unfortunately, nearly
all prior CGRAs support only computations with simple control
flow and no memory aliasing (e.g., affine inner loops), causing an
Amdahl efficiency bottleneck as non-trivial fractions of programs
must run on an inefficient von Neumann core.

RipTide is a co-designed compiler and CGRA architecture
that achieves both high programmability and extreme energy
efficiency, eliminating this bottleneck. RipTide provides a rich set
of control-flow operators that support arbitrary control flow and
memory access on the CGRA fabric. RipTide implements these
primitives without tagged tokens to save energy; this requires
careful ordering analysis in the compiler to guarantee correctness.
RipTide further saves energy and area by offloading most control
operations into its programmable on-chip network, where they
can re-use existing network switches. RipTide’s compiler is
implemented in LLVM, and its hardware is synthesized in Intel
22FFL. RipTide compiles applications written in C while saving
25% energy v. the state-of-the-art energy-minimal CGRA and
6.6× energy v. a von Neumann core.

Keywords-Energy-minimal, ultra-low-power, programmable,
general-purpose, reconfigurable, CGRA, dataflow, compiler.

I. INTRODUCTION

RECENT advances in machine learning, sensor devices, and
embedded systems open the door to a wide range of

sensing applications, such as civil-infrastructure or wilderness
monitoring, public safety and security, medical devices, and
chip-scale satellites [86]. To achieve long (e.g., 5+ year)
deployment lifetimes, these applications rely on on-device
processing to limit off-device communication. Computing at
the extreme edge calls for ultra-low-power (<1 mW), energy-
minimal, and programmable processing [29].

Why programmable? The need for extreme energy efficiency
suggests a role for application-specific integrated circuits
(ASICs), but ASICs come with several major disadvantages.
Computations in smart sensing applications are diverse, span-
ning deep learning, signal processing, compression, encoding,
decryption, planning, control, and symbolic reasoning [28].
Only a programmable solution can support all of these,
as it is infeasible to build an ASIC for every conceivable
task [45, 78]. Moreover, the rapid pace of change in these

r

r

r rr

r

r

r r

r

r rr

r

r

r

r

Reuses existing
hardware

int w = 0;
for(…)
w += A[j];

Z[0] = w;

Complete
system stack

Tag-less dataflow Control flow
in the NoC

Compiler

Generated CGRA
hardware

+ Nested loops
+ Memory ordering
+ Steering control-flow

C

Ld

+
T

>

St

I

C

+
F

>Ou
te

r
In

ne
r

C T O …[

[Control-flow ops:

M
R R

RR

St
R

R

A
RR

M
R

, , ,

Arbitrary code

DFG from
RipTide’s
compiler

Figure 1: RipTide is a co-designed compiler and CGRA architecture
that executes programs written in a high-level language with minimal
energy and high performance. RipTide introduces new control-flow
primitives to support common programming idioms, like deeply nested
loops and irregular memory accesses, while minimizing the energy
overhead. RipTide implements control flow in the NoC to increase
utilization and ease compilation.

applications (e.g., due to new machine learning algorithms [41])
puts specialized hardware at risk of premature obsolescence,
especially in a multi-year deployment [78]. Finally, by targeting
all computations, programmable designs can achieve much
greater scale than specialized designs — perhaps trillions
of devices [81]. Scale reduces device cost, makes advanced
manufacturing nodes economically viable, and mitigates carbon
footprint [34].

Unfortunately, traditional programmable cores are very
inefficient, typically spending only 5% to 10% of their energy
on useful work [27, 30, 39]. The architect’s challenge is thus
to reconcile generality and efficiency.

CGRAs are both programmable and efficient. Recent work
has shown that coarse-grained reconfigurable arrays (CGRAs)
can achieve energy efficiency competitive with ASICs while
remaining programmable by software [27, 66, 97]. As shown
in Fig. 1, a CGRA is an array of processing elements
(PEs) connected by an on-chip network (NoC). CGRAs are
programmed by mapping a computation’s dataflow onto the
array, i.e., by assigning operations to PEs and configuring the
NoC to route values between dependent operations. A CGRA’s
efficiency derives from avoiding overheads intrinsic to von

1

Neumann architectures, specifically instruction fetch/control
and data buffering in a centralized register file.

In the context of ultra-low-power sensing applications,
SNAFU [27] is a CGRA-generation framework designed from
the ground up to minimize energy, in contrast to prior,
performance-focused CGRAs (Sec. II). SNAFU CGRAs reduce
energy by 5× v. ultra-low-power von Neumann cores, and they
come within 3× of ASIC energy efficiency.

What’s the problem? Amdahl’s Law tells us that to achieve
significant end-to-end benefits, CGRAs must benefit the vast
majority of program execution. CGRAs must support a wide
variety of program patterns at minimal programmer effort, and
they must provide a complete compiler and hardware stack
that makes it easy to convert arbitrary application code to an
efficient CGRA configuration. Unfortunately, prior CGRAs
struggle to support common programming idioms efficiently,
leaving significant energy savings on the table.

On the hardware side, many prior CGRAs support only
simple, regular control flow, e.g., inner loops with streaming
memory accesses and no data-dependent control [27, 64, 74].
To support complex control flow and maximize performance,
other CGRAs employ expensive hardware mechanisms, e.g.,
associative tags to distinguish loop iterations, large buffers to
avoid deadlock, and dynamic NoC routing [61, 70, 83, 93]. In
either case, energy is wasted: from extra instructions needed
to implement control flow unsupported by the CGRA fabric,
or from inefficiency in the CGRA microarchitecture itself.

On the compiler side, mapping large computations onto a
CGRA fabric is a perennial challenge. Heuristic compilation
methods often fail to find a valid mapping [62, 73], and
optimization-based methods lead to prohibitively long compi-
lation times [13, 62]. Moreover, computations with irregular
control flow are significantly more challenging to compile due
to their large number of control operations, which significantly
increase the size of the dataflow graph. To avoid these
issues, SNAFU requires hand-coded vector assembly, restricting
programs to primitives that map well onto a CGRA. Vector
assembly sidesteps irregular control, but makes programming
cumbersome [27, 64, 101].

RIPTIDE’S APPROACH AND CONTRIBUTIONS

RipTide is a co-designed CGRA compiler and architecture
that supports arbitrary control flow and memory access patterns
without expensive hardware mechanisms. Unlike prior low-
power CGRAs, RipTide can execute arbitrary code, limited
only by fabric size and routing. RipTide saves energy by
offloading more code onto the CGRA, where it executes
with an order-of-magnitude less energy than a von Neumann
core. In particular, RipTide supports deeply nested loops with
data-dependent control flow and aliasing memory accesses, as
commonly found in, e.g., sparse linear algebra. These benefits
are realized via the following contributions:

RipTide’s instruction set architecture supports complex
control while minimizing energy. RipTide adopts a steering
control paradigm [11, 24, 83], in which values are only routed

C-code Assembly

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e0

20

40

L
in

es
of

co
de

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e0

2

4

6

E
ne

rg
y

sa
vi

ng
s

(v
.

sc
al

ar
)

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e0

2

4

6

S
p

ee
du

p
(v

.
sc

al
ar

)

Figure 2: RipTide improves energy efficiency and performance
on average across ten benchmarks over the state of the art, while
compiling programs from high-level C (v. vector assembly in SNAFU).

to where they are actually needed. To support arbitrary nested
control without tags, RipTide introduces new control-flow
primitives, such as the carry gate, which selects between tokens
from inner and outer loops. RipTide also optimizes the common
case by introducing operators for common programming idioms,
such as its stream generator that generates an affine sequence
for, e.g., streaming memory accesses.

RipTide’s (almost) free lunch: offloading control flow into
the on-chip network. RipTide implements its new control flow
primitives without wasting energy or PEs by leveraging existing
NoC switches. The insight is that a NoC switch already contains
essentially all of the logic needed for steering control flow, and,
with a few trivial additions, it can implement a wide range of
control primitives. Mapping control-flow into the NoC frees
PEs for arithmetic and memory operations, so that RipTide
can support deeply nested loops with complex control flow on
a small CGRA fabric.

RipTide compiles C programs to an efficient CGRA con-
figuration. RipTide is easy to program: it compiles functions
written in a high-level language (currently, C) and employs
novel analyses to safely parallelize operations. We observe that,
with steering control flow and no program counter, conventional
transitive reduction analysis fails to enforce all memory
orderings, so we introduce path-sensitive transitive reduction to
infer orderings correctly. RipTide implements arbitrary control
flow without associative tags by enforcing strict ordering
among values, leveraging its new control operators. RipTide
maps programs onto the CGRA by formulating place-and-
route as a SAT instance or integer linear program. The SAT
formulation finds configurations quickly (< 3 min), while the
ILP formulation yields configurations that use 4.3% less energy.

Summary of results. We implement a complete RipTide system
in RTL and synthesize it in Intel 22FFL, an industrial sub-
28nm FinFET process with compiled memories. Including
core and memory, RipTide’s area is just ≈ 0.5mm2. Across
ten benchmarks, ranging from linear algebra to graph search,
RipTide reduces energy by 25% v. SNAFU, the state-of-the-art
energy-minimal design, and improves performance by 17%
(Fig. 2). At nominal voltage with random inputs, RipTide
achieves 180 MOPS/mW (including main memory) on dmm.

2

RipTide consumes just 2.4× more energy than equivalent
ASICs for dmm, sort, and fft, and RipTide achieves these
benefits on software written in C.

We identify several methodological challenges in measuring
CGRA efficiency. The choice of metric can skew reported
efficiency by more than 10× — e.g., RipTide achieves 1970
fabric MIPS/mW on dmm, which is often reported as MOPS/mW
in prior work. Surveying prior work, we find that RipTide is
2.4× more energy-efficient than prior, performance-oriented
CGRAs with comparable data [89, 96].

Finally, we compare RipTide to off-the-shelf ULP systems
on end-to-end neural network inference. RipTide consumes
1900× less energy than an TI MSP430, 490× less energy
than an ARM Cortex-M3, and 6.5× less energy than our own
energy-minimal scalar core — and RipTide is 7.7× faster.

Broader implications on architecture. We perform an in-depth
case study of dmm, comparing RipTide to an ASIC implemented
in the same design flow. RipTide is competitive on energy and
performance, but consumes significantly more area than the
ASIC. ASICs thus offer an area advantage over CGRAs, but
this advantage disappears in SoC designs with a large number
of ASIC blocks. Given the large advantages gained by software
programmability, we argue that energy-minimal CGRAs like
RipTide have a compelling edge over ASICs for the majority
of computations.

Road map. Sec. II covers background, and Sec. III gives an
overview of RipTide. Secs. IV, V, and VI present RipTide’s
architecture, compiler, and microarchitecture, respectively.
Secs. VII and VIII evaluate RipTide, and Sec. IX concludes
by discussing RipTide’s broader implications.

II. BACKGROUND

RipTide is motivated by emerging energy-constrained sensing
applications. CGRAs avoid inefficiencies of von Neumann
cores, but prior CGRAs have limited programmability or
efficiency. This section motivates RipTide’s contributions in
the context of prior work.

A. Context: Computing at the extreme edge

Long-lived, sensor-based applications (e.g., wilderness mon-
itoring, public safety, tiny satellites) [23, 52] run on batteries
or harvested energy and are often inaccessible once deployed.
These energy sources impose a tight design constraint; e.g., an
amortized power budget of 65 µW with a AA battery over five
years. Given the high energy cost of off-device communication,
sensor devices should process data locally to capitalize on their
limited energy [29].

On-device compute efficiency thus has a significant impact
on device value, but unfortunately existing architectures fail
to meet the needs of these applications. Application-specific
integrated circuits (ASICs) offer high compute efficiency, but
are too inflexible for most long-lived, energy-constrained appli-
cations because they cannot adapt as applications change [79].
Moreover, ASIC efficiency comes at a high, upfront cost in de-
sign, verification, and manufacturing, limiting their applicability
to a few stable workloads.

Alternatively, programmable cores offer flexibility, but burn
most energy (upwards of 90%) on instruction fetch, pipeline
control, and register-file access. Luckily, this inefficiency is not
fundamental. Real programs have abundant instruction and data
locality that von Neumann cores exploit poorly, as instructions
share an execution pipeline and communicate through a register
file. Exploiting this locality is the key to reconciling efficiency
and programmability.

B. CGRAs can dramatically improve efficiency

CGRA architectures [7, 14, 15, 19, 26, 31, 32, 42, 53, 56–60,
64, 71, 72, 74–77, 80, 84, 85, 89, 93, 94, 97, 98] are designed
with this locality in mind and can reduce energy v. a von
Neumann core by a large factor. The key to CGRA efficiency
is spatial distribution of compute and communication. Rather
than time-multiplex all instructions on a shared pipeline, which
significantly increases switching activity [27], CGRAs spatially
distribute instructions across processing elements (PEs). Rather
than send values through a register file, PEs communicate them
via on-chip network (NoC).

CGRA applicability limits efficiency. Hence, to minimize
energy, one would ideally run an entire program on the
CGRA. Two considerations prevent this. First, any unsupported
computations (e.g., outer loops, irregular memory access) must
run on the core, creating an Amdahl bottleneck on end-to-end
efficiency. Second, large computations cannot fit on CGRAs
and must be broken into smaller ones, with intermediate values
spilled to scratchpads or main memory.

C. Limitations of prior CGRAs

Prior CGRAs mostly target loop nests with easily analyzable,
regular control; see the examples in Table I. Especially in the
ultra-low-power (ULP) domain, most CGRAs are “systolic,”
i.e., statically scheduled with fixed operation latencies.

Why only simple control? Like nearly all processors, prior
CGRAs primarily maximize performance under an area or
power budget. Key CGRA metrics have been PE utilization and
initiation interval (i.e., cycles between the start of consecutive
loop iterations). For this reason, it does not make sense for
most CGRAs to support outer loops with low utilization or
irregular loops and memory accesses that require expensive
hardware to maintain performance. Resources are better spent
on unrolling regular inner loops to improve performance.

Revel [98] and ultra-elastic CGRAs [89] stand out from prior
work in recognizing and partially addressing these limitations
(Table I). Revel [98] supports outer loops with a hybrid
architecture that maps tight inner loops to a systolic array
and outer loops to a tagged-token dataflow fabric. Ultra-elastic
CGRAs [89] accelerate singly nested irregular loops through
a ratiochronous clocking scheme. Despite this added support,
these designs are still limited to a subset of common program
idioms and target a different, performance-oriented domain
than RipTide.

3

Table I: Qualitative comparison of RipTide to prior work. RipTide’s goal is to minimize energy by executing entire functions on the CGRA
fabric. To achieve this, RipTide supports arbitrary control flow and irregular memory access, whereas prior CGRAs are limited to affine loops
or a subset of common program idioms. RipTide compiles lightly annotated C to an efficient CGRA configuration.

Revel [98] UE-CGRA [89] Wavescalar [83] SNAFU [27] RipTide

Goal Performance / Area Performance or
Energy

Performance Energy Energy

Power 100s mW 10s mW 1000s mW < 1 mW < 1 mW

Target Imperfectly nested loops Irregular inner loops Arbitrary programs Affine inner loops Arbitrary functions

Code
changes

Loop pragmas None None Vector assembly Function annotation

Exemplar
program

void foo (...) {
#pragma config ...
for (i = 0..n) ...
#pragma stream
#pragma dataflow
for (j = i..n)
... = a[i][j]

}

void foo (...) {
...
for (i = 0..n) {
while (a[i] != 0)
a[i] = ...

...
}

}

void foo (int * a,
int * b) {

while (!q.empty()) {
n = q.pop()
for (i in 0..n)
if (b[a[i]]) ...

}
}

void foo (...) {
for (i = 0..n) ...

vlh v1, a + i
vlh v2, b
vadd v3, v1, v2
vsh b + i, v3
...

}

#riptide void foo
(int * restrict a, b) {
while (!q.empty()) {
n = q.pop()
for (i in 0..n)
if (b[a[i]]) ...

}
}

Relevance to RipTide: Energy is our goal, not performance.
RipTide is designed to minimize energy. Many choices in
RipTide only make sense in this context. Extreme efficiency
requires offloading as much of programs as possible onto the
CGRA. Tricks like loop unrolling do not save energy; in fact,
they can cost energy by running more instructions on the core
(e.g., for outer loops or setup).

Hence, energy-minimal CGRAs need to support arbitrary
control flow and memory access patterns, but they must
do so while maintaining high energy efficiency. This means
they cannot add expensive microarchitectural mechanisms or
significantly increase program size. RipTide reconciles these
conflicting goals by offloading most control operations to its
NoC, where they reuse existing circuitry, do not consume scarce
PE resources, and avoid expensive buffering.

SNAFU [27] is a recent framework for generating energy-
minimal CGRAs. SNAFU adopts many microarchitectural
techniques to save energy, but requires vector assembly and is
thus limited to simple control flow (Table I). RipTide targets
the same domain and uses SNAFU as its baseline design.

D. Dynamic dataflow architectures

Closely related to CGRAs are classic dynamic dataflow
architectures. These designs also express programs as a
dataflow graph of dependent operations, but, unlike CGRAs,
are designed as a replacement for cores, not a co-processor.
They thus support arbitrary, complex control and, to support
large programs, they store the dataflow graph in memory and
execute it on a shared execution pipeline [24,61,70,83]. In this
respect, they resemble von Neumann cores, and unfortunately
lose much of the energy benefits of CGRAs’ spatial distribution.

Some dataflow architectures have combined spatial and tem-
poral execution [57, 71, 76, 83, 93–95] (see, e.g., Wavescalar in
Table I). These performance-oriented designs require expensive
microarchitectural mechanisms to maintain performance with
highly variable memory latency (e.g., associative tag matching
due to operand re-ordering, or large on-chip buffers to hide
latency with memory-level parallelism).

Relevance to RipTide: Balancing generality and efficiency.
RipTide also targets arbitrary code written in high-level
languages. But to maintain energy efficiency, RipTide spatially
distributes instructions and avoids expensive microarchitectural
mechanisms. In particular, RipTide employs ordered-dataflow
scheduling, which tolerates variable latency and also avoids tag
matching by disallowing out-of-order execution so that inputs
are always matched on arrival. Ordered dataflow potentially
loses performance v. out-of-order execution, but, again, RipTide
focuses on energy. (Regardless, the performance loss is small
at ULP scale because main memory fits in a single cycle.)

Moreover, like other dataflow architectures [10, 24, 33, 57,
65, 83], RipTide adopts a steering control paradigm (φ−1),
where values are routed only to dependent operations. Steering
minimizes energy because values are only sent where they are
actually needed, unlike predication or selection (φ) control used
in some CGRAs [27, 76]. However, since loop iterations may
take different paths through control flow, steering risks token
re-ordering, which would lead to incorrect results in RipTide’s
ordered-dataflow model. RipTide’s compiler guarantees correct
ordering by inserting ordering operations where necessary.

E. Dimensions of CGRA architecture

There are many dimensions of CGRA architecture that affect
energy efficiency, throughput, and programmability. RipTide is
carefully designed along each dimension to reduce energy and
maximize programmability.

Programming interface. CGRAs can be programmed in many
different ways. Some [20, 27] expose low-level interfaces that
require expert knowledge. Others [74] develop domain-specific
languages [82] that simplify compilation and the architecture,
but also limit the scope of supported applications. Still
others [83] take a more general-purpose approach, compiling
from languages originally developed for CPUs. RipTide takes
this approach to maximize programmability. We choose to
compile from C because C is popular in embedded applications.

PE type(s). CGRAs offer a wide range of design choices,
including PE operation set, PE complexity, and NoC. A CGRA’s
PEs typically support arithmetic, logic, memory accesses, or

4

more specialized functionality [17–19, 27, 75, 92, 97, 100]. PEs
may be homogeneous or heterogeneous; the latter is more
area- and energy-efficient, but creates a combinatorially large
design space [7]. RipTide is a heterogeneous design, with
PEs specialized for arithmetic and memory. One could view
RipTide’s programmable NoC routers as specialized PEs that
support only control operations.

Mapping is hard. Like hardware synthesis, a CGRA compiler
must find a layout of operations that fits within fabric resources
with valid routes between all producers and consumers. In a
performance-focused CGRA, the compiler must also reason
about timing to maximize utilization and minimize initiation
interval [5, 6, 22, 36, 43, 44, 50, 51, 69, 99, 102]. This analysis
is further complicated by control flow (e.g., branches) and
operations with variable latencies (e.g., loads). With such a
large search space, optimization-based methods often do not
converge in a reasonable time [63,67] and heuristic approaches
can yield poor results.

RipTide’s focus on energy also helps with mapping. Non-
heuristic methods like SAT and integer linear programming
(ILP) are feasible in RipTide because its compiler need not
reason about timing or utilization, greatly simplifying mapping.
RipTide can also offload control-flow operations to its NoC,
freeing up scarce PEs for the mapper to use for other operations.

CGRA memory-ordering model. A CGRA design must en-
sure correct memory-operation ordering. Some CGRAs and
dataflow designs enforce total memory ordering or intra-thread
ordering [83, 93], and work on optimized ordering has been
limited to small, acyclic DFGs with help from hardware
disambiguation [90]. RipTide’s compiler uses a new path-
sensitive ordering graph reduction analysis that reduces ordering
overheads for arbitrary cyclic DFGs and ensures correctness
in RipTide’s execution model.

III. RIPTIDE OVERVIEW

RipTide is a compiler and microarchitecture for ultra-
low-power, energy-minimal CGRAs. At its core is an ISA
(Sec. IV) that supports arbitrary control flow without expensive
associative tag matching. The compiler (Sec. V) transforms
programs written in high-level C into dataflow graphs using this
ISA. It also enforces memory ordering and optimizes programs
by fusing loop induction variables into single stream operators.
RipTide’s CGRA fabric efficiently executes compiled programs
(Sec. VI). It minimizes switching activity by assigning a
single operation per PE. Additionally, it reuses hardware in the
NoC to implement control-flow operations without wasting PE
resources. RipTide improves energy efficiency / performance
by 25% / 17% v. prior energy-minimal CGRAs [27] and by
6.6× / 6.2× v. a ULP scalar core.

IV. RIPTIDE INSTRUCTION SET ARCHITECTURE

RipTide provides a rich set of control-flow operators to
support complex programs. Its ISA, shown in Table II, has
six categories of operators: arithmetic, multiplier, memory,
control flow, synchronization, and streams. (Multiplication is

Table II: RipTide’s instruction set architecture (ISA).

Operator(s) Category Symbol(s) Semantics

Basic binary ops Arithmetic +, −, <<, ! =, etc. a op b
Multiply, clip Multiplier ∗, clip a op b
Load Memory ld ld base, idx(, dep)
Store Memory st st base, idx, val(, dep)
Select Control Flow sel cond ? val0 : val1
Steer, carry, invariant Control Flow (T | F), C, I See Fig. 3
Merge, order Synchronization M, O See Fig. 3
Stream Stream STR See Fig. 3

CD

if(state == I) out = A
else if(D) out = B

I

B D, B;
Pop D, B

!D;
Pop D

A
Po

p
A

State machine

ID

A

if(state == I) out = A
else if(D) out = A

I

B D;
Pop D

!D;
Pop A, D

A

State machine

T

A

D

if(D) out = A

F

A

D

if(!D) out = A

Carry Invariant True steer False steer(carry w/ carry = out)

M

A B

D

if(D) out = A
else if(!D) out = B

Merge

O

A B

valid(A) && valid(B)
out = B

Order

A B

Stream

Str

start
bound

step

idx last

for(idx = start;
idx [<,>,==,...] bound;
idx = idx [+,>>,<<] step)

last = !(idx [<,>,==,...] bound)

Figure 3: Semantics of control-flow operators in RipTide.

split from other arithmetic because, to save area, only some PEs
can perform multiplication.) We now highlight the control-flow,
synchronization, and stream operators.

A. Control-flow operators

RipTide’s operators are illustrated in Fig. 3. Whenever a
value is read, it is implied that the operator waits until a valid
token arrives for that value over the NoC. Tokens are buffered
at the inputs if they are not consumed or discarded.

Steer. Steers (φ−1) come in two flavors — True and False —
and take two inputs: a decider, D and a data input, A. If D
matches the flavor, then the gate passes A through; otherwise,
A is discarded. Steers are necessary to implement conditional
execution, as they gate the inputs to disabled branches.

Carry. Carry represents a loop-carried dependency and takes a
decider, D, and two data values, A and B. Carry has the internal
state machine shown in Fig. 3. In the Initial state, it waits for
A, and then passes it through and transitions to the Block state.
While in Block, if D is True, the operator passes through B. It
transitions back to Initial when D is False, and begins waiting
for the next A value (if not already buffered at the input).

Carry operators keep tokens ordered in loops, eliminating the
need to tag tokens. All backedges are routed through a carry
operator in RipTide. By not consuming A while in Block, carry
operators prevent outer loops from spawning a new inner-loop
instance before the previous one has finished. (Iterations from
one inner-loop may be pipelined if they are independent, but
entire instances of the inner loop will be serialized.)

Invariant. The invariant operator is a slight variation of carry.
It represents a loop invariant and can be implemented as a
carry with a self-edge back to B. Invariants are used to generate
a new loop-invariant token for each loop iteration.

5

Clang
Carry &
Steer

Dataflow graph

Str
eam

ific
ati

onvoid example(
int *A, int n, int m

) {
A[m] = 1;
for (int i = 0; i < n; i++) {
int foo = A[i];
if (foo > 42) {
A[i] = 0;

}
A[i] += foo + i;

}
}

Source Code

%foo = load %A, %i
%cond = cmp gt, %foo, 42

store %A, %i, 0

%sum = add %foo, %i
%val = load %A, %i
%sum1 = add %sum, %val
store %A, %i, %sum1
%inc = add %i, 1

a

body1:

then:

body2:

L0

S1

L1

store %A, %m, 1

%i = Φ(0, %inc)
%cond = cmp lt, %i, %n

entry:

loop:

exit

S0

S2

CFG w/ simplified LLVM-IR

%foo = lso.load(%A, %i, %lso1)
%cond = cmp gt, %foo, 42

%st2 = lso.store(%A, %i, 0)

%lso2 = Φ(%lso1, %st2)
%sum = add %foo, %i
%val = lso.load(%A, %i, %lso2)
%sum1 = add %sum, %val
%st3 = lso.store(%A, %i, %sum1)
%inc = add %i, 1

body1:

then:

body2:

L0

S1

L1

%st1 = lso.store(%A, %m, 1)

%i = Φ(0, %inc)
%lso1 = Φ(%st1, %st3)
%cond = cmp lt, %i, %n

entry:

loop:

exit

S0

S2

LLVM-IR
(memory ordering enforced)

Ordering

C

C
<

ldst

T T
+

M

n

0

T >

Ld

1

42

A 0

i

st2

st2

A i

foo

+

+

st
Ai

ifoo

st

A 1m

Str
C

ldst

T

M

1n

T >

Ld

42

A 0

iA

st2

st2

A i

foo

+

+

st
Ai

ifoo

st

0

Optimized
Dataflow graph

A 1m

A

Figure 4: RipTide’s frontend and middle-end components. The frontend compiles C code to LLVM-IR using clang. The middle-end produces
an optimized dataflow graph (DFG) that enforces memory ordering and RipTide’s control paradigm.

B. Synchronization operators

Merge. The merge operator enforces cross-iteration ordering by
making sure that tokens from different loop iterations appear in
the same order, regardless of the control path taken within by
each loop iteration. The operator takes three inputs: a decider,
D, and two data inputs, A and B. Merge is essentially a mux
that passes through either A or B, depending on D. But note
that only the value passed through is consumed.

Order. The order operator is used to enforce memory ordering
by guaranteeing that multiple preceding operations have
executed. It takes two inputs, A and B, and fires as soon as
both arrive, passing B through.

C. Stream operators

Streams generate a sequence of data values, which are
produced by evaluating an affine function across a range
of inputs. These operators are used in loops governed by
affine induction variables. A stream takes three inputs: start,
step, and bound. It initially sets its internal idx to start,
and then begins iterating a specified arithmetic operator f as
idx’ = f(idx, step).

A stream operator produces two output tokens per iteration:
idx itself, and a control signal last. last is False until idx
reaches bound, whereupon it is True and the stream stops
iterating. last is used by downstream control logic to, e.g.,
control a carry operator for outer loops.

V. RIPTIDE COMPILER

RipTide compiles, optimizes, and maps high-level C code to
RipTide’s CGRA fabric. Its compiler has a frontend, middle-
end, and backend. The frontend uses clang to compile C
to LLVM’s intermediate representation (IR). The middle-end
manipulates the LLVM IR to insert control-flow operators from
Sec. IV and enforce memory ordering; then it translates the IR
to a dataflow graph (DFG) representation and optimizes the
DFG by transforming and fusing subgraphs, reducing operator
count by 27% (Fig. 4). The backend takes the DFG as input

and maps operators onto the CGRA, producing a configuration
bitstream in minutes.

A. Memory-ordering analysis

RipTide maps sequential code onto a CGRA fabric in which
many operations, including memory, may execute in parallel.
For correctness, some memory operations must execute in
a particular order. RipTide’s middle-end computes required
orderings between memory operations present in the IR and
adds control-flow operations to enforce those orderings.

Constructing a memory-operation ordering graph. The first
step to enforcing memory ordering is to construct an ordering
graph (OG) that encodes dependences between memory opera-
tions. RipTide uses alias analysis to identify memory operations
that may or must access the same memory location (i.e., alias),
adding an arc between the operations in the OG accordingly.
RipTide makes no assumptions on the alias analysis and need
not consider self-dependences because repeated instances of
the same memory operation are always ordered on its CGRA
fabric. Fig. 5 shows a basic, unoptimized OG in the top left
for an example function.

Pruning the ordering graph. The OG as computed can be
greatly simplified. Prior work has simplified the OG with
improved alias analysis [38] and by leveraging new control-
flow primitives [12,54]. These efforts are orthogonal to RipTide.
RipTide simplifies the OG by eliminating redundant ordering
arcs that are already enforced by data and control dependences.
RipTide finds data dependences by walking LLVM’s definition-
use (def-use) chain from source to destination and removes
ordering arcs for dependent operations [90]. For instance, in
example’s CFG from Fig. 4, S2 is data-dependent on L1,
so there need not be an ordering arc in the OG. This is
reflected in the blue-outlined arc from L1 to S2 that is pruned
in the OG in Fig. 5. Similarly, control dependences order some
memory operations if the execution of the destination is control-
dependent on the source. RipTide analyzes the CFG to identify
control dependences between memory operations and removes

6

Baseline OG Pruned OGDirect and transitive
control/data dependences

S0 L0

S1
L1

S2

S0 L0

S1
L1

S2

S0 L0

S1
L1

S2

S1
L1

SCC2

S0 L0

S2

SCC0 SCC1

SCC3

S1
L1

S1
L1

src

sink

However, transitive OG
edge cannot be pruned
b/c of path-sensitivity

SCCDAG of OG w/
transitive ordering arcs

Ordering of SCCs

S0 L0

S1
L1

S2

src

sink

Final OG

example

Figure 5: RipTide’s middle-end enforces memory ordering. For
example, an ordering graph (OG) that is iteratively pruned and
reduced.

those orderings from the OG. In example’s CFG from Fig. 4,
the arc from L0 to S1 in Fig. 5 is pruned using this analysis.

Transitive memory-ordering analysis. Two dependent memory
operations are transitively ordered if there is a path (of ordering
arcs) in the OG from source to destination. RipTide finds
and eliminates redundant arcs that are transitively ordered by
other control- and data-dependence orderings. This reduces the
number of operations required to enforce ordering by 18% v.
unoptimized ordering.

To simplify its OG, RipTide uses transitive reduction
(TR) [3], which prior work deployed to simplify ordering
relation graphs for parallel execution of loops [54, 55]. We
apply TR to the OG, which converts a (potentially cyclic)
ordering graph into an acyclic graph of strongly connected
components (the SCCDAG). Traditional TR eliminates arcs
between SCCs, removes all arcs within each SCC, and adds
arcs to each SCC to form a simple cycle through all vertices.

We modify the algorithm in two ways to make it work
for RipTide’s OG. First, arcs in the inserted cycle must be
compatible with program order instead of being arbitrary.
Second, the inserted arcs must respect proper loop nesting,
avoiding arcs directly from the inner to outer loop. To handle
these arcs, we add synthetic loop entry and exit nodes to each
loop (shown as src and sink nodes at the bottom of Fig. 5).
Any arc inserted that links an inner loop node to an outer
loop node instead uses the inner loop’s exit as its destination.
Symmetrically, an arc inserted that links an outer loop node to
an inner loop node has the inner loop’s entry as its destination.
With these two changes, the SCCDAG is usable for TR.

However, we observe that applying existing TR analysis
to the OG in RipTide fails to preserve required ordering
operations. The problem is that a source and destination may be
ordered along one (transitive) path, and ordering along another
(direct) path may be removed as redundant. Execution along
the transitive path enforces ordering, but along the direct path
does not, which is incorrect. Fig. 5 shows a scenario where

path-sensitivity is critical. The path, SCC3(S2)→SCC1(L0),
should not be eliminated in TR because the alternative path,
SCC3(S2)→SCC2(L1)→SCC1(L0), does not capture the
direct control-flow path from S2 to L0 via the backedge of
the loop. This problem arises due to RipTide’s steering control
and lack of a program counter to order memory operations.

To correctly apply TR to remove redundant ordering arcs,
RipTide introduces path-sensitive TR, which confirms that
a transitive ordering path subsumes all possible control-flow
paths before removing any ordering arc from the OG. With this
constraint in place, RipTide can safely use transitive reduction.

Enforcing ordering constraints. Memory operators in RipTide
produce a control token on completion and can optionally
consume a control token (dep in Table II) to enforce memory
ordering. The middle-end encodes ordering arcs as defs and
uses of data values in the IR (as seen in the IR transform
of loads and stores in Fig. 4) before lowering them as
dependences in the DFG. For a memory operator that must
receive multiple control signals, the middle-end inserts order
operations (Sec. IV) to consolidate those signals.

B. Control-flow operator insertion

The compiler lowers its IR to use RipTide’s control paradigm
by inserting RipTide control-flow operators into the DFG.

Steer. The compiler uses the control dependence graph
(CDG) [16] to insert steers. For each consumer of a value, the
compiler walks the CDG from the producer to the consumer and
inserts a steer operator at each node along the CDG traversal
if it has not already been inserted by a different traversal. The
steer’s control input is the decider of the basic block that the
steer depends on, and its data input is the value or the output
of an earlier inserted steer.

Carry and invariant. For loops, the compiler inserts a carry
operator for loop-carried dependences and an invariant operator
for loop-invariant values into the loop header. A carry’s data
input comes from the loop backedge that produces the value.
An invariant’s data input comes from values defined outside
the loop. These operators should produce a token only if the
next iteration of the loop is certain to execute; to ensure this
behavior, the compiler sets their control signal to the decider
of the block at the loop exit.

Merge. If two iterations of a loop may take different control-
flow paths that converge at a single join point in the loop
body, either may produce a token to the join point first. But
for correctness, the one from the earlier iteration must produce
the first token. The compiler inserts a merge operator at a join
point in the CFG to ensure that tokens flow to the join point
in iteration order. The control signal D for the merge operator
is the decider of nearest common dominator of the join point’s
predecessor basic blocks. Since the earlier iteration sends its
control signal first and RipTide does not reorder tokens, the
merge operator effectively blocks the later iteration until the
earlier iteration resolves.

7

RISC-V
Scalar Core

CGRA
Control

CGRA
Configurator

Memory

Memory

Memory

Memory

2D Torus:

M

×
St

CF

A

Memory

Multiplier

Stream

Arithmetic

Control-flow

R Router

CF
R R

RR

M
R

RR

M
R R

R

M
R

R

M
R

R

M
R

R

CF
R R

RR

St
R

RR

A
R R

R

A
R

R

St
R

R

×
R

R

×
R R

RR

A
R

RR

A
R R

R

A
R

R

A
R

R

CF
R

R

CF
R R

RR

A
R

RR

A
R R

R

A
R

R

A
R

R

×
R

R

×
R R

RR

St
R

RR

A
R R

R

A
R

R

St
R

R

CF
R

R

M
R R

RR

M
R

RR

M
R R

R

M
R

R

M
R

R

CF
R

R

Figure 6: RipTide’s ULP CGRA fabric.

μcore

…n

Input channels

…k

Output channels

CFGXData

Functional unit
Processing Element

(+constants)

noc_
va

lid

noc_
out

noc_
iva

lid

noc_
in

noc_
read

y

noc_
oread

y

cfg_en
cfg_in
cfg_out

Control

out_ready

fu_alloc
fu_valid

fu_done

in
fu_ready

in_valid

fu_out

cfg

clear

cfgd

ct
rl_

en
ct

rl_
cl

ea
r

ct
rl_

do
ne

FU
logic

Figure 7: PE microarchitecture

SwitchV
(1b)CFG

A_valid
B_valid
D_valid

cxn

Switch (32b)

noc_ivalid

noc_out

noc_in

noc_ready

CF

noc_oready

noc_in

FIFO

cf
g_

en

cf
g_

in

cf
g_

ou
t

A_cxn
B_cxn

noc_valid

D

A_ready
B_ready
D_readycfg

CF module reuses existing switch hardware

Switch

CF

CF

Router

Figure 8: Router microarchitecture

C. Stream fusion

RipTide performs target-specific operator fusion on the
DFG to reduce required operations and routes by combining
value stream generators with loop control logic and address
computation logic. RipTide supports streams and applies them
for the common case of a loop with an affine loop governing
induction variable (LGIV). A stream makes loop logic efficient
by fusing the LGIV update and the loop exit condition into a
single operator. In the DFG, loop iteration logic is represented
by the exit condition, an update operator, the carry for the
LGIV’s value, and the steer that gates the LGIV in a loop
iteration. The middle-end fuses these operators into a single
stream operator and sets the stream’s initial, step, and bound
values. Fig. 4 shows stream compilation, where the operators
for loop iteration logic (outlined in blue in the DFG) are
fused into a stream operator. RipTide applies induction-variable
analysis [2, 4] to find affine LGIVs. RipTide also identifies
address computations, maps these to an affine stream if possible,
and fuses the stream into the memory operator.

D. Mapping DFGs to hardware

RipTide’s backend takes a DFG and a CGRA topology
description and generates scalar code to invoke RipTide and
a bitstream to configure the RipTide fabric. This involves
finding a mapping of DFG nodes and edges to PEs, control-
flow modules (Sec. VI-D), and links. Mapping can be difficult,
and there is much prior work on heuristic methods that trade
mapping quality for compilation speed [6, 36, 37, 43, 44, 50,
51, 99, 102]. RipTide has two advantages v. this prior work.
First, RipTide does not time-multiplex operations, so it only
needs to schedule operations in space, not time. Prior compilers
unroll loops to reason about operation timing and identify the
initiation interval, increasing program size. Second, RipTide
targets energy efficiency, not performance. Rather than optimize
for initiation interval, it need only focus on finding a valid
solution, since leakage is insignificant.

RipTide provides two complementary mappers: one based on
boolean satisfiability (SAT) and another based on integer linear
programming (ILP) that minimizes the average routing distance.
The SAT-based mapper runs quickly, taking < 3 min for our

most complex benchmark, whereas the ILP-based mapper yields
4.3% avg. energy savings v. SAT (Sec. VIII-C).

Problem description. The constraints of the ILP and SAT
formulations are similar (see Appendix A for a complete,
formal description). The formulations ensure that every DFG
vertex is mapped to a hardware node, that every edge is mapped
to a continuous route of hardware links, and that the inputs
and outputs of a vertex match the incoming and outgoing links
of a hardware node. They further disallow the mapping of
multiple DFG vertices to a single hardware node, the sharing
of hardware links by multiple edges with different source
vertices, and the mapping of a DFG edge through a control-
flow module when a DFG vertex is mapped to that module.
Together these are the necessary constraints to produce not
only a valid mapping, but also a good mapping (SAT is close
to ILP in terms of energy).

VI. RIPTIDE MICROARCHITECTURE

RipTide is an energy-minimal coarse-grained reconfigurable
array (Fig. 6). The 6×6 fabric contains heterogeneous PEs
connected via a bufferless, 2D-torus NoC. A complete RipTide
system contains a CGRA fabric, a RISC-V scalar core, and a
256KB (8×32KB banks) SRAM main memory.

A. Tagless dataflow scheduling

RipTide implements asynchronous dataflow firing via or-
dered dataflow (Sec. II). By adding ordering operators where
control may diverge, RipTide ensures that tokens always
match on arrival at a PE, obviating the need for tags. Tagless,
asynchronous firing has a low hardware cost (one bit per
input plus control logic), and it lets RipTide tolerate variable
operation latency (e.g., due to bank conflicts) while eliminating
the need for the compiler to reason about operation timing.

B. Processing elements

RipTide’s PEs perform all arithmetic and memory operations
in the fabric. Fig. 7 shows the microarchitecture of a PE. The
PE includes a functional unit (FU) and the µcore. The µcore
interfaces with the NoC, buffers output values, and interfaces
with top-level fabric control for PE configuration.

8

Functional units. The µcore exposes a generic interface using
a latency-insensitive ready/valid protocol to make it easy to
add new operators. Inputs arrive on in_data when in_valid
is high, and are consumed when fu_ready is high. The FU
reserves space in the output channel by raising fu_alloc (e.g.,
for pipelined, multi-cycle operations), and output arrives on
fu_data when fu_valid is high. out_ready supplies back
pressure from downstream PEs. The remaining signals deal
with top-level configuration and control.

Communication. The µcore decouples NoC communication
from FU computation. The µcore tracks which inputs are valid,
raises backpressure on input ports when its FU is not ready,
buffers intermediate results in output channels, and sends results
over the NoC. Decoupling simplifies the FU.

Configuration. The µcore handles PE and FU configuration,
storing configuration state in a two-entry configuration cache
that enables single-cycle reconfiguration. Additionally, the
µcore enables the fabric to overlap reconfiguration of some
PEs while others finish computation on an old configuration.

PE types. RipTide includes a heterogeneous set of PEs:
• Memory PEs issue loads and stores to memory and have a

“row buffer” that coalesces non-aliasing subword loads.
• Arithmetic PEs implement basic ALU operations, e.g.,

compare, bitwise logic, add, subtract, shift, etc.
• Multiplier PEs implement multiply, multiply + shift, multi-

ply + fixed-point clip, and multiply + accumulate.
• Control-flow PEs implement steer, invariant, carry, merge,

and order (Sec. IV) — but most of these are actually
implemented in RipTide’s NoC (see below).

• Stream PEs implement common affine iterators (Sec. IV).

C. Bufferless NoC

RipTide connects PEs via a statically configured, multi-hop,
bufferless on-chip network with routers. Instead of buffering
values in the NoC, PEs buffer values in their output channel.
NoC buffers are a primary energy sink in prior CGRAs [27,42],
and RipTide completely eliminates them. Similarly, RipTide’s
NoC is statically routed to eliminate routing look-up tables
and flow-control mechanisms.

D. Control flow in the NoC

Control-flow operators are simple to implement (often a
single multiplexer), but there are many of them. Mapping each
to a PE wastes energy and area, and can make mapping to
the CGRA infeasible. Among our ten benchmarks, 46% of
operations are control flow, and eight benchmarks do not map
if each control-flow operator requires a dedicated PE.

We observe that much of the logic required to implement
control flow is already plentiful in the NoC. Each NoC
switch is a crossbar that can be re-purposed to mux values
for control. Thus, to implement each control-flow operator,
RipTide manipulates a switch’s routing and ready/valid signals
to provide the desired functionality.

RipTide’s router microarchitecture is shown in Fig. 8. The
router shares routing configuration and its data and valid

1 cxn = A_cxn
2 forever:
3 A_ready = D_ready = 0
4 if A_valid && D_valid: # wait for A and D
5 # if D is true , pass through A;
6 # else discard A
7 noc_valid = D
8 A_ready = D_ready = noc_ready || !D
9 if D: wait for noc_ready

(a) Steer (True flavor).

1 forever:
2 # begin in Initial state
3 if A_valid:
4 cxn = A_cxn # pass through A
5 noc_valid = A_valid
6 D_ready = A_ready = noc_ready
7 B_ready = xxx # don't care
8 wait for noc_ready
9 # transition to Block state

10 do until D_valid && !D:
11 cxn = B_cxn # pass through B
12 noc_valid = B_valid
13 D_ready = B_ready = noc_ready
14 A_ready = false # hold A at input
15 wait for noc_ready

(b) Carry.

Figure 9: Implementing control flow using NoC control signals.

crossbars with the baseline NoC. RipTide adds a control-flow
module (CFM) at a configurable number of output ports (in
our case, two output ports). The CFM determines when to
send data to the output port and manipulates inputs to the data
switch to select which data is sent.

Control-flow module. The CFM takes eight inputs and produces
five outputs that control router configuration and dataflow
through the network. The inputs are:
• cfg: configuration of the CFM (i.e., opcode);
• A_valid, B_valid, D_valid: whether inputs are valid;
• D: value of the decider;
• A_cxn and B_cxn: input ports for A and B; and
• noc_ready: backpressure signal from the output port.

From this, the CFM produces outputs:
• A_ready, B_ready, and D_ready: upstream backpressure

signals that allow the CFM to block upstream producers
until all signals required are valid;

• noc_valid: the valid signal for the CF’s output; and
• cxn: which port (A_cxn or B_cxn) to route to the output

port on the data switch.

Supported operations. The CFM can be configured for routing
or for the control operators in Sec. IV. Routing, e.g., out = A,
is simple: just set cxn = A_cxn, noc_valid = A_valid, and
A_ready = noc_ready.

Other operators are more involved, but each requires only a
small state machine. Fig. 9 is pseudocode for steer and carry
operators (Sec. IV). A steer forwards A if D is true; otherwise,
it discards A. To implement steer, the CFM waits for A and
D to be valid. If D is true, then noc_valid is raised, and the
noc_ready signal propagates upstream to A and D and the CFM
waits for noc_ready, i.e., for the value to be consumed. If D is
false, then noc_valid is kept low, and A_ready and D_ready
are raised to discard these tokens.

Carry is more complicated. Carry begins in Initial state,
waiting for a valid A token. It forwards the token and transitions

9

to Blocked state, where it forwards B until it sees a false D
token. See the pseudocode in Fig. 9b for details.

Control flow in the NoC adds small hardware overheads.
Implementing control flow in the NoC is far more energy- and
area- efficient than in a PE, saving an estimated 40% energy
and 22% area v. CGRA with all CF operations mapped to PEs
(All PEs in Fig. 16). The CFM deals only with narrow control
signals and the 1b decider value D. It does not need to touch
full data signals at all; these are left to the pre-existing data
switch. Importantly, this means that the CFM adds no data
buffers. Instead, the CFM simply raises the *_ready signals
to park values in the upstream output channels until they are
no longer needed.

By contrast, implementing control flow in a PE requires full
data-width muxes and, if an entire PE is dedicated to control,
an output channel to hold the results. Nevertheless, RipTide is
sometimes forced to allocate a PE for control flow. Specifically,
if a control-flow operator takes a software-supplied value or a
constant other than -1, 0, or 1, it requires µcore support.

Buffering of decider values. The CFM provides a small amount
of buffering for decider values. This is because loop deciders
often have high fanout, which means that the next iteration of a
loop is likely blocked by one or more downstream consumers.
To remove this limitation, RipTide provides a small amount
of downstream buffering for 1b decider signals, improving
performance with minimal impact on area. The CFM uses
run-length encoding to buffer up to eight decider values with
just 3b of additional state, yielding up to 3.8× performance
(on dmm) at an area of cost of < 1%.

VII. EXPERIMENTAL METHODOLOGY

We evaluate a complete RipTide system: the compiler built
using LLVM and the microarchitecture fully implemented in
RTL in Intel 22FFL, an industrial, sub-28nm FinFET process.

Compiler. RipTide’s compiler passes extend LLVM 12.0 [48]
and we compile workloads with -Oz to optimize code size.
RipTide’s compiler middle-end uses LLVM’s flow-insensitive
alias analyses for memory ordering. We evaluate both RipTide’s
SAT and ILP mappers (see Sec. V-D), but unless otherwise
specified we use the ILP mapper. The ILP mapper uses
CVXPY [25] and Gurobi 9.5 [35]. The SAT mapper uses
CaDiCal [9] to rewrite and simplify the problem’s clauses and
then uses a new parallel SAT solver, developed concurrently
and based on YalSAT [8], to find a valid mapping.

Hardware. RipTide is implemented completely in RTL, includ-
ing the 6×6 CGRA, RISC-V (RV32EMC) scalar core, and
256KB SRAM main memory. We use Cadence Xcelium to
verify correctness and measure performance. We synthesize
RipTide using Cadence Genus and a high-threshold-voltage,
FinFET PDK with compiled memories. To estimate power,
we simulate full benchmarks post-synthesis and use Cadence
Joules to estimate power from annotated switching activities.

Baselines. The evaluation compares to several baselines—
scalar, vector, SNAFU, and three ASICs—also implemented

entirely in RTL, using the same design flow. All baselines
and RipTide use the same scalar core and main memory. The
scalar baseline is a simple, six-stage microcontroller. The vector
baseline adds a single-lane co-processor [30]. SNAFU is the
state-of-the-art energy-minimal CGRA.

Benchmarks. We evaluate ten workloads important to the
ULP domain on random inputs. For the vector baseline, we
vectorized all code by hand (except dfs, which does not
vectorize well). SNAFU uses the vectorized code to generate
its bitstreams. For RipTide, we compile and run the plain C
implementation of each benchmark. The exceptions are sort,
for which we use merge sort on the scalar core and radix sort
for RipTide (because it maps entirely onto the fabric), and dmm,
for which, where explicitly noted, we tune its C implementation
to maximize efficiency by unrolling loops to align memory
accesses with memory banks.

VIII. EVALUATION

We evaluate RipTide to show that it is easy to program in a
high-level language and uses 25% less energy than the state-of-
the-art energy-minimal design, while improving performance
by 17% on average and up to 2.5×. Moreover, control flow in
the NoC is essential for large workloads and reduces energy
by up to 2.3×.

A. Main results

RipTide compiles high-level code to its fabric. RipTide
compiles, schedules, and runs ten applications on its 6×6
fabric. For all but fft, RipTide offloads the entire benchmark
onto the fabric, including outer loops. For fft, a 6×6 fabric
does not have enough arithmetic or multiplier PEs, so we split
fft into two separate functions. Finally, RipTide maps and
runs dfs, which is not possible for the vector and SNAFU
baselines (×s in the figures).

RipTide saves energy. Fig. 10 presents energy of the scalar,
vector, SNAFU, and ASICs normalized to RipTide. RipTide
reduces energy by 6.6× v. scalar, 3.1× v. vector, and 25% v.
SNAFU. RipTide uses less energy across the board. Fig. 10
breaks energy into memory, scalar, vector/CGRA, and CGRA
NoC. RipTide saves energy v. scalar and vector because it
does not fetch instructions, re-uses its configuration across
many inputs, and forwards operands directly from producers to
consumers. RipTide uses less energy than SNAFU by reducing
scalar computation: RipTide runs outer loops on the fabric,
but SNAFU runs them on the scalar core. RipTide’s scalar
core fetches 86% fewer instructions than SNAFU’s, eliminating
pipeline control, register-file access, and instruction fetch —
as seen by RipTide’s lower memory energy in Fig. 10.

The only benchmark for which memory energy increases v.
SNAFU is fft. SNAFU uses scratchpads in the fabric for fft,
which reduces main memory energy. Even without scratchpads,
RipTide shows an overall energy reduction. (RipTide currently
lacks a programming interface for scratchpads, but can easily
support them in hardware.)

sconv shows how control-flow costs in RipTide move from
scalar core to the fabric (e.g., steer, carry). While RipTide

10

Memory Scalar CGRA NoC Vector/CGRA/Accel Remaining

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS Avg

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

A
S

IC

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

A
S

IC

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

A
S

IC

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

1

2

3

4

5

N
or

m
al

iz
ed

en
er

gy
(v

.
R

ip
T

id
e)

9.30 6.97 7.61 7.77 5.16 6.84 35.18 6.44 9.37

x x

Figure 10: Energy (v. RipTide) of scalar, vector, SNAFU, RipTide across ten benchmarks. RipTide uses 25% less energy than SNAFU.

DMV

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

10

12

S
p

ee
du

p
(v

.
sc

al
ar

)

DMM

S
ca

la
r

V
ec

to
r

S
N

A
F

U
R

ip
T

id
e

A
S

IC

0

2

4

6

8

10

12

DConv

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

10

SMV

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

10

SMM

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

1

2

3

4

SConv

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

2

4

6

8

Sort

S
ca

la
r

V
ec

to
r

S
N

A
F

U
R

ip
T

id
e

A
S

IC

0

10

20

30

40

50

60

FFT

S
ca

la
r

V
ec

to
r

S
N

A
F

U
R

ip
T

id
e

A
S

IC

0

5

10

15

20

BFS

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

DFS

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x x

Avg

S
ca

la
r

V
ec

to
r

S
N

A
F

U

R
ip

T
id

e

0

1

2

3

4

5

6

7

Figure 11: Speedup (v. scalar) of scalar, vector, SNAFU, and RipTide across ten benchmarks. RipTide is 17% faster than SNAFU.

reduces scalar energy, it adds fabric energy (v. SNAFU) to
support outer loops. Scalar execution is a small fraction of
overall energy for sconv, so RipTide provides no benefit on
this benchmark. Moreover, comparing fabric energy for SNAFU
and RipTide on sconv shows that RipTide’s microarchitectural
additions cost little energy.

RipTide runs C programs with near-ASIC efficiency. Fig. 10
also compares RipTide to hand-coded, fixed-function ASICs
for dmm, sort, and fft. RipTide uses 2.4× more energy on
average than the ASICs while compiling programs directly
from C. RipTide compares especially favorably to dmm, using
46% more energy. The data show that the cost of RipTide’s
programmability is low.

RipTide is faster than prior energy-minimal CGRAs. Fig. 11
shows performance normalized to scalar. RipTide is 6.2×,
3.4×, and 17% faster than scalar, vector, and SNAFU. RipTide
does especially well on bfs, with a 2.5× speedup v. SNAFU.
The benefit comes from RipTide’s ability to run bfs’s irregular
outer loop on the fabric, whereas SNAFU is bottlenecked on the
scalar core because its fabric runs only inner loops. The only
benchmarks where RipTide underperforms SNAFU are dconv,
sconv, and fft. The difference in performance comes down to
implementation: we tailor applications to each architecture to
minimize energy, not maximize performance. On SNAFU, we

re-order loops to maximize vector length, minimizing scalar
work but adding some memory accesses; on RipTide, we can
avoid these memory accesses by accumulating intermediate
results in the fabric.

Figure 12: Area breakdown
for a complete RipTide sys-
tem. Area is dominated by the
CGRA fabric and main mem-
ory (SRAM + arbitration logic),
eaching taking about half of the
system. The scalar core is just
2.5% of system area. The NoC
takes 54% of CGRA area, and
PEs (µcore + FUs) take 42%.

FU

4.8%
µCore

15.8%

NoC

27.1%

Other Scalar

2.5%

Memory47.9%

RipTide is tiny and has extremely low power consumption.
The complete RipTide system (CGRA, memory, and scalar
core) is ≈ 0.5mm2. Fig. 12 breaks down system area among
its components. RipTide operates between 320µW and 910µW,
with negligible leakage (< 3%) due to RipTide’s high-threshold-
voltage process. Overall, the complete system, including
memory, achieves 180 MOPS/mW running a hand-tuned C
implementation of dmm that unrolls twice along the output
column dimension. Without tuning, RipTide achieves 141
MOPS/mW on dmm.

11

Table III: Comparison of RipTide to other low-power CGRAs. RipTide supports a broader set of programs while improving energy efficiency.

HyCube
testchip? [96]

HM-HyCube
REVAMP� [7]

UE-CGRA†

[88, 89]
SNAFU�

[27]
RipTide�

(this work)

Irregular loops 7 7 3 7 3
Loop nesting 7 7 7 7 3
Memory ordering 7 7 7 7 3
Variable-latency ops 7 7 7 7 3

Node 40LP 22 TSMC 28 Intel 22FFL Intel 22FFL
Fabric dimensions 4×4 6×6 8×8 6×6 6×6
Fabric area (mm2) — 0.2 0.25 0.27 0.25
Frequency (MHz) 488 100 750 50 50
Memory size (KBs) 4 64 64 256 256

Benchmark fft Linear algebra fft fft fft dmm‡

Fabric power (mW) — 8.4 14.0 0.54 0.24 0.50
System power (mW) 140 — 16.7 0.74 0.52 0.91
Performance (MOPS) 5380 — 625 71 62 164
Fabric efficiency (MOPS/mW) — 103 45 134 254 328
System efficiency (MOPS/mW) 26 — 38 97 117 180

? Silicon implementation. † Post-P&R simulation. � Post-synthesis simulation. ‡ Hand-tuned C software.

B. RipTide v. prior low-power CGRAs

Table III compares RipTide against several recent CGRAs.
We compare designs across their general-purpose programma-
bility, architectural parameters, and reported performance,
power, and efficiency. RipTide supports a broader range of
programs and is more energy-efficient than prior CGRAs.

Making a fair comparison. Table III gives absolute numbers
for different designs and does not re-scale them to normalize
the node. These numbers are our best effort at accurately
characterizing prior designs v. RipTide. Few prior CGRAs
admit meaningful comparison, however, because prior work
reports performance, power, and efficiency inconsistently.

Concrete numbers for energy efficiency are hard to come
by. Many prior CGRAs focus on performance [74, 93] or
mapping [44,50,99] and report metrics (e.g., initiation interval)
that are not the focus of RipTide. Others report relative
results [59, 89] or use high-level models [59, 98] that make
quantitative comparison difficult.

Differences in measurement methodology also make it
challenging to compare reported results. Prior CGRAs often
report total operation count, including, e.g., loads, stores,
and loop control, or are unclear about which operations are
counted [21, 46, 68]. These numbers, though often reported as
MOPS [21, 46], are closer to MIPS as defined for traditional
CPUs. Table III counts only essential arithmetic operations,1

and we have verified with the authors of other designs in
Table III that they count MOPS the same way. Finally, many
prior CGRAs report power for the fabric only, excluding, e.g.,
the core and memory [7,47,68]. We report both fabric and full-
system power, and focus on the latter. Full-system MOPS/mW
is the most important metric for the applications targeted by
RipTide.

RipTide is more programmable than prior CGRAs. Table III
highlights a number of programming features supported by
RipTide that are unsupported by prior CGRAs. In addition to

1Specifically, 2n3 ops for dmm and 10n log2 n+O(n) ops for fft.

making RipTide easier to program (Table I), these features
improve energy efficiency by allowing RipTide to offload a
larger fraction of a program onto the efficient CGRA fabric.

RipTide is more energy-efficient than prior CGRAs. RipTide is
the most energy-efficient CGRA by a significant margin. Scaled
to 22nm, both the HyCube testchip [96] and UE-CGRA [88]
achieve roughly 48 full-system MOPS/mW on fft. RipTide
achieves 117 full-system MOPS/mW, which is 2.4× better,
even including RipTide’s larger memory and despite fft being
the only kernel to not fit entirely on RipTide’s fabric. On dmm
with loop unrolling, efficiency improves to 180 full-system
MOPS/mW.

Using a different measurement methodology changes the
absolute results dramatically, highlighting the challenge of
making apples-to-apples comparisons between CGRAs. If we
count all operations, instead of only essential arithmetic (i.e.,
MIPS), RipTide achieves 400 MIPS/mW on fft. If we measure
only the fabric, RipTide achieves 254 MOPS/mW and 859
MIPS/mW on fft — increasing reported efficiency by 7.3×
v. full-system MOPS/mW.

Measuring only the fabric, a recent version of HyCube
generated by REVAMP [7] achieves 103 fabric-only MOP-
S/mW, averaging across several linear algebra benchmarks.
(A tuned, heterogeneous fabric achieves 172MOPS/mW.)
RipTide achieves 328 fabric-only MOPS/mW on unrolled dmm.
Meaningful comparisons thus require a detailed understanding
of what is being measured.

RipTide’s area is similar to prior CGRAs. RipTide is somewhat
larger than prior CGRAs (7000 µm2/PE for RipTide, v. 5500
µm2/PE for HyCube [7]2 and 3900 µm2/PE for UE-CGRA).
Differences in NoC design help explain these discrepancies.
UE-CGRA has no routers, instead routing values through
PEs. HyCube’s NoC accounts for 24% of fabric area, with
each PE containing a 4× 4 crossbar switch. RipTide’s NoC

2HM-HyCube generated using REVAMP [7]. The HyCube testchip [96]
area includes I/O pads, etc., and is not directly comparable.

12

Memory Stream Arith CF

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS Avg

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

R
aw

+
S

tr
ea

m
s

+
B

as
e

O
rd

+
O

rd
O

pt
s

+
re

st
ri

ct
+

C
F

iN

0

10

20

30

40

50

60

N
um

b
er

of
ge

ne
ra

te
d

P
E

s

114.00 65.00 70.00

Figure 13: Operator counts for ten different benchmarks. Starting with an unoptimized, unordered baseline (Raw), compiler optimizations
reduce operator counts while enforcing memory ordering, making it feasible to map benchmarks to hardware.

accounts for 54% (0.14µm2) of fabric area, but offers more
connectivity (more links and 8× 8 switches) and capability
(dynamic flow control and control-flow operators). SNAFU’s
2D-mesh NoC is 0.11µm2 and uses the same switch design as
RipTide, showing that RipTide’s 2D-torus topology and CFMs
add modest overhead (< 0.03µm2).

RipTide targets a different design point. As currently evaluated,
RipTide is much slower than prior CGRAs. We evaluate
RipTide at 50 MHz, v. 100s of MHz for prior designs. RipTide
has significant slack at 50 MHz and could run much faster.
We have not yet pushed frequency further due to RipTide’s
bufferless NoC and top-down synthesis flow, which requires
additional tooling to estimate worst-case critical path. (A similar
problem arises in FPGAs.) Frequency in the 10s of MHz is
common in ULP microcontrollers.

Nevertheless, lower frequency means that RipTide’s raw
performance is well below prior CGRAs: on fft, 62 MOPS
for RipTide v. 5,380 MOPS for HyCube and 625 MOPS for
UE-CGRA. Factoring out frequency, RipTide achieves 1.24
ops/cycle v. 11 ops/cycle for HyCube and 0.83 ops/cycle for UE-
CGRA. RipTide’s lower ops/cycle is partly by design: RipTide
trades performance for efficiency by mapping a single operation
to each PE, whereas HyCube maps multiple operations per PE
to maximize utilization. This tradeoff makes sense for RipTide
because it targets applications that are limited by energy, not
performance (Sec. II).

Combining RipTide’s low frequency and high energy ef-
ficiency yields extremely low power consumption. RipTide
draws 2–3 orders-of-magnitude less power than HyCube and
UE-CGRA. Only SNAFU and RipTide draw less than 1 mW
— and this is the entire system, including the 256KB main
memory.

C. Compiler characterization

RipTide’s compiler effectively optimizes dataflow graphs,
reducing operation count by 27% (or by 52% excluding
operations mapped to the NoC) while enforcing memory
ordering v. an unoptimized DFG without ordering. The compiler
also reduces programmer effort: RipTide compiles from C with

no hand-coded assembly, requiring just 8.7 added LoC on
average over the original C (mostly for wrappers). Lastly, the
compiler is fast — the SAT mapper finds a solution to each
benchmark in < 3 min and uses only 4.7% more energy than
the ILP mapper.

RipTide’s compiler reduces operation count. Reducing op-
eration count is important because operations consume PEs
in RipTide’s fabric. Fig. 13 shows operation counts by type
with different optimizations applied. The first bar is an
unoptimized DFG mapped to RipTide. This DFG requires
many PEs to map to hardware and may yield incorrect results
because it does not enforce memory ordering. The second
bar adds streams, operator fusion, and redundant control-flow
elimination, reducing operation count by 33%. The third bar
adds unoptimized memory ordering, which increases operation
count by 82% to ensure correctness. Mapping this graph to
hardware is challenging due to its size. The fourth bar applies
RipTide’s ordering optimizations (Sec. V), reducing operation
count (v. the third bar) by 18%. The fifth bar adds programmer-
inserted annotations on pointers (C’s restrict keyword) to
better inform LLVM’s alias analysis, reducing operation count
by 16%. The last bar removes control-flow operations that
map to RipTide’s NoC, reducing the number of operations on
PEs by 35%, demonstrating the benefit of RipTide’s control
flow in the NoC. Between RipTide’s compiler optimizations
and implementation of control flow in the the NoC, RipTide
reduces operations mapped to PEs by 52% (first v. last bar)
while enforcing memory ordering.

RipTide reduces programmer effort. Fig. 14 counts code
additions, including lines of code (LoC) in C, assembly, and
restrict annotations. RipTide has no hand-written assembly,
compiling directly from C, while 32% and 27% of the LoC for
the vector and SNAFU baselines are hand-written assembly. On
average, vector adds 17 LoC v. scalar, SNAFU adds 21 LoC v.
scalar, and RipTide adds just 8.7 lines. Annotations in RipTide
represent a small fraction of the overall LoC, just 11.2% and,
on average, the programmer adds 4.5 restrict annotations
per benchmark.

13

C-code Assembly Annotations

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS
0

25

50

75

100

125

#
of

co
de

ad
di

ti
on

s

S
ca

la
r V

ec
to

r
S

N
A

F
U

R
ip

T
id

e

xx

Figure 14: The number of code additions for ten benchmarks running
on scalar, vector, SNAFU, and RipTide. RipTide requires no hand-
coded assembly unlike vector and SNAFU.

D
M

V

D
M

M

D
C

on
v

S
M

V

S
M

M

S
C

on
v

S
or

t

F
F

T

B
F

S

D
F

S

101

102

103

T
im

e
(s

)

(a) Compilation time.

D
M

V

D
M

M

D
C

on
v

S
M

V

S
M

M

S
C

on
v

S
or

t

F
F

T

B
F

S

D
F

S

A
vg

0.0

0.5

1.0

N
or

m
al

iz
ed

en
er

gy
(v

.
IL

P
)

1.
06 1.

06 1.
06 1.

08

1.
02 1.

14

0.
98 1.

03
1.

02
1.

02 1.
05

(b) Normalized energy.

Figure 15: Compilation time (16 threads, Intel i9-9900K) and
normalized energy (v. ILP) of SAT and ILP mappers. SAT is 15.1×
faster than ILP, but uses 4.7% more energy.

ILP v. SAT. Fig. 15a shows the end-to-end compilation times
for RipTide using its SAT and ILP mappers. Fig. 15b compares
the energies of the resulting mappings. SAT is 15.1× faster
than ILP on average, finding solutions to most benchmarks
in under a minute. Rapid compilation makes SAT appropriate
for iterative software development. On the other hand, ILP
produces mappings that use 4.3% less energy on average,
making it ideal for final optimization prior to deployment.

The consistently narrow energy gap between SAT and ILP
suggests that good solutions are dense in RipTide; i.e., any
valid mapping found by SAT is close to the optimal energy
from ILP. RipTide does not time-multiplex PEs, so mapping
affects energy largely through routing distance. But the loss in
routing distance is constrained by routability (i.e., any valid
mapping will tend to place dependent operations close to one
another), and the energy impact of routing distance in RipTide
is reduced by its bufferless NoC. These observations help to
explain why SAT performs well in RipTide.

D. Control flow in the NoC saves energy & area

Fig. 16 quantifies the benefits of implementing control flow
in the NoC. From left to right, the plot shows energy on:
• RipTide: Control flow implemented in the NoC (CFiN).
• No CFiN: Control flow mapped to PEs on a 6×6 fabric.
• All PEs: Control flow mapped to PEs, and fabric size

increased as necessary to fit each benchmark.
• Fused: One control-flow operator fused into each PE, and

fabric sized increased as necessary to fit each benchmark.
We synthesize the first two configurations to estimate energy,

DMV DMM DConv SMV SMM SConv Sort FFT BFS DFS
0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

R
ip

T
id

e
N

o
C

F
iN

A
ll

P
E

s
F

us
ed

x x x x x x x x

Figure 16: Control flow in the NoC saves energy. RipTide uses 45%,
40%, and 27% less energy than RipTide w/ No CFiN, a fabric where
all CF ops are PEs (“All PEs”), and a fabric that fuses CF ops into
PEs (“Fused”).

M
S

P
43

0

C
or

te
x-

M
3

S
ca

la
r

R
ip

ti
de

101

103

E
ne

rg
y

sa
vi

ng
s

(v
.

M
S

P
43

0)

1.00

3.89

292.73

1913.33

(a) Energy savings.

M
S

P
43

0

C
or

te
x-

M
3

S
ca

la
r

R
ip

ti
de

100

101

102

S
p

ee
du

p
(v

.
M

S
P

43
0)

1.00

11.69
19.43

146.46

(b) Speedup.

Figure 17: Energy savings and speedup of DNN inference on RipTide
v. MSP430, ARM Cortex-M3, and our scalar core.

while for the latter two configurations we extrapolate energy
using area and power estimates for control-flow modules and
PEs derived from the synthesized configurations.

RipTide uses the least energy: 45% less than No CFiN, 40%
less than All PEs, and 27% less than Fused. RipTide’s energy
benefit stems from CFiN avoiding the overhead of a full PE.
Other configurations also have unique problems. No-CFiN is
possible only for dmv and smv, which are small enough to
map to the same RipTide fabric; other workloads have too
many control-flow operators to map. The All PEs and Fused
configurations add many control-flow PEs, wasting energy and
area: RipTide is 22% and 17% smaller than All PEs and Fused,
respectively.

E. End-to-end case study: RipTide makes saving energy easy

To evaluate the experience of developing for RipTide we
deployed a full application — DNN inference — to the fabric.
This experiment also allowed us to demonstrate the efficiency
and performance of RipTide v. commercial, off-the-shelf ULP
microcontrollers.

The DNN we chose is a derivative of LeNet [49] and
has four layers: two convolution layers separated into three
sublayers followed by two fully connected layers. Every layer
is offloaded to RipTide’s fabric, including convolution, fully
connected, activation, pooling, and normalization layers. It was
a straightforward process once we had working scalar code —
the compiler worked out of the box.

Fig. 17 shows the energy and performance of RipTide run-
ning inference v. two COTS MCUs — TI MSP430FR5994 [40]

14

and Arm Cortex-M3 [1] — as well as our scalar design. For the
MSP430 and Cortex-M3, we run the network on real hardware
and use a digital multimeter to measure current draw, which
matches datasheets. Fig. 17a shows the massive energy savings
of RipTide. RipTide achieves 64MOPS/mW, which is 1900×
more than the MSP430 (0.03 MOPS/mW), 490× more than
the Cortex-M3 (0.13 MOPS/mW), and 6.6× more than our
scalar design (9.5 MOPS/mW). Even accounting for technology
scaling, RipTide still saves roughly 321× v. MSP430 and 83×
energy v. Cortex-M3. The reason for such poor efficiency in the
MCUs v. RipTide (and even our scalar design) seems to be their
non-volatile main memory. Fig. 17b shows that RipTide is also
significantly faster: by 146× v. MSP430, 13× v. Cortex-M3,
and 7.7× v. our scalar design.

IX. CONCLUSION: IMPLICATIONS FOR GENERAL-PURPOSE
ARCHITECTURE AND DARK SILICON

Fig. 10 and Fig. 11 compare the energy and performance
for dmm on RipTide v. an equivalent ASIC. RipTide does not
compromise much on energy or performance — coming within
46% and 3%, respectively — but it is not a free lunch. There
is a high area cost for RipTide’s programmability: RipTide
is 57× larger than the ASIC.3 The question is, is RipTide’s
programmability worth the extra area?

RipTide area is inflated partly because of low utilization
on PEs that perform outer loops. RipTide only supports
one operation per PE, so entire PEs are consumed even
if an operation fires rarely. A future design could revisit
this constraint to allow limited time-multiplexing, either at
a fine [98] or coarse [59] granularity.

Regardless, the area difference shows potentially large cost
savings from ASICs, so long as a computation is performed
frequently enough to overcome ASICs’ upfront design and
verification costs. Standardized, pervasive tasks like JPEG
compression and wireless communication protocols are good
candidates for ASICs. But if the computation is prone to
change or used infrequently, then this cost advantage rapidly
disappears.

Some have proposed that, with increasing transistor budgets
and stagnating power budgets, processors should embrace
extreme heterogeneity and assemble a large number of distinct
ASICs [87,91]. The “garden of ASICs” approach lets architects
do something with extra transistors, but it significantly increases
system design and verification cost. Moreover, it creates
herculean challenges in system integration, as there is no
standard programming interface for ASICs, obsolescence is
monotonic and likely inevitable, and programs must be some-
how partitioned between ASICs and cores with accompanying
data-coordination issues.

RipTide suggests an alternative approach. Rather than spend
area on ASICs that will idle most of the time, instead build

3This is without including main memory, which is half of chip area. Also,
dmm is an extreme case; e.g., RipTide is 9× larger than fft. On fft, the ASIC
yields larger improvements in energy (saving 67%) and performance (by 62%)
v. RipTide. This is because RipTide has too few resources to offload the entire
fft kernel and the ASIC uses scratchpads for twiddle factors.

an energy-minimal, programmable dataflow fabric. The two
designs take similar area with a few dozen ASICs. And the
dataflow fabric is cheaper to design, more broadly applicable,
and easier to use — programs can be simply compiled
for a different target. Finally, as a general-purpose design,
programmable dataflow fabrics can create a self-sustaining
ecosystem that aggregates optimizations and achieves sufficient
scale to justify cutting-edge silicon. All told, while dataflow
fabrics like RipTide are not a replacement for ASICs, they will
play an important role in improving the efficiency of general-
purpose processing as designs are increasingly constrained by
energy instead of area, and they will reduce the demand for
specialized hardware to accelerate the majority of applications.

X. ACKNOWLEDGMENTS

We thank the reviewers for their time and thoughtful
feedback. This work was supported by NSF CCF-1815882,
Graham Gobieski was supported by the Apple Scholars in
AI/ML fellowship, and Souradip Ghosh by the U.S. Department
of Energy Computational Science Graduate Fellowship (DE-
SC0022158). Parts of the compiler development were supported
by Semiconductor Research Corporation (SRC) Artificial Intel-
ligence Hardware (AIHW), a Global Research Collaboration
(GRC) program. We would also like to thank the authors of
HyCube [42, 96], REVAMP [7], and UE-CGRA [88, 89] for
their help in gathering data for comparison.

REFERENCES

[1] “Stm32l152re.” [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32l152re.html

[2] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, 1986.

[3] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction
of a directed graph,” SIAM Journal on Computing, vol. 1, no. 2, pp.
131–137, 1972. [Online]. Available: https://doi.org/10.1137/0201008

[4] O. Bachmann, P. S. Wang, and E. V. Zima, “Chains of recurrences—a
method to expedite the evaluation of closed-form functions,” in
Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ser. ISSAC ’94. New York, NY, USA: Association
for Computing Machinery, 1994, p. 242–249. [Online]. Available:
https://doi.org/10.1145/190347.190423

[5] M. Balasubramanian, S. Dave, A. Shrivastava, and R. Jeyapaul, “Laser:
A hardware/software approach to accelerate complicated loops on cgras,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 1069–1074.

[6] M. Balasubramanian and A. Shrivastava, “Pathseeker: a fast mapping
algorithm for cgras,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 268–273.

[7] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “Revamp:
A systematic framework for heterogeneous cgra realization,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 918–932. [Online]. Available:
https://doi.org/10.1145/3503222.3507772

[8] A. Biere, “Yet another local search solver and Lingeling and friends
entering the SAT Competition 2014,” in Proc. of SAT Competition 2014
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, A. Balint, A. Belov, M. Heule, and
M. Järvisalo, Eds., vol. B-2014-2. University of Helsinki, 2014, pp.
39–40.

15

https://www.st.com/en/microcontrollers-microprocessors/stm32l152re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l152re.html
https://doi.org/10.1137/0201008
https://doi.org/10.1145/190347.190423
https://doi.org/10.1145/3503222.3507772

[9] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[10] M. Budiu, P. Artigas, and S. Goldstein, “Dataflow: A complement to
superscalar,” in IEEE International Symposium on Performance Analysis
of Systems and Software, 2005. ISPASS 2005., 2005, pp. 177–186.

[11] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement
to superscalar,” in IEEE International Symposium on Performance
Analysis of Systems and Software, 2005. ISPASS 2005. IEEE, 2005,
pp. 177–186.

[12] D.-K. Chen and P.-C. Yew, “Redundant synchronization elimination
for doacross loops,” IEEE Transactions on Parallel and Distributed
Systems, vol. 10, no. 5, pp. 459–470, 1999.

[13] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer linear
programming approach to cgra mapping,” in Proceedings of the 55th
Annual Design Automation Conference, 2018, pp. 1–6.

[14] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi,
and J. Anderson, “Cgra-me: A unified framework for cgra modelling and
exploration,” in 2017 IEEE 28th international conference on application-
specific systems, architectures and processors (ASAP). IEEE, 2017,
pp. 184–189.

[15] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined
and dynamically composable architecture of cgra,” in 2014 IEEE
22nd Annual International Symposium on Field-Programmable Custom
Computing Machines, 2014, pp. 9–16.

[16] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, p. 451–490, oct 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

[17] V. Dadu, S. Liu, and T. Nowatzki, PolyGraph: Exposing the Value of
Flexibility for Graph Processing Accelerators. IEEE Press, 2021, p.
595–608. [Online]. Available: https://doi.org/10.1109/ISCA52012.2021.
00053

[18] V. Dadu and T. Nowatzki, TaskStream: Accelerating Task-Parallel
Workloads by Recovering Program Structure. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1–13. [Online].
Available: https://doi.org/10.1145/3503222.3507706

[19] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general
purpose acceleration by exploiting common data-dependence forms,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 924–939.

[20] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient embedded computing,”
Computer, vol. 41, no. 7, 2008.

[21] S. Das, D. Rossi, K. J. Martin, P. Coussy, and L. Benini, “A 142mops/mw
integrated programmable array accelerator for smart visual processing,”
in ISCAS, 2017.

[22] S. Dave, M. Balasubramanian, and A. Shrivastava, “Ureca: Unified
register file for cgras,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2018, pp. 1081–1086.

[23] B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite
constellations as a new class of computer system,” in ASPLOS 25,
2020.

[24] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic
data-flow processor,” in ACM SIGARCH Computer Architecture News,
vol. 3, no. 4, 1975.

[25] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[26] M. Duric, O. Palomar, A. Smith, O. Unsal, A. Cristal, M. Valero, and
D. Burger, “Evx: Vector execution on low power edge cores,” in DATE,
2014.

[27] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann, “Snafu:
an ultra-low-power, energy-minimal cgra-generation framework and
architecture,” in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2021, pp. 1027–1040.

[28] G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent deep neural
network inference,” in SysML, 2018.

[29] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the
edge: Inference on intermittent embedded systems,” in ASPLOS, 2019.

[30] G. Gobieski, A. Nagi, N. Serafin, M. M. Isgenc, N. Beckmann, and
B. Lucia, “Manic: A vector-dataflow architecture for ultra-low-power
embedded systems,” in MICRO, 2019.

[31] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, “Piperench: A reconfigurable architecture and compiler,”
Computer, vol. 33, no. 4, 2000.

[32] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, no. 5, 2012.

[33] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose
processing,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 2011, pp. 12–23.

[34] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei, D. Brooks,
and C.-J. Wu, “Chasing carbon: The elusive environmental footprint of
computing,” IEEE Micro, 2022.

[35] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[36] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using epimor-
phism to map applications on cgras,” in Proceedings of the 49th Annual
Design Automation Conference, 2012, pp. 1284–1291.

[37] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Branch-aware loop map-
ping on cgras,” in Proceedings of the 51st Annual Design Automation
Conference, 2014, pp. 1–6.

[38] M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interprocedural pointer
alias analysis,” ACM Trans. Program. Lang. Syst., vol. 21, no. 4, p.
848–894, jul 1999. [Online]. Available: https://doi.org/10.1145/325478.
325519

[39] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in ISSCC, 2014.

[40] T. Instruments, “Msp430fr5994 sla,” 2017. [Online]. Available:
http://www.ti.com/lit/ds/symlink/msp430fr5994.pdf

[41] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons
from three generations shaped google’s tpuv4i: Industrial product,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 1–14.

[42] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A
cgra with reconfigurable single-cycle multi-hop interconnect,” in DAC,
2017.

[43] M. Karunaratne, C. Tan, A. Kulkarni, T. Mitra, and L.-S. Peh,
“Dnestmap: mapping deeply-nested loops on ultra-low power cgras,” in
Proceedings of the 55th Annual Design Automation Conference, 2018,
pp. 1–6.

[44] M. Karunaratne, D. Wijerathne, T. Mitra, and L.-S. Peh, “4d-cgra:
Introducing branch dimension to spatio-temporal application mapping
on cgras,” in 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

[45] M. Khazraee, L. Zhang, L. Vega, and M. B. Taylor, “Moonwalk: Nre
optimization in asic clouds,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 511–526.
[Online]. Available: https://doi.org/10.1145/3037697.3037749

[46] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “Ulp-
srp: Ultra low power samsung reconfigurable processor for biomedical
applications,” in ICFPT, 2012.

[47] Y. Kim and R. N. Mahapatra, “Hierarchical reconfigurable computing
arrays for efficient cgra-based embedded systems,” in Proceedings of
the 46th Annual Design Automation Conference, 2009, pp. 826–831.

[48] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, Mar. 2004.

[49] Y. Le Cun, L. Jackel, B. Boser, J. Denker, H. Graf, I. Guyon, D. Hen-
derson, R. Howard, and W. Hubbard, “Handwritten digit recognition:
Applications of neural network chips and automatic learning,” IEEE
Communications Magazine, vol. 27, no. 11, 1989.

[50] J. Lee and T. E. Carlson, “Ultra-fast cgra scheduling to enable run time,
programmable cgras,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2021, pp. 1207–1212.

[51] Z. Li, D. Wijerathne, X. Chen, A. Pathania, and T. Mitra, “Chordmap:
Automated mapping of streaming applications onto cgra,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 2, pp. 306–319, 2021.

16

https://doi.org/10.1145/115372.115320
https://doi.org/10.1109/ISCA52012.2021.00053
https://doi.org/10.1109/ISCA52012.2021.00053
https://doi.org/10.1145/3503222.3507706
https://www.gurobi.com
https://doi.org/10.1145/325478.325519
https://doi.org/10.1145/325478.325519
http://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
https://doi.org/10.1145/3037697.3037749

[52] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
Computing: Challenges and Opportunities,” Dagstuhl, Germany, 2017.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2017/7131

[53] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix,” in International Conference on Field
Programmable Logic and Applications. Springer, 2003, pp. 61–70.

[54] S. Midkiff and D. Padua, “A comparison of four synchronization
optimization techniques,” in Intl. Conf. on Parallel Processing, vol. 2,
1991, pp. 9–16.

[55] S. P. Midkiff and D. A. Padua, “Compiler algorithms for synchro-
nization,” IEEE Transactions on Computers, vol. C-36, no. 12, pp.
1485–1495, 1987.

[56] E. Mirsky, A. DeHon et al., “Matrix: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources.” in FCCM, vol. 96, 1996, pp. 17–19.

[57] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein,
and M. Budiu, “Tartan: evaluating spatial computation for whole
program execution,” ACM SIGARCH Computer Architecture News,
vol. 34, no. 5, 2006.

[58] T. Miyamori and K. Olukotun, “Remarc: Reconfigurable multimedia
array coprocessor,” IEICE Transactions on information and systems,
vol. 82, no. 2, pp. 389–397, 1999.

[59] Q. M. Nguyen and D. Sanchez, “Fifer: Practical acceleration of irregular
applications on reconfigurable architectures,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
1064–1077.

[60] C. Nicol, “A coarse grain reconfigurable array (CGRA) for statically
scheduled data flow computing,” WaveComputing WhitePaper, 2017.

[61] R. S. Nikhil et al., “Executing a program on the mit tagged-token
dataflow architecture,” IEEE Transactions on computers, vol. 39, no. 3,
1990.

[62] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid op-
timization/heuristic instruction scheduling for programmable accelerator
codesign,” in PACT 27, 2018.

[63] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng,
“Hybrid optimization/heuristic instruction scheduling for programmable
accelerator codesign,” in Proceedings of the 27th International
Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ’18. New York, NY, USA: ACM, 2018, pp. 36:1–36:15.
[Online]. Available: http://doi.acm.org/10.1145/3243176.3243212

[64] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-
dataflow acceleration,” in ISCA 44, 2017.

[65] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the
potential of heterogeneous von neumann/dataflow execution models,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 298–310.

[66] T. Nowatzki, V. Gangadhar, K. Sankaralingam, and G. Wright, “Domain
specialization is generally unnecessary for accelerators,” IEEE Micro,
vol. 37, no. 3, 2017.

[67] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A general constraint-centric scheduling framework
for spatial architectures,” ACM SIGPLAN Notices, vol. 48, no. 6, 2013.

[68] N. Ozaki, Y. Yasuda, M. Izawa, Y. Saito, D. Ikebuchi, H. Amano,
H. Nakamura, K. Usami, M. Namiki, and M. Kondo, “Cool mega-
arrays: Ultralow-power reconfigurable accelerator chips,” IEEE Micro,
vol. 31, no. 6, 2011.

[69] J. Pager, R. Jeyapaul, and A. Shrivastava, “A software scheme for
multithreading on cgras,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 14, no. 1, pp. 1–26, 2015.

[70] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit
token-store architecture,” SIGARCH Comput. Archit. News, vol. 18, no.
2SI, p. 82–91, may 1990. [Online]. Available: https://doi.org/10.1145/
325096.325117

[71] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel et al., “Triggered instructions:
a control paradigm for spatially-programmed architectures,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, 2013.

[72] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A
flexible multicore accelerator with virtualized execution for mobile
multimedia applications,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: Association for Computing Machinery, 2009, p.
370–380. [Online]. Available: https://doi.org/10.1145/1669112.1669160

[73] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and
R. Bodik, “Chlorophyll: Synthesis-aided compiler for low-power spatial
architectures,” SIGPLAN Not., vol. 49, no. 6, p. 396–407, jun 2014.
[Online]. Available: https://doi.org/10.1145/2666356.2594339

[74] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in ISCA 44, 2017.

[75] A. Rucker, M. Vilim, T. Zhao, Y. Zhang, R. Prabhakar, and K. Olukotun,
“Capstan: A vector rda for sparsity,” 2021.

[76] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ilp, tlp, and dlp with the
polymorphous trips architecture,” in ISCA 30, 2003.

[77] K. Sankaralingam, T. Nowatzki, G. Wright, P. Palamuttam, J. Khare,
V. Gangadhar, and P. Shah, “Mozart: Designing for software
maturity and the next paradigm for chip architectures,” in IEEE
Hot Chips 33 Symposium, HCS 2021, Palo Alto, CA, USA,
August 22-24, 2021. IEEE, 2021, pp. 1–20. [Online]. Available:
https://doi.org/10.1109/HCS52781.2021.9567306

[78] M. Satyanarayanan, N. Beckmann, G. A. Lewis, and B. Lucia, “The
role of edge offload for hardware-accelerated mobile devices,” in
Proceedings of the 22nd International Workshop on Mobile Computing
Systems and Applications, ser. HotMobile ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 22–29. [Online].
Available: https://doi.org/10.1145/3446382.3448360

[79] M. Satyanarayanan, N. Beckmann, G. A. Lewis, and B. Lucia, “The role
of edge offload for hardware-accelerated mobile devices,” in HotMobile,
2021.

[80] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho, “Morphosys: an integrated reconfigurable system
for data-parallel and computation-intensive applications,” IEEE Trans-
actions on Computers, vol. 49, no. 5, pp. 465–481, 2000.

[81] P. Sparks, “A route to a trillion devices,” Arm WhitePaper, 2017.
[82] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky,

and K. Olukotun, “Delite: A compiler architecture for performance-
oriented embedded domain-specific languages,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 4s, pp. 1–25, 2014.

[83] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in MICRO 36, 2003.

[84] C. Tan, M. Karunaratne, T. Mitra, and L.-S. Peh, “Stitch: Fusible
heterogeneous accelerators enmeshed with many-core architecture for
wearables,” in ISCA 45, 2018.

[85] C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, “Opencgra: An open-
source unified framework for modeling, testing, and evaluating cgras,” in
2020 IEEE 38th International Conference on Computer Design (ICCD).
IEEE, 2020, pp. 381–388.

[86] F. Tavares, “Kicksat 2,” May 2019. [Online]. Available: https:
//www.nasa.gov/ames/kicksat

[87] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse,” in DAC, 2012.

[88] C. Torng and P. Pan, “Ue-cgra hpca 2021 artifact,” Mar 2021. [Online].
Available: https://github.com/cornell-brg/torng-uecgra-scripts-hpca2021

[89] C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten, “Ultra-elastic cgras for
irregular loop specialization,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 2021,
pp. 412–425.

[90] N. Vedula, A. Shriraman, S. Kumar, and W. N. Sumner, “Nachos:
Software-driven hardware-assisted memory disambiguation for acceler-
ators,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2018, pp. 710–723.

[91] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” in ACM SIGARCH Computer
Architecture News, vol. 38, no. 1, 2010.

[92] M. Vilim, A. Rucker, Y. Zhang, S. Liu, and K. Olukotun, “Gorgon:
Accelerating machine learning from relational data,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 309–321.

[93] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for gpgpus,” ACM SIGARCH computer
architecture news, vol. 42, no. 3, 2014.

[94] D. Voitsechov, O. Port, and Y. Etsion, “Inter-thread communication in
multithreaded, reconfigurable coarse-grain arrays,” in MICRO 51, 2018.

[95] E. Waingold et al., “Baring It All to Software: Raw Machines,” in IEEE
Computer, September 1997.

17

http://drops.dagstuhl.de/opus/volltexte/2017/7131
http://doi.acm.org/10.1145/3243176.3243212
https://doi.org/10.1145/325096.325117
https://doi.org/10.1145/325096.325117
https://doi.org/10.1145/1669112.1669160
https://doi.org/10.1145/2666356.2594339
https://doi.org/10.1109/HCS52781.2021.9567306
https://doi.org/10.1145/3446382.3448360
https://www.nasa.gov/ames/kicksat
https://www.nasa.gov/ames/kicksat
https://github.com/cornell-brg/torng-uecgra-scripts-hpca2021

[96] B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and L.-S. Peh,
“Hycube: A 0.9 v 26.4 mops/mw, 290 pj/op, power efficient accelerator
for iot applications,” in 2019 IEEE Asian Solid-State Circuits Conference
(A-SSCC). IEEE, 2019, pp. 133–136.

[97] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
synthesizing programmable spatial accelerators,” in ISCA 47, 2020.

[98] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A hybrid systolic-
dataflow architecture for inductive matrix algorithms,” in HPCA, 2020.

[99] D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, “Himap: Fast
and scalable high-quality mapping on cgra via hierarchical abstraction,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2021.

[100] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,

“Q100: The architecture and design of a database processing unit,” in
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 255–268.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541961

[101] Y. Yang, J. S. Emer, and D. Sanchez, “Spzip: architectural support for
effective data compression in irregular applications,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 1069–1082.

[102] Z. Zhao, W. Sheng, Q. Wang, W. Yin, P. Ye, J. Li, and Z. Mao, “Towards
higher performance and robust compilation for cgra modulo scheduling,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 9,
pp. 2201–2219, 2020.

18

http://doi.acm.org/10.1145/2541940.2541961

APPENDIX

Table IV: Inputs & variables of ILP & SAT formulations.

Input Explanation

V Set of DFG vertices
E Set of DFG edges
N Set of hardware nodes (PEs & CF-modules)
F Set of CF-modules F ⊂ N
R Set of hardware routers
L Set of hardware links
Cel(E,L) = 1 if e can map to l Edge-link compatibility matrix
Cvn(V,N) = 1 if v can map to n Vertex-node compatibility matrix
Hln(L,N) = 1 if l originates from n Link-to-node matrix
Hnl(N,L) = 1 if l comes from n Node-to-link matrix
Hlr(L,R) = 1 if l originates from r Link-to-router matrix
Hrl(R,L) = 1 if l comes from r Router-to-link matrix

Variable Explanation

Mvn(V,N) = 1 if v is mapped to n Vertex-to-node matrix
Mel(E,L) = 1 if e is mapped to l Edge-to-link matrix

Table IV lists the inputs and variables of the SAT and ILP formulations for mapping. The goal of either mapper is to solve
for Mvn and Mel , which map a DFG’s vertices to hardware PEs and CF-modules (hardware nodes) and a DFG’s edges to
hardware links, respectively. Matrices Cvn and Cel capture the compatibility of a DFG’s vertex-to-hardware node (i.e., a memory
operation must be mapped to a memory PE) and a DFG’s edge-to-hardware link (to make sure ports match), respectively. The
remaining matrices Hnl , Hln, Hrl , Hlr, describe the topology of the CGRA fabric by specifying the connectedness of links to
hardware nodes and routers.

Table V: ILP formulation.

Objective: minimize ∑e∈E,l∈L Mel(e, l) subject to
Constraint Explanation

∀e ∈ E, l ∈ L,Mel(e, l)≤Cel(e, l) Edges are mapped to compatible links
∀v ∈V,n ∈ N,Mvn(v,n)≤Cvn(v,n) Vertices are mapped to compatible nodes
∀v ∈V,∑n∈N Mvn(v,n) = 1 Every vertex must be mapped to a node
∀n ∈ N,∑v∈V Mvn(v,n)≤ 1 No node can be used by more than one vertex
∀e ∈ E,r ∈ R,∑l∈L Mel(e, l)Hlr(l,r) = ∑l∈L Mel(e, l)Hrl(r, l) Flow into a router must equal the flow out
∀e ∈ E,n ∈ N|n /∈ F,∑l∈L Me,l(e)Hnl(n, l) = Mvn(src(e),n) If a vertex is mapped to a non-CF node, then the output edges are mapped to outgoing links
∀e ∈ E,n ∈ N|n /∈ F,∑l∈L Me,l(e)Hln(l,n) = Mvn(dst(e),n) If a vertex is mapped to a non-CF node, then the input edges are mapped to incoming links
∀l ∈ L,e1 ∈ E,Mel(e1, l)+maxe2∈E|src(e1)6=src(e2)

Mel(e2, l)≤ 1 Edges that do not share the same source are not mapped to the same links
∀e ∈ E,n ∈ F,∑l∈L Mel(e, l)Hln(l,n)+∑v∈V Mvn(v,n)≥ ∑l∈L Mel(e, l)Hnl(n, l) Unused CF-modules can pass through edges
∀e ∈ E,n ∈ F,∑l∈L Mel(e, l)Hln(l,n)≤ ∑v∈V Mvn(v,n)+∑l∈L Mel(e, l)Hnl(n, l) Unused CF-modules can pass through edges
∀e ∈ E,n ∈ F,∑l∈L Mel(e, l)Hnl(n, l)≥Mvn(src(e),n) If a vertex is mapped to a CF node, then the output edges are mapped to outgoing links
∀e ∈ E,n ∈ F,∑l∈L Mel(e, l)Hln(l,n)≥Mvn(dst(e),n) If a vertex is mapped to a CF node, then the input edges are mapped to incoming links

src(e) := v ∈V and v is the source of e dst(e) := v ∈V and v is the destination of e

Table V describes the (binary) ILP formulation. The formulation minimizes average routing distance given the constraints in
the table.

Table VI: SAT formulation.

Clause Explanation

∀e ∈ E, l ∈ L|Cel(e, l) = 0,¬Mel(e, l) Edges are mapped to compatible links
∀v ∈V,n ∈ N|Cvn(v,n) = 0,¬Mvn(v,n) Vertices are mapped to compatible nodes
∀v ∈V,ExactlyOne({Mvn(v,n)|n ∈ N}) Every vertex must be mapped to a node
∀n ∈ N,AtMostOne({Mvn(v,n)|v ∈V}) No node can be used by more than one vertex
∀r ∈ R,e ∈ E,∨l|Hrl (r,l)Mel(e, l) ⇐⇒ ∨Hlr(l,r)Mel(e, l) An edge mapped to incoming link to a router must also be mapped to an outgoing link
∀r ∈ R,e ∈ E,AtMostOne({Mel(e, l)|l ∈ L and Hrl(r, l)}) An edge can only be mapped to a single outgoing link of a router
∀e ∈ E,n ∈ N|n /∈ F,∨l|Hnl (n,l)Mel(e, l) ⇐⇒ Mvn(src(e),n) If a vertex is mapped to a non-CF node, then the input edges are mapped to incoming links
∀e ∈ E,n ∈ N|n /∈ F,∨l|Hln(l,n)Mel(e, l) ⇐⇒ Mvn(dst(e),n) If a vertex is mapped to a non-CF node, then the output edges are mapped to outgoing links
∀l ∈ L,e1 ∈ E,e2 ∈ E|src(e1) 6= src(e2),¬Mel(e1, l)∨¬Mel(e2, l) Edges that do not share the same source are not mapped to the same links
∀e ∈ E,n ∈ F,Knl(e,n)∨¬Mvn(src(e),n) If a vertex is mapped to a CF node, then the output edges are mapped to outgoing links
∀e ∈ E,n ∈ F,Kln(e,n)∨¬Mvn(dst(e),n) If a vertex is mapped to a CF node, then the input edges are mapped to incoming links
(∀e ∈ E,n ∈ F,(Kln(e,n)∨Kn ∨¬Knl(e,n))∧ Unused CF-modules can pass through edges

(¬Kln(e,n)∨Kn(n)∨Knl(e,n))∧ (¬Kln(e,n)∨¬Mvn(src(e),n))
∀e ∈ E,n ∈ F, l ∈ L|Hln(l,n),¬Mel(e, l)∨Kln(e) An edge mapped to an output link of CF-module cannot be mapped to an input of the CF-module

src(e) := v ∈V and v is the source of e dst(e) := v ∈V and v is the destination of e Knl(e,n) := ∨l|Hnl (n,l)Mel(e, l) Kln(e,n) := ∨l|Hln(l,n)Mel(e, l) Kn(n) := ∨v∈V Mvn(v,n)

Table VI describes the SAT formulation. Since there is no objective, the formulation may yield longer routes, duplicate routes
or routes with cycles. We post-process the routes to find the shortest between two nodes.

19

	Introduction
	Background
	Context: Computing at the extreme edge
	CGRAs can dramatically improve efficiency
	Limitations of prior CGRAs
	Dynamic dataflow architectures
	Dimensions of CGRA architecture

	RipTide Overview
	RipTide Instruction Set Architecture
	Control-flow operators
	Synchronization operators
	Stream operators

	RipTide Compiler
	Memory-ordering analysis
	Control-flow operator insertion
	Stream fusion
	Mapping DFGs to hardware

	RipTide Microarchitecture
	Tagless dataflow scheduling
	Processing elements
	Bufferless NoC
	Control flow in the NoC

	Experimental Methodology
	Evaluation
	Main results
	RipTide v. prior low-power CGRAs
	Compiler characterization
	Control flow in the NoC saves energy & area
	End-to-end case study: RipTide makes saving energy easy

	Conclusion: Implications for General-Purpose Architecture and Dark Silicon
	Acknowledgments
	References
	Appendix

