
CROW: A Low-Cost Substrate for Improving
DRAM Performance, Energy Efficiency, and Reliability

Hasan Hassan† Minesh Patel† Jeremie S. Kim†§ A. Giray Yaglikci†

Nandita Vijaykumar†§ Nika Mansouri Ghiasi† Saugata Ghose§ Onur Mutlu†§

†ETH Zürich §Carnegie Mellon University

ABSTRACT
DRAM has been the dominant technology for architecting main
memory for decades. Recent trends in multi-core system design and
large-dataset applications have amplified the role of DRAM as a
critical system bottleneck. We propose Copy-Row DRAM (CROW),
a flexible substrate that enables new mechanisms for improving
DRAM performance, energy efficiency, and reliability. We use the
CROW substrate to implement 1) a low-cost in-DRAM caching
mechanism that lowers DRAM activation latency to frequently-
accessed rows by 38% and 2) a mechanism that avoids the use of
short-retention-time rows to mitigate the performance and energy
overhead of DRAM refresh operations. CROW’s flexibility allows
the implementation of both mechanisms at the same time. Our
evaluations show that the two mechanisms synergistically improve
system performance by 20.0% and reduceDRAMenergy by 22.3% for
memory-intensive four-core workloads, while incurring 0.48% extra
area overhead in the DRAM chip and 11.3KiB storage overhead
in the memory controller, and consuming 1.6% of DRAM storage
capacity, for one particular implementation.

KEYWORDS
DRAM, memory systems, performance, power, energy, reliability

1 INTRODUCTION
DRAM has long been the dominant technology for architecting
main memory systems due to the high capacity it offers at low
cost. As the memory demands of applications have been growing,
manufacturers have been scaling the DRAM process technology to
keep pace. Unfortunately, while the density of the DRAM chips has
been increasing as a result of scaling, DRAM faces three critical
challenges in meeting application demands [78, 82]: (1) high access
latencies and (2) high refresh overheads, both of which degrade sys-
tem performance and energy efficiency; and (3) increasing exposure
to vulnerabilities, which reduces the reliability of DRAM.

First, the high DRAM access latency is a challenge to improving
system performance and energy efficiency. While DRAM capac-
ity increased significantly over the last two decades [6, 35, 37, 57,
58, 105], DRAM access latency decreased only slightly [6, 58, 82].
The high DRAM access latency significantly degrades the perfor-
mance of many workloads [14, 23, 28, 30, 123]. The performance
impact is particularly large for applications that 1) have working
sets exceeding the cache capacity of the system, 2) suffer from high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322231

instruction and data cache miss rates, and 3) have lowmemory-level
parallelism. While manufacturers offer latency-optimized DRAM
modules [72, 98], these modules have significantly lower capac-
ity and higher cost compared to commodity DRAM [8, 53, 58].
Thus, reducing the high DRAM access latency without trading off
capacity and cost in commodity DRAM remains an important chal-
lenge [17, 18, 58, 78].

Second, the high DRAM refresh overhead is a challenge to im-
proving system performance and energy consumption. A DRAM
cell stores data in a capacitor that leaks charge over time. To main-
tain correctness, every DRAM cell requires periodic refresh opera-
tions that restore the charge level in a cell. As the DRAM cell size
decreases with process technology scaling, newer DRAM devices
contain more DRAM cells than older DRAM devices [34]. As a re-
sult, while DRAM capacity increases, the performance and energy
overheads of the refresh operations scale unfavorably [7, 40, 64].
In modern LPDDR4 [73] devices, the memory controller refreshes
every DRAM cell every 32ms. Previous studies show that 1) refresh
operations incur large performance overheads, as DRAM cells can-
not be accessed when the cells are being refreshed [7, 64, 76, 84];
and 2) up to 50% of the total DRAM energy is consumed by the
refresh operations [7, 64].

Third, the increasing vulnerability of DRAM cells to various fail-
ure mechanisms is an important challenge to maintaining DRAM
reliability. As the process technology shrinks, DRAM cells become
smaller and get closer to each other, and thus becomemore suscepti-
ble to failures [56, 64, 65, 70, 78, 91, 118]. A tangible example of such
a failure mechanism in modern DRAM is RowHammer [52, 79, 80].
RowHammer causes disturbance errors (i.e., bit flips in vulnerable
DRAM cells that are not being accessed) in DRAM rows physically
adjacent to a row that is repeatedly activated many times.

These three challenges are difficult to solve efficiently by directly
modifying the underlying cell array structure. This is because com-
modity DRAM implements an extremely dense DRAM cell array
that is optimized for low area-per-bit [57, 58, 105]. Because of its
density, even a small change in the DRAM cell array structure may
incur non-negligible area overhead [58, 78, 112, 119]. Our goal in
this work is to lower the DRAM access latency, reduce the refresh
overhead, and improve DRAM reliability with no changes to the
DRAM cell architecture, and with only minimal changes to the
DRAM chip.

To this end, we propose Copy-Row DRAM (CROW), a flexible
in-DRAM substrate that can be used inmultiple different ways to ad-
dress the performance, energy efficiency, and reliability challenges
of DRAM. The key idea of CROW is to provide a fast, low-cost
mechanism to duplicate select rows in DRAM that contain data that
is most sensitive or vulnerable to latency, refresh, or reliability
issues. CROW requires only small changes in commodity DRAM
chips. At a high level, CROW partitions each DRAM subarray into
two regions (regular rows and copy rows) and enables independent
control over the rows in each region. The key components required
for independent control include 1) an independent decoder for the
copy rows and 2) small changes in the memory controller interface

1

https://doi.org/10.1145/3307650.3322231

to address the copy rows. To store information about the state of
the copy rows (e.g., which regular rows are duplicated in which
copy rows), CROW implements a small CROW-table in the memory
controller (Section 3.3).

CROW takes advantage of the fact that DRAM rows in the same
subarray share sense amplifiers to enable two types of interaction
between a regular row and a copy row. First, CROW can activate
(i.e., open) a copy row slightly after activating a regular row in
the same subarray. Once the copy row is activated, the charge
restoration operation in DRAM (used to restore the charge that was
drained from the cells of a row during activation) charges both the
regular row and the copy row at once. The simultaneous charge
restoration of the two rows copies the contents of the regular row
into the copy row, similar to the in-DRAM row copy operation
proposed by RowClone [100]. Second, CROW can simultaneously
activate a regular row and a copy row that contain the same data.
The simultaneous activation reduces the latency required to access
the data by driving each sense amplifier using the charge from two
cells in each row (instead of using the charge from only one cell in
one row, as is done in commodity DRAM).

The CROW substrate is flexible, and can be used to implement a
variety of mechanisms. In this work, we discuss and evaluate two
such novel mechanisms in detail: 1)CROW-cache, which reduces the
DRAM access latency (Section 4.1) and 2) CROW-ref, which reduces
the DRAM refresh overhead (Section 4.2). We also briefly discuss a
third mechanism that mitigates RowHammer errors (Section 4.3).

Reducing DRAMAccess Latency with CROW-cache. Prior
works [26, 39, 116] observe that a significant fraction of the most-
recently-accessed rows are activated again soon after the rows
are closed (i.e., the rows exhibit high reuse). To take advantage of
the reuse of recently-accessed rows, we use CROW to implement
CROW-cache, which reduces the DRAM access latency when a
recently-accessed row is activated again. The key idea of CROW-
cache is to 1) duplicate data from recently-accessed regular rows
into a small cache made up of copy rows, and 2) simultaneously
activate a duplicated regular row with its corresponding copy row
when the regular row needs to be activated again. By activating
both the regular row and its corresponding copy row, CROW-cache
reduces the time needed to open the row and begin performing
read and/or write requests to the row by 38%.

ReducingDRAMRefreshOverheadswithCROW-ref. Prior
works [24, 41, 64, 65, 87, 88] show that only a small fraction of
DRAM cells in a DRAM chip (e.g., fewer than 1000 cells in 32GiB
of DRAM [64]), called weak cells, have to be refreshed at the
standard-specified refresh interval (32ms in LPDDR4 [36], 64ms
in DDR3/DDR4 [35, 37]), and that an overwhelming majority of
cells (called strong cells) can be refreshed much less frequently
than the standard-specified rate. To take advantage of typical-case
DRAM cell data retention behavior, we use CROW to implement
CROW-ref, which remaps weak regular DRAM rows to strong
copy rows. The key idea of CROW-ref is to avoid storing any
data in DRAM rows that contain weak cells, such that the entire
DRAM chip can use a longer refresh interval. During system boot
or runtime, CROW-ref uses an efficient profiling mechanism [87]
to identify weak DRAM cells, remaps the regular rows contain-
ing weak cells to strong copy rows, and records the remapping
information in the CROW-table. When the memory controller
needs to activate a row, it first checks the CROW-table to see if
the row is remapped, and, if so, activates the corresponding copy
row instead of the regular row. Because only a very small fraction
of DRAM cells are weak, remapping only a few rows can signifi-
cantly reduce the refresh overhead, as the weakest DRAM cell in
use determines the minimum required refresh rate of the entire

DRAM chip. CROW-ref has two important properties that prior
works [2, 3, 11, 12, 19, 33, 38, 49, 50, 64, 66, 69, 76, 83, 84, 86, 88, 107]
fail to address at the same time. First, to avoid using weak rows,
CROW-ref does not require system software changes that compli-
cate data allocation. Second, once our versatile CROW substrate is
implemented, CROW-ref does not require any additional changes
in DRAM that are specific to enabling a new refresh scheme.

Results Overview. Our evaluations show that CROW-cache
and CROW-ref significantly improve performance and energy ef-
ficiency. First, our access latency reduction mechanism, CROW-
cache, provides 7.4% higher performance and consumes 13.3% less
DRAM energy, averaged across our 20 memory-intensive four-core
workloads, while reserving only 1.6% of the DRAM storage capacity
for copy rows on a system with four LPDDR4 channels. Second, our
refresh rate reduction mechanism, CROW-ref, improves system
performance by 8.1% and reduces DRAM energy by 5.4%, averaged
across the same four-core workloads using the same system con-
figuration with futuristic 64Gbit DRAM chips. CROW-cache and
CROW-ref are complementary to each other. When combined with-
out increasing the number of copy rows available, the two mech-
anisms together improve average system performance by 20.0%
and reduce DRAM energy consumption by 22.3%, achieving greater
improvements than either mechanism does alone.

To analyze the activation and restoration latency impact of simul-
taneously activating multiple rows, we develop a detailed circuit-
level DRAM model. We release this circuit-level DRAM model and
our simulation infrastructure that we use to evaluate the perfor-
mance and energy saving benefits of CROW as publicly available
tools [96]. We hope that this will encourage researchers to develop
other novel mechanisms using the CROW substrate.

This paper makes the following key contributions:
• We propose CROW, a flexible and low-cost substrate in com-
modity DRAM that enables mechanisms for improving DRAM
performance, energy efficiency, and reliability by providing two
sets of rows that have independent control in each subarray.
CROW does not change the extremely-dense cell array and has
low cost (0.48% additional area overhead in the DRAM chip,
11.3KiB storage overhead in the memory controller, and 1.6%
DRAM storage capacity overhead).
• We propose three mechanisms that exploit the CROW substrate:
1) CROW-cache, an in-DRAM cache to reduce the DRAM access
latency, 2) CROW-ref, a remapping scheme for weak DRAM rows
to reduce the DRAM refresh overhead, and 3) a mechanism for
mitigating the RowHammer vulnerability. We show that CROW
allows these mechanisms to be employed at the same time.
• We evaluate the performance, energy savings, and overhead of

CROW-cache and CROW-ref, showing significant performance
and energy benefits over a state-of-the-art commodity DRAM
chip. We also compare CROW-cache to two prior proposals to
reduce DRAM latency [53, 58] and show that CROW-cache is
more area- and energy-efficient at reducing DRAM latency.

2 BACKGROUND
We describe the low-level organization of DRAM and illustrate
how DRAM is accessed to provide the necessary background for
understanding how CROW operates. We refer the reader to prior
work [6–9, 26, 32, 53, 57–61, 64, 65, 100–102, 119] for amore detailed
treatment of various aspects of DRAM operation.

2.1 DRAM Organization
A DRAM device is organized hierarchically. The smallest building
block, i.e., the DRAM cell, consists of a capacitor and an access
transistor, as shown in Figure 1a. The capacitor encodes a single bit

2

local row buffer

lo
ca

l r
o

w

d
ec

o
d

er

SA S
A SA SA SASA

wordline

st
o

ra
ge

ca
p

ac
it

o
r

access
transistor

b
it

li
n

e

Subarray 0

global row buffer

Subarray 1...

Subarray N - 1

(a) DRAM cell (b) DRAM subarray (c) DRAM bank

g
lo

b
a

l
ro

w

d
ec

o
d

er

Figure 1: DRAM organization.

of data by storing different charge levels, i.e., empty or full. During
an access to a cell, the wordline enables the access transistor, which
connects the cell capacitor to the bitline, so that the cell’s state can
be read or modified.

A subarray consists of a 2D array of DRAM cells, as shown in
Figure 1b. The cells that share the same wordline in a subarray are
referred to as a DRAM row. Each subarray is typically composed
of 512–1024 rows. To prepare a row for an access, the local row
decoder selects the row by enabling the corresponding wordline in
the subarray. In conventional DRAM, only one row in a subarray
can be enabled at a time, and, thus, only one cell is enabled on each
bitline. When a cell is enabled, charge sharing takes place between
the cell and the bitline (which is initially precharged to a reference
voltage). This charge sharing shifts the bitline voltage up or down
based on the voltage of the cell. The bitline’s sense amplifier detects
the bitline voltage shift and amplifies it to a full 0 or 1 (i.e., Vss or
Vdd). All sense amplifiers that detect and amplify the charge levels
of the cells of the open row inside a subarray are referred to as the
subarray’s local row buffer.

As illustrated in Figure 1c, multiple subarrays are organized into
a group to form a bank. To select a particular row, the memory
controller sends the row address to the global row decoder, which
partially decodes the address to select the local row decoder of the
subarray that contains the row. Each bank includes a global row
buffer. On a read operation, the requested portion of the target row
is copied from the local row buffer of the subarray that contains the
target row into the global row buffer. Once this is done, the global
row buffer sends its data to the memory controller.

A single DRAM chip contains multiple banks that operate in
parallel. To provide high bandwidth, multiple chips are grouped
together into a rank. The chips in a rank share the same ad-
dress/command bus, which causes the chips to operate in lockstep
(i.e., the chips receive the same commands and perform the same
operations on different portions), but each chip has its own data
bus connection. To increase the system’s total memory capacity,
multiple ranks are connected to the same DRAM channel, operating
in a time-multiplexed manner by sharing the channel bus (i.e.,
address/command/data pins). In a typical system, each memory
controller interfaces with a single DRAM channel and sends ad-
dresses/data/commands over the channel bus to manipulate the
data stored within all ranks that are part of the channel.

2.2 DRAM Operation
There are four major commands that are used to access DRAM: ACT,
WR, RD, and PRE. DRAM command scheduling is tightly regulated
by a set of timing parameters, which guarantee that enough time
has passed after a certain command such that DRAM provides or
retains data correctly. Figure 2 illustrates the relationship between
the commands issued to perform a DRAM read and their governing
timing parameters. The memory controller enforces these timing
parameters as it schedules each DRAM command. Aside from the
DRAM access commands, the memory controller also periodically
issues a REF command to prevent data loss due to leakage of charge
from the cell capacitors over time.

Time

V
o

lt
a

g
e

Vdd

Vss

tRCD

Restoration
Charge
Sharing

Bitline Voltage

Cell Voltage

tRAS

ready-to-precharge
voltage level

ready-to-access
voltage level𝐕𝐝𝐝

𝟐

RD PREACT

1

2

3

4datatCL

Figure 2: Commands, timing parameters, and cell/bitline
voltages during a DRAM read operation.

Activate (ACT). The ACT command activates (opens) a DRAM
row by transferring the data contained in the cell capacitors to the
row buffer. ACT latency is governed by the tRCD timing parameter,
which ensures that enough time has passed since the ACT is issued
for the data to stabilize in the row buffer (such that it can be read).

ACT consists of two major steps: 1) capacitor-bitline charge shar-
ing and 2) charge restoration. Charge sharing begins by enabling the
wordline (❶ in Figure 2), which allows the cell capacitor to share
charge with the bitline, and thus perturb the precharged bitline
voltage. Once the cell and bitline voltages equalize due to charge
sharing, charge restoration starts (❷). During charge restoration,
the sense amplifiers are enabled to first detect the bitline voltage
shift, and later restore the bitline to a full Vss or Vdd depending on
the direction of the shift. Once the bitline is restored to a ready-
to-access voltage level (❸), restoration is complete, and the other
DRAM commands (e.g., RD, WR) can be issued to the bank.

Read (RD). After a row activation, the memory controller reads
data from the open row by issuing an RD command. The RD includes
a column address, which indicates the portion of the open row
to be read. When a DRAM chip receives an RD command, it first
loads the requested portion of the open row into the global row
buffer. After the data is in the global row buffer, the DRAM chip
sends the data across the data bus to the memory controller. The
RD command is governed by the timing parameter tCL, after which
the data appears on the data bus.

Write (WR). The WR command (not shown in Figure 2) modifies
data in an open DRAM row. The operation of WR is analogous to ACT
in that both commands require waiting enough time for the sense
amplifiers to restore the data in the DRAM cells. Similar to how a
sense amplifier restores a cell capacitor during the second step of
ACT, in case of a WR, the sense amplifier restores the capacitor with
the new data value that the WR command provides. The restoration
latency for WR is governed by the tWR timing parameter. For both ACT
and WR commands, the restoration latency originates from the sense
amplifier driving a bitline to replenish the charge of the DRAM
cell capacitor [40, 53, 57, 120]. This makes any optimizations to the
charge restoration step of ACT equally applicable to WR. Thus, using
such optimizations we can decrease both tRAS and tWR.

Precharge (PRE). PRE is used to close an open DRAM row and
prepare the DRAM bank for activation of another row. The memory
controller can follow an ACT with PRE to the same bank after at
least the time interval specified by tRAS. tRAS ensures that enough
time has passed to fully restore the DRAM cells of the activated
row to a ready-to-precharge voltage (❹ in Figure 2). The latency of
PRE is governed by the timing parameter tRP, which allows enough
time to set the bitline voltage back to reference level (e.g., Vdd/2).
After tRP, the memory controller can issue an ACT to open a new
row in the same bank.

Refresh (REF). A DRAM cell cannot store its data permanently,
as the cell capacitor leaks charge over time. The retention time of a
DRAM cell is defined as the length of time for which the data can

3

still be correctly read out of the cell after data is stored in the cell. To
ensure data integrity, the memory controller periodically issues REF
commands to the DRAM chip. Each REF command replenishes the
charge of several DRAM rows starting from the one that a refresh
counter (implemented in the DRAM chip) points to. The memory
controller is responsible for issuing a sufficient number of REF com-
mands to refresh the entire DRAM during a manufacturer-specified
refresh interval (typically 64ms in DDR3 and DDR4 DRAM, and
32ms in LPDDR4).

3 COPY-ROW DRAM
To efficiently solve the challenges of 1) high access latency, 2) high
refresh overhead, and 3) increasing vulnerability to failure mecha-
nisms in DRAM, without requiring any changes to the DRAM cell
array, we introduce Copy-Row DRAM (CROW). CROW is a new,
practical substrate that exploits the existing DRAM architecture
to efficiently duplicate a small number of rows in a subarray at
runtime. CROW is versatile, and enables new mechanisms for im-
proving DRAM performance, energy efficiency, and reliability, as
we show in Section 4.

3.1 CROW: A High-Level Overview
CROW consists of two key components: 1) a small number of copy
rows in each subarray, which can be used to duplicate or remap
the data stored in one of the remaining rows (called regular rows)
of the subarray, 2) a table in the memory controller, called the
CROW-table, that tracks which rows are duplicated or remapped.

CROW divides a DRAM subarray into two types of rows: regular
rows and copy rows. A copy row is similar to a regular row in
the sense that it has the same row width and DRAM cell structure.
However, copy rows have their own small local row decoder within
the subarray, separate from the existing local row decoder for regu-
lar rows. This enables the memory controller to activate copy rows
independently from regular rows (which continue to use the exist-
ing local row decoder). By allowing copy rows and regular rows to
be activated independently, we enable two DRAM primitives that
make use of multiple-row activation (MRA) in CROW.

First, CROW can perform bulk data movement, where the DRAM
copies an entire row of data at once from a regular row to a copy
row. To do so, the memory controller first activates the regular
row, and next activates the copy row, immediately after the local
row buffer latches the data of the regular row. After the second
activation, the sense amplifiers restore the data initially stored only
in the regular row to both the regular row and the copy row (similar
to the RowClone [100] mechanism).

Second, CROW can perform reduced-latency DRAM access. When
a regular row and a copy row contain the same data, the memory
controller activates both rows simultaneously. This causes two cells
on the same bitline to inject charge into the bitline at a faster total
rate than a single cell can. Thereby, the sense amplifier to operate
faster, which leads to lower activation latency via an effect similar
to increasing the amount of charge stored in a single cell [10].

CROW makes use of a table in the memory controller, CROW-
table, that tracks which regular rows are duplicated or mapped
to copy rows. A mechanism that takes advantage of the CROW
substrate checks the CROW-table and uses the information in the
table to either 1) simultaneously activate duplicate regular and copy
rows or 2) activate the copy row that a regular row is remapped to.
For example, the CROW-cache mechanism (Section 4.1) updates
a CROW-table entry with the address of the regular row that has
been copied to the corresponding copy row. Prior to issuing an ACT
command to activate a target regular row, the memory controller
queries the CROW-table to check whether the regular row has a

duplicate copy row. If so, the memory controller issues a custom
reduced-latency DRAM command to simultaneously activate both
the regular row and the copy row, instead of a single activate to
the regular row. Doing so enables faster access to the duplicated
data stored in both rows. Next, we explain CROW in detail.

3.2 Copy Rows
CROW logically categorizes the rows in a subarray into two sets,
as shown in Figure 3: (1) regular rows, which operate the same
as in conventional DRAM; and (2) copy rows, which can be acti-
vated independently of the regular rows. In our design, we add
a small number of copy rows to the subarray, and add a second
local row decoder (called the CROW decoder) for the copy rows.1
Because the CROW decoder drives a much smaller number of rows
than the existing local row decoder, it has a much smaller area
cost (Section 6.2). The memory controller provides the regular row
and copy row addresses to the respective decoders when issuing
an ACT command.

copy rows

regular
rows

lo
ca

l
ro

w

d
e

co
d

e
r

C
R

O
W

d

ec
.

SA SA SA SA SASA

regular row
address

copy row
address

Figure 3: Regular and copy rows in a subarray in CROW.

3.3 CROW-table
As shown in Figure 4, the CROW-table in the memory controller
stores information on 1) whether a copy row is allocated, and 2)
which regular row is duplicated or remapped to a copy row. For ex-
ample, in our weak row remapping scheme (Section 4.2), a CROW-
table entry holds the address of the regular row that the copy row
replaces. The CROW-table stores an entry for each copy row in a
DRAM channel, and is n-way set associative, where n is the number
of copy rows in each subarray.

copy row 0

...

copy row N-1

{Bank ID, Subarray ID}{Bank ID, Subarray ID}

copy row 1

Allocated

RegularRowID

Special

Figure 4: Organization of the CROW-table.

The memory controller indexes the CROW-table using a com-
bination of bank and subarray addresses, which are part of the
physical address of a memory request. The memory controller
checks the table for an entry associated with the regular row that
the memory request is to access. Our current design stores three
fields in each CROW-table entry:2 1) the Allocated field indicates
whether the entry is valid or not; 2) the RegularRowID field stores
a pointer to the regular row that the corresponding copy row is
associated with 3) the Special field stores additional information
specific to the mechanism that is implemented using CROW.

1Alternatively, CROW can use a small set of the existing rows in a conventional
subarray as copy rows, but this requires changing the existing local row decoder, and
may not keep the number of addressable rows in the subarray as a power of two.
2The entry can be expanded to contain more information if needed by other mecha-
nisms that make use of CROW.

4

4 APPLICATIONS OF CROW
CROW is a versatile substrate that enables multiple mechanisms
for improving DRAM performance, energy efficiency, and reliabil-
ity. We propose three such new mechanisms based on CROW: 1)
CROW-cache, a mechanism that reduces DRAM access latency by
exploiting CROW’s ability to simultaneously activate a regular row
and a copy row that store the same data; 2) CROW-ref, a mechanism
that reduces DRAM refresh overhead by exploiting CROW’s ability
to remap weak rows with low retention times to strong copy rows.
This mechanism relies on retention time profiling [65, 87, 88] to
determine weak and strong rows in DRAM; 3) a mechanism that
protects against the RowHammer [52] vulnerability by identify-
ing rows that are vulnerable to RowHammer-induced errors and
remapping the vulnerable rows to copy rows.

4.1 In-DRAM Caching (CROW-cache)
Our in-DRAM caching mechanism, CROW-cache, exploits both of
our new multiple-row activation primitives in CROW (Section 3.1).
The key idea of CROW-cache is to use a copy row as a duplicate of
a recently-accessed regular row within the same subarray, and to
activate both the regular row and the copy row. By simultaneously
activating both rows, CROW-cache reduces activation latency and
starts servicing read and write requests sooner.

4.1.1 Copying a Regular Row to a Copy Row. Given N
copy rows, we would like to duplicate the N regular rows that
will be most frequently activated in the near future to maximize
the benefits of CROW-cache. However, determining the N most
frequently-activated rows is a difficult problem, as applications
often access mainmemory with irregular access patterns. Therefore,
we follow a similar approach used by processor caches, where the
most-recently-used rows are cached instead of the most frequently-
accessed rows. Depending on how many copy rows are available,
CROW-cache maintains copies of the N most-recently-activated
regular rows in each subarray. When the memory controller needs
to activate a regular row that is not already duplicated, the memory
controller copies the regular row to an available copy row, using
multiple-row activation. While this is a simple scheme, we achieve
a significant hit rate on the CROW-table with a small number of
copy rows (see Section 8.1.1).

To efficiently copy a regular row to a copy row within a subarray,
we introduce a new DRAM command, which we call Activate-and-
copy (ACT-c). The ACT-c command performs a three-step row copy
operation in DRAM, using a technique similar to RowClone [100].
First, the memory controller issues ACT-c to DRAM and sends the
addresses of 1) the source regular row and 2) the destination copy
row, over multiple command bus cycles. Second, upon receiving an
ACT-c command, DRAM enables the wordline of only the regular
row. The process of reading and latching the row’s data into the
sense amplifiers completes as usual (see Section 2.2). Third, as soon
as the data is latched in the sense amplifiers, DRAM enables the
wordline of the copy row. This causes the sense amplifiers to restore
charge to both the regular row and the copy row. On completion
of the restoration phase, both the regular row and the copy row
contain the same data.

The ACT-c operation slightly increases the restoration time com-
pared to regular ACT. This is because, after the wordline of the copy
row is enabled, the capacitance that the sense amplifier drives the
bitline against increases, since two cell capacitors are connected
to the same bitline. In our circuit-level SPICE model, for the ACT-c
command, we find that the activate-to-precharge latency (tRAS)
increases by 18%. However, this activation latency overhead has a
very limited impact on overall system performance because CROW-
table typically achieves a high hit rate (Section 8.1.1), which means

that the latency of duplicating the row is amortized by the reduced
activation latency of future accesses to the row.

4.1.2 Reducing Activation Latency. CROW-cache intro-
duces a second new DRAM command, Activate-two (ACT-t), to
simultaneously activate a regular row and its duplicate copy row.
If the CROW-table (see Section 3.3) contains an entry indicating
that a copy row is a duplicate of the regular row to be activated,
the memory controller issues ACT-t to perform MRA on both rows,
achieving low-latency activation. In Section 5, we perform detailed
circuit-level SPICE simulations to analyze the activation latency
reduction with ACT-t.

Note that the modifications needed for ACT-c and ACT-t in
the row decoder logic are nearly identical, as they both perform
multiple-row activation. The difference is that rather than acti-
vating the copy rowafter the regular row as with ACT-c, ACT-t
activates both of the rows concurrently.

4.1.3 Reducing Restoration Latency. In addition to de-
creasing the amount of time required for charge sharing during
activation (see Section 2.2), the increased capacitance on the bitline
due to the activation of multiple cells enables the reduction of
tRAS by using partial restoration [116, 121]. The main idea of the
partial restoration technique is to terminate row activation earlier
than normal, i.e., issue PRE by relaxing (i.e., reducing) tRAS, on a
multiple-row activation such that the cells are not fully restored.
While this degrades the retention time of each cell individually,
the partially restored cells contain just enough charge to maintain
data integrity until the next refresh operation [93] (we verify this
using SPICE simulations in Section 5). We combine partial cell
restoration (i.e., reduction in tRAS) with the reduction in tRCD in
order to provide an even greater speedup than possible by simply
decreasing tRCD alone (see Section 8).

Taking the concept one step further, we can also apply partial
restoration to write accesses, decreasing the amount of time re-
quired for the WR command. Since the write restoration latency
(tWR) is analogous to cell restoration during activation (Section 2.2),
we can terminate the write process early enough such that the
written cells are only partially charged.

4.1.4 Evicting an Entry from the CROW-table. As de-
scribed in Section 4.1.3, CROW-cache relaxes tRAS for the ACT-t
command to further improve the DRAM access latency. Relaxing
tRASmay terminate the restoration operation early, which puts the
precharged regular and copy rows into a partially-restored state.

Note that there are two cases where relaxing tRAS does not
necessarily lead to partial restoration. First, the memory controller
can exploit an open regular row + copy row pair to serve multiple
memory requests, if available in the request queue, from different
portions of the row. The time needed to serve these requests can
delay precharging the associated regular and copy rows until they
are fully restored. Second, if there are no other memory requests
to different rows in the same bank, the currently-opened regular
row and copy row can be left open, providing enough time for full
charge restoration.

CROW-cache maintains the restoration state of the paired regu-
lar and copy rows by utilizing a single bit of the Special field of the
CROW-table, which in the context of CROW-cache we refer to as
the isFullyRestored field. CROW-cache sets isFullyRestored
to false only if 1) ACT-t was used to activate the currently open
row, and 2) the memory controller issues a PRE command to close
the rows before the default tRAS is satisfied. In contrast, CROW-
cache sets isFullyRestored to true if the memory controller is-
sues the next PRE after the default tRAS (i.e., a time interval suffi-
cient for fully restoring the open regular row and copy row). Note

5

that existing memory controllers already maintain timing infor-
mation for conventional command scheduling, e.g., when the last
ACT to each bank was issued. By taking advantage of the existing
timing information, CROW-cache does not incur significant area
overhead for managing the isFullyRestored field.

Partially restoring the duplicate rows helps to significantly re-
duce restoration latency (see Section 5). However, partial restoration
introduces a new challenge to the design of CROW-cache, because
a partially-restored row can only be correctly accessed using ACT-t,
which activates a regular row along with its duplicate copy row.
Duplicating a new regular row (RRnew) to a copy row that is al-
ready a duplicate of another regular row (RRold), i.e., evictingRRold
from the CROW-table, causes RRold to be activated as a single row
during a future access. If RRold is partially restored prior to evic-
tion from the CROW-table, performing a single-row activation on
RRold in the future may lead to data corruption. Thus, the memory
controller needs to guarantee that a partially-restored regular row
is never evicted from the CROW-table.

To prevent data corruption due to the eviction of a partially-
restored row from the CROW-table, if the isFullyRestored field is
false, the memory controller first issues an ACT-t and fully restores
RRold by conforming to the default tRAS. Since this operation sets
isFullyRestored to true, RRold can now safely be evicted from the
CROW-table to be replaced with RRnew . The disadvantage of this
approach is the overhead of issuing an additional ACT-t followed
by a PRE to perform full restoration. However, in Section 8.1.1, we
show that this overhead has a negligible performance impact since
CROW-table has a high hit rate.

4.1.5 Implementing the New DRAM Commands. To im-
plement CROW-cache, we introduce the ACT-c and ACT-t DRAM
commands, both of which activate a regular row and a copy row.
The wordline of a regular row is enabled in the same way as in
conventional DRAM. To enable the wordline of a copy row, we
extend the existing local row decoder logic such that it can drive
the wordline of a copy row independently of the regular row. As
we show in Section 6.2, for the default configuration of the CROW
substrate with eight copy rows, our modifications increase the de-
coder area by 4.76%, leading to 0.48% area overhead in the entire
DRAM chip. The additional eight copy rows per subarray require
only 1.6% of the DRAM storage capacity.

Unlike ACT, which specifies a single row address, ACT-c and
ACT-t need to specify the addresses of both a regular and a copy row.
ACT-c and ACT-t need only a small number of copy row address bits
in addition to the regular row address bits since the corresponding
copy row is in the same subarray as the activated regular row. For
CROW-8, where each subarray has eight copy rows, we need only
three additional bits to encode the copy row address. We can either
add three wires to the address bus (likely undesirable) or send the
address over multiple cycles as done in current LPDDR4 chips for
the ACT, RD, and WR commands [36].3

4.2 Reducing Refresh Overhead (CROW-ref)
To reduce the DRAM refresh overhead, we take advantage of the
CROW substrate to develop CROW-ref, a software-transparent
weak row remapping scheme. CROW-ref extends the refresh inter-
val of the entire DRAM chip beyond the worst-case value defined in
DRAM standards (64ms for DDR3 and DDR4, 32ms for LPDDR4)
by avoiding the use of the very small set of weak rows in a given
DRAM chip, i.e., rows that would fail when the refresh interval is
3In our evaluations, we assume an additional cycle on the command/address bus to
send the copy row address to DRAM. This additional cycle does not always impact the
activation latency, as the memory controller can issue the ACT-c and ACT-t commands
one cycle earlier if the command/address bus is idle. Also, DRAM does not immediately
need the address of the copy row for ACT-c.

extended (due to the existence of at least one weak cell in the row).
CROW-ref consists of three key components. First, CROW-ref uses
retention time profiling at system boot or during runtime to identify
the weak rows. Second, CROW-ref utilizes the strong copy rows
provided by CROW in each subarray to store the data that would
have originally been stored in weak regular rows. Third, CROW-ref
uses the CROW-table to maintain the remapping information, i.e.,
which strong copy row replaces which weak regular row.

4.2.1 IdentifyingWeak Rows. To identify the weak rows in
each subarray, we rely on retention time profiling methodologies
proposed by prior work [41–43, 52, 65, 87, 88, 92, 118]. A retention
time profiler tests the DRAM device with various data patterns and
a wide range of operating temperatures to cover all DRAM cells
that fail at a chosen target retention time. Prior works find that
very few DRAM cells fail when the refresh interval is extended by
2x-4x. For example, Liu et al. [65] show that only ∼1000 cells in a
32GiB DRAM module fail when the refresh interval is extended
to 256ms. Assuming the experimentally-demonstrated uniform
random distribution of these weak cells in a DRAM chip [2, 64, 65,
87, 88], we calculate that the bit error rate (BER) is 4 · 10−9 when
operating at a 256ms refresh interval.

Based on this observation, we can determine how effective
CROW-ref is likely to be for a given number of copy rows. First,
using the BER, we can calculate Pweak_row, the probability that a
row contains at least one weak cell, as follows:

Pweak_row = 1 − (1 − BER)Ncells_per_row (1)
where Ncells_per_row is the number of DRAM cells in a row. Second,
we can use Prow to determine Psubarray−n , which is the probability
that a subarray with Nrows rows contains more than n weak rows:

Psubarray−n = 1 −
n∑

k=0

(
Nrows
k

)
Pkrow (1 − Prow)Nrows−k (2)

Using these equations, for a DRAM chip with 8 banks, 128 sub-
arrays per bank, 512 rows per subarray, and 8KiB per row, the
probability of any subarray having more than 1/2/4/8 weak rows
is 0.99/3.1 × 10−1/3.3 × 10−4/3.3 × 10−11. We conclude that the
probability of having a subarray with a large number of weak rows
is extremely low, and thus CROW-ref is highly effective even when
the CROW substrate provides only 8 copy rows per subarray. In
the unlikely case where the DRAM has a subarray with more rows
with weak cells than the number of available copy rows, CROW-ref
falls back to the default refresh interval, which does not provide
performance and energy efficiency benefits but ensures correct
DRAM operation.4

4.2.2 Operation of the Remapping Scheme. In each sub-
array, CROW-ref remaps weak regular rows to strong copy rows
in the same subarray.5 CROW-ref tracks the remapping using the
CROW-table. When a weak regular row is remapped to a strong
copy row, CROW-ref stores the row address of the regular row into
the RegularRowID field of the CROW-table entry that corresponds
to the copy row. When the memory controller needs to activate a
row, it checks the CROW-table to see if any of the RegularRowID
fields contains the address of the row to be activated. If one of
the RegularRowID fields matches, the memory controller issues
an activate command to the copy row that replaces the regular
row, instead of to the regular row. On a CROW-table miss, which

4Alternatively, CROW-ref can be combined with a heterogeneous refresh-rate scheme,
e.g., RAIDR [64] or AVATAR [88].
5We do not use a weak copy row to replace a weak regular row, as a weak copy row
would also not maintain data correctly for an extended refresh interval. The retention
time profiler also identifies the weak copy rows.

6

indicates that the row to be activated contains only strong cells,
the memory controller activates only the original regular row. This
row remapping operates transparently from the software, as the
regular-to-copy-row remapping is not exposed to the software.

4.2.3 Support for Dynamic Remapping. CROW-ref can
dynamically change the remapping of weak rows if new weak rows
are detected at runtime. This functionality is important as DRAM
cells are known to be susceptible to a failure mechanism known
as variable retention time (VRT) [42, 43, 65, 74, 87, 88, 92, 118].
As a VRT cell can nondeterministically transition between high
and low retention states, new VRT cells need to be continuously
identified by periodically profiling DRAM, as proposed by prior
work [41, 87, 88]. To remap a newly-identified weak regular row
at runtime, the memory controller simply allocates an unused
strong copy row from the subarray, and issues an ACT-c to copy
the regular row’s data into the copy row. Once this is done, the
memory controller accesses the strong copy row instead of the
weak regular row, as we explain in Section 4.2.2.

4.3 Mitigating RowHammer
We propose a third mechanism enabled by the CROW substrate that
protects against the RowHammer vulnerability [52, 79, 80]. Due to
the small DRAM cell size and short distance between DRAM cells,
electromagnetic coupling effects that result from rapidly activating
and precharging (i.e., hammering) a DRAM row cause bit flips on
the physically-adjacent (i.e., victim) rows [52, 79, 80]. This effect is
known as RowHammer, and has been demonstrated on real DRAM
chips [52]. Aside from the decreased reliability of DRAM due to
RowHammer, prior works (e.g., [20, 21, 63, 90, 99, 110, 113, 117])
exploit RowHammer to perform attacks that gain privileged access
to the system. Therefore, it is important to mitigate the effects of
RowHammer in commodity DRAM.

We propose a CROW-based mechanism that mitigates RowHam-
mer by remapping the victim rows adjacent to the hammered row
to copy rows. By doing so, the mechanism prevents the attacker
from flipping bits on the data originally allocated in the victim rows.
Several prior works [16, 45, 62, 103] propose techniques for detect-
ing access patterns that rapidly activate and precharge a specific
row. Typically, these works implement a counter-based structure
that stores the number of ACT commands issued to each row. Our
RowHammer mitigation mechanism can use a similar technique to
detect a RowHammer attack. When the memory controller detects a
DRAM row that is being hammered, it issues two ACT-c commands
to copy the victim rows that are adjacent to the hammered row to
two of the available copy rows in the same subarray. Similar to the
CROW-ref mechanism (Section 4.2), our RowHammer mitigation
mechanism tracks a remapped victim row using the RegularRowID
field in each CROW-table entry, and looks up the CROW-table
every time a row is activated to determine if a victim row has been
remapped to a copy row.

CROW enables a simple yet effective mechanism for mitigating
the RowHammer vulnerability that can reuse much of the logic of
CROW-ref. We leave the evaluation of our RowHammer mitigation
mechanism to future work.

5 CIRCUIT SIMULATIONS
We perform detailed circuit-level SPICE simulations to find the
latency of 1) simultaneously activating two DRAM rows that store
the same data (ACT-t) and 2) copying an entire regular row to a copy
row inside a subarray (ACT-c). Table 1 shows a summary of change
in the tRCD, tRAS, and tWR timing parameters that we use for the
two new commands, based on the SPICE simulations. We discuss
in detail how the timings are derived for ACT-t in Section 5.1, and
for ACT-c in Section 5.2.

Table 1: Timing parameters for new DRAM commands.
DRAM Command tRCD tRAS tWR

ACT-t
activating fully-restored rows -38% -7%a (-33%b) +14%a (-13%b)

activating partially-restored rows -21% -7%a (-25%b) +14%a (-13%b)
ACT-c 0% +18%a (-7%b) +14%a (-13%b)

a When fully restoring the charge. b When terminating charge restoration early.

In our simulations, we model the entire cell array of a modern
DRAM chip using 22 nm DRAM technology parameters, which we
obtain by scaling the reference 55 nm technology parameters [89]
based on the ITRS roadmap [34, 115].We use 22 nm PTM low-power
transistor models [1, 122] to implement the access transistors and
the sense amplifiers. In our SPICE simulations, we run 104 iterations
of Monte-Carlo simulations with a 5% margin on every parameter
of each circuit component, to account for manufacturing process
variation. Across all iterations, we observe that the ACT-t and ACT-c
commands operate correctly.We report the latency of the ACT-t and
ACT-c commands based on the Monte-Carlo simulation iteration
that has the highest access latency for each of these commands. We
release our SPICE model as an open-source tool [96].

5.1 Simultaneous Row Activation Latency
Simultaneously activating multiple rows that store the same data
accelerates the charge-sharing process, as the increased amount of
charge driven on each bitline perturbs the bitline faster compared
to single-row activation. Figure 5a plots the reduction in activation
latency (tRCD) for a varying number of simultaneously-activated
rows. As seen in the figure, we observe a tRCD reduction of 38%
when simultaneously activating two rows. tRCD reduces further
when we increase the number of simultaneously-activated rows,
but the latency reduction per additional activated row becomes
smaller. We empirically find that simultaneously activating only
two rows rather than more rows achieves a large portion of the
maximum possible tRCD reduction potential (i.e., as we approach
an infinite number of rows being activated simultaneously) with
low area and power overhead (see Section 6.2).

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8N
o

rm
al

iz
ed

 t
R

C
D

Simultaneously Activated Rows

(a) tRCD (18 ns)

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

1 2 3 4 5 6 7 8

N
o

rm
. L

at
en

cy

Simultaneously Activated Rows

tRAS

Restoration

tWR

(b) tRAS (42 ns), tWR (18 ns), and
restoration (24 ns)

Figure 5: Change in various DRAM latencies with differ-
ent number of simultaneously-activated rows, normalized
to baseline DRAM timing parameters (absolute baseline val-
ues in parentheses).

Change in Restoration Latency. Although two-row activa-
tion reduces tRCD, fully restoring the capacitors of two cells takes
more time compared to fully restoring a single cell. Therefore,
two-row activation can potentially increase tRAS and tWR, which
could offset the benefits of the tRCD reduction. Figure 5b shows the
change in tRAS, restoration time, and tWR for a varying number of
simultaneously-activated rows. Although restoration time always
increases with the number of rows, we see a slight decrease in tRAS
when the number of rows is small. This is because the reduction in
tRCD, which is part of tRAS (as we explain in Section 2.2), is larger
than the increase in restoration time. However, for five or more

7

simultaneously-activated rows, the overhead in restoration time ex-
ceeds the benefits of tRCD reduction, and, as a result, tRAS increases.
tWRalways increases with the number of simultaneously-activated
rows, because writing to a DRAM cell is similar to restoring a cell
(Section 2.2).

Terminating Restoration Early.We use CROW to enable in-
DRAM caching by duplicating recently-accessed rows and using
two-row activation to reduce tRCD significantly for future activation
of such rows. However, to make the in-DRAM caching mechanism
more effective, we aim to reduce tRAS further, as it is a critical
timing parameter that affects how quickly we can switch between
rows in the event of a row buffer conflict. We make three observa-
tions based on two-row activation, which leads us to a trade-off
between reducing tRCD and reducing tRAS. First, when two DRAM
rows are used to store the same data, the data is correctly retained
for a longer period of time compared to when the data is stored
in a single row. This is due to the increased aggregate capacitance
that storing each bit of data using two cells provides. Second, since
data is correctly retained for a longer period of time when stored
in two rows, we can terminate the restoration operation early to
reduce tRAS and still achieve the target retention time, e.g., 64ms.
Third, as the amount of charge stored in a cell capacitor decreases,
the activation latency increases [26, 57]. Therefore, terminating
restoration early reduces tRAS at the expense of a slight increase
in tRCD (due to less charge).

We explore the trade-off space between reducing tRCD and reduc-
ing tRAS for a varying number of simultaneously-activated rows
using our SPICE model. In Figure 6, we show the different tRCD and
tRAS latencies that can be used with multiple-row activation (MRA)
while still ensuring data correctness. For two-row activation, we
empirically find that a 21% reduction in tRCD and a 33% reduction in
tRAS provides the best performance on average for the workloads
that we evaluate (Section 8.1.1).

-21% tRCD
-33% tRAS

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
o

rm
al

iz
ed

 t
R

C
D

Normalized tRAS

2 rows

3 rows

4 rows

Figure 6: Normalized tRCD latency as a function of normal-
ized tRAS latency for different number of simultaneously ac-
tivated DRAM rows.

We also eliminate the tWR overhead of MRA by terminating the
restoration step early when writing to simultaneously-activated
DRAM rows. Since reducing tWR increases the tRCD latency for
the next activation of the row, there exists a trade-off between
reducing tRCD and reducing tWR, similar to the trade-off between
reducing tRCD and reducing tRAS. In our evaluations, we find that
to achieve a 21% reduction in tRCD, we can reduce tWR by 13% (see
Table 1) by terminating the restoration step early during a write to
simultaneously-activated DRAM rows.

5.2 MRA-based Row Copy Latency
As we explain in Section 4.1.1, CROW-cache uses the new ACT-c
command to efficiently copy a regular row to a copy row in the
same subarray by activating the copy row slightly after activating
the regular row. This gives the sense amplifiers sufficient time to

correctly read the data stored in the regular row. Using our SPICE
model, we find that ACT-c does not affect tRCD because the copy row
is activated after satisfying tRCD. This is because, to start restoring
the data of the regular row to both the regular row and the copy
row, the local row buffer first needs to correctly latch the data of the
regular row. In contrast to tRCD, the ACT-c command increases tRAS
by 18% (reduces tRAS by 7% when terminating restoration early),
as restoring two DRAM rows requires more time than restoring a
single row. We model this additional time in all of our evaluations.

6 HARDWARE OVERHEAD
Implementing the CROW substrate requires only a small number
of changes in the memory controller and the DRAM die.

6.1 Memory Controller Overhead
CROW introduces the CROW-table (Section 3.3), which incurs
modest storage overhead in the memory controller. The storage
requirement for each entry (Storaдeentry) in CROW-table can be
calculated in terms of bits using the following equation:

Storaдeentry = ⌈loд2 (RR)⌉ + BitsSpecial + BitsAllocated (3)
where RR is the number of regular rows in each subarray (we take
the log of RR to represent the number of bits needed to store the
RegularRowID field), BitsSpecial is the size of the Special field in
bits, and BitsAllocated is set to 1 to indicate the single bit used to track
whether the entry is currently valid. Note that the RegularRowID
field does not have to store the entire row address. Instead, it is
sufficient to store a pointer to the position of the row in the subarray.
For an example subarray with 512 regular rows, an index range of
0–511 is sufficient to address all regular rows in same subarray. We
assume one bit for the Special field, which we need to distinguish
between the CROW-cache and CROW-ref mechanisms (Section 4).

We calculate StoraдeCROW-table, the storage requirement for the
entire CROW-table, as:

StoraдeCROW-table = Storaдeentry ∗CR ∗ SA (4)
where CR is the number of copy rows in each subarray, and SA
is the total number of subarrays in the DRAM. We calculate the
storage requirement of the CROW-table for a single-channel mem-
ory system with 512 regular rows per subarray, 1024 subarrays (8
banks; 128 subarrays per bank), and 8 copy rows per subarray to
be 11.3KiB. Thus, the processor die overhead is small.

The CROW-table storage overhead is proportional to the mem-
ory size. Although the overhead is small, we can further optimize
the CROW-table implementation to reduce its storage overhead for
large memories. One such optimization shares one set of CROW-
table entries across multiple subarrays.While this limits the number
of copy rows that can be utilized simultaneously, CROW can still
capture the majority of the benefits that would be provided if the
CROW substrate had a separate CROW-table for each subarray.
From our evaluations, when sharing each CROW-table entry be-
tween 4 subarrays (i.e., approximately a factor of 4 reduction in
CROW-table storage requirements), we observe that the average
speedup that CROW-cache provides for single-core workloads re-
duces from 7.1% to only 6.1%.

We evaluate the access time of a CROW-table with the configu-
ration given in Table 2 using CACTI [77], and find that the access
time is only 0.14 ns. We do not expect the table access time to have
any impact on the overall cycle time of the memory controller.

8

6.2 DRAM Die Area Overhead
To activate multiple rows in the same subarray, we modify the row
decoder to drive multiple wordlines at the same time. These modi-
fications incur a small area overhead and cause MRA to consume
more power compared to a single-row activation.

In Figure 7 (left), we show the activation power overhead for
simultaneously activating up to nine DRAM rows in the same
subarray. The ACT-c and ACT-t commands simultaneously activate
two rows, and consume only 5.8% additional power compared to a
conventional ACT command that activates only a single row. The
slight increase in power consumption is mainly due to the small
copy row decoder that CROW introduces to drive the copy rows.

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8

A
ct

iv
at

io
n

 P
o

w
er

O

ve
rh

ea
d

Simultaneously Activated
DRAM Rows

(a) Power

0%
5%

10%
15%
20%
25%
30%
35%

1 2 4 8 16 32 64 128

A
re

a
O

ve
rh

ea
d

Copy Rows in a Subarray

Decoder Area

DRAM Chip

(b) Area

Figure 7: Power consumption and area overhead of MRA.

Figure 7 (right) plots the area overhead of a copy row decoder
that enables one of the copy rows in the subarray independently
from the existing regular row decoder. The figure shows the copy
row decoder area overhead as we vary the number of copy rows in
a subarray. For CROW-8, which has eight copy rows per subarray,
the decoder area increases by 4.8%, which corresponds to only a
0.48% area overhead for the entire DRAM chip. The area overhead
of CROW-8 is small because the decoder required for eight copy
rows is as small as 9.6 µm2, while our evaluations show that the
local row decoder for 512 regular rows occupies 200.9 µm2.

7 METHODOLOGY
We use Ramulator [55, 97], a cycle-accurate DRAM simulator, to
evaluate the performance of the two mechanisms that we propose
based on the CROW substrate. We run Ramulator in CPU-trace-
driven mode and collect application traces using a custom Pin-
tool [68]. The traces include virtual addresses that are accessed
by the application during the trace collection run. In Ramulator,
we perform virtual-to-physical address translation by randomly
allocating a 4KiB physical frame for each access to a new virtual
page, which emulates the behavior of a steady-state system [85].

Table 2 provides the system configuration we evaluate. Unless
stated otherwise, we implement CROW with eight copy rows per
subarray. We analyze the performance of CROW-cache and CROW-
ref on single- and multi-core system configurations using typical
LPDDR4 timing parameters, as shown in the table. Although our
evaluation is based on LPDDR4 DRAM, which is predominantly
used in various low-power systems [17], the mechanisms that we
propose can also reduce access latency in other DRAM-based mem-
ories, including 3D-stacked DRAM [59].

Workloads. We evaluate 44 single-core applications from four
benchmark suites: SPEC CPU2006 [106], TPC [111], STREAM [71],

6We use a variation of the FR-FCFS [95, 124] policy, called FR-FCFS-Cap [81], which
improves fairness by enforcing an upper limit for the number of read/write requests
that a row can service once activated. This policy performs better, on average, than
the conventional FR-FCFS policy [95, 124], as also shown in [54, 81, 108, 109].
7The timeout-based row buffer management policy closes an open row after 75 ns if
there are no requests in the memory controller queues to that row.

Table 2: Simulated system configuration.

Processor 1-4 cores, 4GHz clock frequency, 4-wide issue, 8 MSHRs per
core, 128-entry instruction window

Last-Level Cache 64B cache-line, 8-way associative, 8MiB capacity

Memory Controller
64-entry read/write request queue, FR-FCFS-Cap6 schedul-
ing policy [81], timeout-based row buffer policy7

DRAM
LPDDR4 [36], 1600MHz bus frequency, 4 channels, 1 rank,
8 banks/rank, 64K rows/bank, 512 rows/subarray, 8KiB row
buffer size, tRCD/tRAS/tWR 29 (18)/67 (42)/29 (18) cycles (ns)

and MediaBench [15]. In addition, we evaluate two synthetic appli-
cations [75] (excluded from our average performance calculations):
1) random, which accesses memory locations at random and has
very limited row-level locality; and 2) streaming, which has high
row-level locality because it accesses contiguous locations in DRAM
such that the time interval between two consecutive memory re-
quests is long enough for the memory controller to precharge the
recently-open row.

We classify the applications into three groups based on the
misses-per-kilo-instruction (MPKI) in the last-level cache. We ob-
tain the MPKI of each application by analyzing SimPoint [25] traces
(200M instructions) of each application’s representative phases us-
ing the single-core configuration. The three groups are:
• L (low memory intensity):MPKI < 1
• M (medium memory intensity): 1 ≤ MPKI < 10
• H (high memory intensity):MPKI ≥ 10
We create eight multi-programmed workload groups for the

four-core configuration, where each group consists of 20 multi-
programmed workloads. Each group has a mix of workloads of
different memory intensity classes. For example, LLHH indicates a
group of 20 four-core multi-programmed workloads, where each
workload consists of two randomly-selected single-core applica-
tions with low memory intensity (L) and two randomly-selected
single-core applications with high memory intensity (H). In total,
we evaluate 160 multi-programmed workloads. We simulate the
multi-core workloads until each core executes at least 200 million
instructions. For all configurations, we initially warm up the caches
by fast-forwarding 100 million instructions.

Metrics.We measure the speedup for single-core applications
using the instructions per cycle (IPC) metric. For multi-core evalua-
tions, we use the weighted speedup metric [104], which prior work
shows is a good measure of job throughput [13].

We use CACTI [77] to evaluate the DRAM area and power over-
head of our two mechanisms (i.e., CROW-cache and CROW-ref)
and prior works (i.e., TL-DRAM [58] and SALP [53]) that we com-
pare against. We perform a detailed evaluation of the latency impact
of MRA using our circuit-level SPICE model [96]. We use DRAM-
Power [5] to estimate DRAM energy consumption of our workloads.

8 EVALUATION
We evaluate the performance, energy efficiency, and area overhead
of the CROW-cache and CROW-ref mechanisms.

8.1 CROW-cache
We evaluate CROW-cache with different numbers of copy rows per
subarray in the CROW substrate. We denote each configuration of
CROW in the form of CROW-Cr , whereCr specifies the number of
copy rows (e.g., we use CROW-8 to refer to CROW with eight copy
rows). To show the potential of CROW-cache, we also evaluate
a hypothetical configuration with a 100% CROW-table hit rate,
referred to as Ideal CROW-cache.

9

8.1.1 Single-core Performance. Figure 8 (top) shows the
speedup of CROW-cache over the baseline and the CROW-table hit
rate (bottom) for single-core applications. We also list the last-level
cache MPKI of each application to indicate memory intensity. We
make four observations from the figure.

First, CROW-cache provides significant speedups. On average,
CROW-1, CROW-8, and CROW-256 improve performance by 5.5%,
7.1%, and 7.8%, respectively, over the baseline.8 In general, the
CROW-cache speedup increases with the application’s memory
intensity. Some memory-intensive applications (e.g., libq, h264-dec)
have lower speedups than less-memory-intensive applications be-
cause they exhibit high row buffer locality, which reduces the bene-
fits of CROW-cache. Applications with low MPKI (< 3, not plotted
for brevity) achieve speedups below 5% due to limited memory
activity, but no application experiences slow down.

Second, for most applications, CROW-1, with only one copy
row per subarray, achieves most of the performance of configura-
tions with more copy rows (on average, 60% of the performance
improvement of Ideal CROW-cache).

Third, the CROW-table hit rate is very high for most of the appli-
cations. This is indicative of high in-DRAM locality and translates
directly into performance improvement. On average, the hit rate
for CROW-1/CROW-8/CROW-256 is 68.8%/85.3%/91.1%.

Fourth, the overhead of fully restoring rows evicted from the
CROW-table is negligible (not plotted). For CROW-1, which has
the highest overhead from these evictions, restoring evicted rows
accounts for only 0.6% of the total activation operations.

8.1.2 Multi-core Performance. Figure 9 shows theweighted
speedup CROW-cache achieves with different CROW substrate
configurations for four-core workload groups. The bars show the
average speedup for the workloads in the corresponding workload
group, and the vertical lines show the maximum and minimum
speedup among the workloads in the group.

We observe that all CROW-cache configurations achieve a higher
speedup as the memory intensity of the workloads increase. On av-
erage, CROW-8 provides 7.4% speedup for the workload group with
four high-intensity workloads (i.e., HHHH), whereas it provides
only 0.4% speedup for LLLL.

In contrast to single-core workloads, CROW-8 provides signifi-
cantly better speedup compared to CROW-1 on four-core config-
urations. This is because simultaneously-running workloads are
more likely to generate requests that compete for the same subarray.
As a result, the CROW-table cannot achieve a high hit rate with
8We notice that, for some applications (e.g., jp2-encode), using fewer copy rows slightly
outperforms a configuration with more copy rows.We find the reason to be the changes
in memory request service order due to the fact that memory controller makes different
command scheduling decisions for different configurations.

LLLL LLLM LLMM LLLH MMMM LLHH LHHH HHHH GMEAN0.95

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
 W

ei
gh

te
d

Sp
ee

du
p

CROW-1
CROW-8

CROW-64
CROW-128

CROW-256
Ideal CROW-cache

Figure 9: CROW-cache speedup (160 four-core workloads).
a single copy row per subarray. In most cases, CROW-8 performs
close to Ideal CROW-cache with 100% hit rate, and requires only
1.6% of the DRAM storage capacity for in-DRAM caching.

8.1.3 DRAM Energy Consumption. We evaluate the total
DRAM energy consumed during the execution of single-core and
four-core workloads. Figure 10 shows the average DRAM energy
consumption with CROW-cache normalized to the baseline. Al-
though each ACT-c and ACT-t command consumes more power
than ACT, CROW-cache reduces the total DRAM energy due to
the improvement in execution time. On average, CROW-cache de-
creases DRAM energy consumption by 8.2% and 6.9% on single-
and four-core systems, respectively.

single_core
0.85

0.90

0.95

1.00

No
rm

al
ize

d
 D

RA
M

 E
ne

rg
y

LLLL
LLLM

LLMMLLLH
MMMM

LLHH
LHHH

HHHH
GMEAN

Figure 10: DRAM energy consumption with CROW-cache.

8.1.4 Comparison to TL-DRAM and SALP. We compare
CROW-cache to two previous works that also enable in-DRAM
caching in different ways: TL-DRAM [58] and SALP [53].

TL-DRAM uses isolation transistors on each bitline to split a
DRAM subarray into a far and a near segment. When the isolation
transistors are turned off, the DRAM rows in the near segment,
which is composed of a small number of rows close to the sense
amplifiers, can be accessed with low tRCD and low tRAS due to
reduced parasitic capacitance and resistance on the short bitline. In
contrast, accessing the far segment requires a slightly higher tRCD
and tRAS than in conventional DRAMdue to the additional parasitic
capacitance and resistance that the isolation transistor adds to the
bitline. We extend our circuit-level DRAM model to evaluate the
reduction in DRAM latencies for different far and near segment
sizes. We use the notation TL-DRAM-Nr , where Nr specifies the
number of rows in the near segment. TL-DRAM uses the rows in

0.95
1.00
1.05
1.10
1.15
1.20

Sp
ee

du
p

CROW-1 CROW-8 CROW-64 CROW-128 CROW-256 Ideal CROW-cache (100% Hit Rate)

ycsb
3 (3.1)

ycsb
4 (3.5)

ycsb
2 (3.9)

ycsb
1 (3.9)

sphinx3 (4.5)

ycsb
0 (4.9)

jp2-dec (5
.9)

tpcc6
4 (7.2)

jp2-enc (7
.5)

wcount (7
.8)

cactus (7
.9)

astar (8
.6)

tpch17 (11.0)

soplex (12.8)

milc (
13.3)

gems (1
3.4)

leslie3d (13.5)

tpch2 (16.2)

zeusmp (16.5)

lbm (19.8)

mcf (2
2.1)

stre
am-cp (23.3)

libq (24.9)

h264-dec (7
5.0)

GMEAN
0

25
50
75

100

Hi
t R

at
e

(%
)

random (11.4)

stre
aming (13.5)

Figure 8: Speedup and CROW-table hit rate of different configurations of CROW-cache for single-core applications. TheMPKI
of each application is listed in parentheses.

10

the near segment as a cache by copying the most-recently accessed
rows in the far segment to the near segment. Thus, similar to our
caching mechanism, TL-DRAM requires an efficient in-DRAM row
copy operation. We reuse the ACT-c command that we implement
for CROW-cache to perform the row copy in TL-DRAM.

SALP [53] modifies the row decoder logic to enable parallelism
among subarrays. As opposed to a conventional DRAM bank where
only a single row can be active at a time, SALP enables the activation
of multiple local row buffers independently from each other to pro-
vide fast access to the most-recently-activated row of each subarray.
We evaluate the SALP-MASA mode, which outperforms the other
two modes that Kim et al. [53] propose. We evaluate SALP with a
different number of subarrays per bank, which we indicate as SALP-
Ns , where Ns stands for the number of subarrays in a bank. For
SALP, we use both the timeout-based and the open-page (denoted
as SALP-Ns -O) row buffer management policies. The open-page
policy keeps a row open until a local row buffer conflict. Although
this increases the performance benefit of SALP by preventing a
local row buffer from being precharged before it is reused, SALP
with open-page policy consumes more energy since rows remain
active for a longer time. Note that, in SALP, the in-DRAM cache
capacity changes with the number of subarrays in the DRAM chip
as each subarray can cache a single row in its local row buffer. To
evaluate SALP with higher cache capacity, we reduce the number
of rows in each subarray by increasing the number of subarrays in
a bank, thus keeping the DRAM capacity constant.

Figure 11 compares the performance, energy efficiency, and
DRAM chip area overhead of different configurations of CROW-
cache, TL-DRAM [58], and SALP [53] for single-core workloads.
We draw four conclusions from the figure.

First, all SALP configurations using the open-page policy outper-
form CROW-cache. However, SALP increases the DRAM energy
consumption significantly as it frequently keeps multiple local row
buffers active, each of which consume significant static power (as
also shown in [53]). An idle LPDDR4 chip that has only a single
bank with an open row draws 10.9% more current (IDD3N) com-
pared to the current (IDD2N) when all banks are in closed state [73].
In SALP, the static power consumption is much higher than in con-
ventional DRAM, since multiple local row buffers per bank can be
active at the same time, whereas only one local row buffer per bank
can be active in conventional DRAM.

CROW-1

CROW-8

TL-DRAM-1

TL-DRAM-8

SALP-512

SALP-256

SALP-128

SALP-512-O

SALP-256-O

SALP-128-O

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

4% 6% 8% 10% 12% 14% 16%

N
o

rm
al

iz
ed

D

R
A

M
 E

n
er

gy

Speedup

(a) Energy vs. speedup

CROW-1
CROW-8

TL-DRAM-1

TL-DRAM-8

SALP-256

SALP-128

SALP-256-O

SALP-128-O

0%

5%

10%

15%

20%

25%

30%

4% 6% 8% 10% 12% 14% 16%

C
h

ip
 A

re
a

O
ve

rh
ea

d

Speedup

(b) Chip area vs. speedup

Figure 11: CROW-cache vs. TL-DRAM [58] & SALP [53].
Second, increasing the number of subarrays in a bank increases

the in-DRAM cache capacity and, thus, the performance benefits of
SALP. However, with the open-page policy, SALP-256 has a 58.4%
DRAM energy and 28.9% area overhead over the baseline, which is
much higher than the 27.3% DRAM energy and 0.6% area overhead
of SALP-128. SALP-512 has even larger DRAM energy (119.3%)
and area (84.5%) overheads (not plotted). In contrast, CROW-8
reduces DRAM energy (by 8.2%) at very low (0.48%) DRAM chip
area overhead.

Third, TL-DRAM-8 provides a higher speedup of 13.8% com-
pared to CROW-8, which provides 7.1% speedup (while reserv-
ing the same DRAM storage capacity for caching as TL-DRAM-8).

This is because the latency reduction benefit of a very small TL-
DRAM near-segment, which comprises only one or eight rows,
is higher than the latency reduction benefit of CROW’s two-row
activation. According to our circuit-level simulations, a TL-DRAM
near-segment with eight rows can be accessed with a 73% reduction
in tRCD and an 80% reduction in tRAS. However, this comes at the
cost of high DRAM chip area overhead, as we explain next.

Fourth, in TL-DRAM, the addition of an isolation transistor to
each bitline incurs high area overhead. As seen in Figure 11b, TL-
DRAM-8 incurs 6.9% DRAM chip area overhead, whereas CROW-8
incurs only 0.48% DRAM chip area overhead.

We conclude that CROW enables a more practical and lower
cost in-DRAM caching mechanism than TL-DRAM and SALP.

8.1.5 CROW-cache andPrefetcher. We evaluate the perfor-
mance benefits of CROW-cache on a systemwith a stride prefetcher,
which we implement based on the RPT prefetcher [31]. In Figure 12,
we show the speedup that the prefetcher, CROW-cache, and the
combination of the prefetcher and CROW-cache achieve over the
baseline, which does not implement prefetching. For brevity, we
only show results for a small number of workloads, which we
sampled to be representative of workloads where the prefetcher
provides different levels of effectiveness. We observe that, in most
cases, CROW-cache operates synergistically with the prefetcher,
i.e., CROW-cache serves both read and prefetch requests with low
latency, which further improves average system performance by
5.7% over the prefetcher across all single-core workloads.

mcf milc lbm

str
ea

m-cp
ge

ms
cac

tus
tpc

h1
7

sph
inx

3

les
lie3

d
sop

lex

jp2
-en

c
libq

wcou
nt

jp2
-de

c

zeu
sm

p
1-c

ore
HHHH

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Prefetcher CROW-8 CROW-8 + Prefetcher

Figure 12: CROW-cache and prefetching.

8.2 CROW-ref
Our weak row remapping scheme, CROW-ref, extends the refresh
interval from 64ms to 128ms of DRAM chip by eliminating the
small set of rows that have retention time below 128ms. For our
evaluations, we assume three weak rows for each subarray, which is
much more than expected, given data from real DRAM devices [51,
64, 87].9 Extending the refresh interval provides performance and
energy efficiency benefits as fewer refresh operations occur and
they interfere less with application requests. CROW-ref does not
incur any additional overhead other than allocating a few of the
copy rows that are available with the CROW substrate. The rest
of the copy rows can potentially be used by other CROW-based
mechanisms, e.g., CROW-cache.

Figure 13 shows CROW-ref’s average speedup and normalized
DRAM energy consumption for all single-core workloads and
memory intensive four-core workloads (HHHH) for four DRAM
chip densities (8, 16, 32, 64Gbit). We observe that, for a futuristic
64Gbit DRAM chip, CROW-ref improves average performance by
7.1%/11.9% and reduces DRAM energy consumption by 17.2%/7.8%
for single-/multi-core workloads. The energy benefits are lower for
four-core workloads as DRAM accesses contribute a larger portion
of the overall DRAM energy compared to single-core workloads
that inject relatively few requests to the DRAM.

9Based on Equation 2 in Section 4.2.1, the probability of a having subarray with more
than 3 weak rows across the entire DRAM is 9.3 × 10−3 .

11

m
cf

m
ilc lb
m

st
re

am
_c

p
ge

m
s

ca
ct

us
tp

ch
17

sp
hi

nx
3

le
sli

e3
d

so
pl

ex
jp

2-
en

c
lib

q
wc

ou
nt

jp
2-

de
c

ze
us

m
p

1-
co

re
HH

HH

1.00

1.04

1.08

1.12

1.16

1.20

Sp
ee

du
p

8 Gbit
16 Gbit

32 Gbit
64 Gbit

m
cf

m
ilc lb
m

st
re

am
_c

p
ge

m
s

ca
ct

us
tp

ch
17

sp
hi

nx
3

le
sli

e3
d

so
pl

ex
jp

2-
en

c
lib

q
wc

ou
nt

jp
2-

de
c

ze
us

m
p

1-
co

re
HH

HH

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
 D

RA
M

 E
ne

rg
y

Figure 13: CROW-ref speedup and DRAM energy.

8.3 Combining CROW-cache and CROW-ref
In Section 8.1, we note that not all applications effectively use
all available copy rows in CROW-cache since CROW-1 provides
speedup close to CROW-cache with more copy rows. Similarly, for
CROW-ref, previous work shows that there are only a small number
(e.g., < 1000 on a 32GiB DRAM [64]) of DRAM rows that must be
refreshed at the lowest refresh intervals, so it is very unlikely to have
more than a few weak rows (or even one) in a subarray. These two
observations lead us to believe that the two mechanisms, CROW-
cache and CROW-ref, can be combined to operate synergistically.
We combine the two mechanisms such that CROW-cache utilizes
copy rows that remain available after the weak row remapping of
CROW-ref. Combining the two mechanisms requires only a single
additional bit per CROW-table entry to indicate whether a copy
row is allocated for CROW-cache or CROW-ref.

Figure 14 summarizes the performance and energy efficiency
benefits of CROW-cache, CROW-ref, and their combination for an
LLC capacity ranging from 512KiB to 32MiB and 64Gbit DRAM
chip density. The figure compares the benefits of the two mecha-
nisms against a hypothetical CROW-based mechanism that has an
ideal CROW-cache with 100% hit rate and that does not require
any DRAM refresh. We make three observations from the figure.

512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB 32 MiB
1.001.051.101.151.201.251.301.35

Sp
ee

du
p

CROW-cache CROW-ref CROW-(cache+ref) Ideal CROW-cache + no refresh

512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB 32 MiB
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

Sp
ee

du
p

512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB 32 MiB
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

No
rm

al
ize

d
 D

RA
M

 E
ne

rg
y

(a) Single-core workloads

512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB 32 MiB
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

Sp
ee

du
p

512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB 32 MiB
0.70
0.75
0.80
0.85
0.90
0.95
1.00

No
rm

al
ize

d
 D

RA
M

 E
ne

rg
y

(b) Four-core workloads

Figure 14: CROW-(cache+ref) speedup and DRAM energy
for different LLC capacities.

First, the twomechanisms combined together provide higher per-
formance and energy efficiency than either mechanism alone. This
is because each mechanism improves a different aspect of DRAM.
Using an 8MiB LLC, the combination of the two mechanisms pro-
vides a 20.0% performance improvement and 22.3% DRAM energy
reduction for four-core workloads. The performance and energy
benefits of the combined CROW-cache/CROW-ref mechanisms is
larger than the the sum of the benefits of each individual mech-
anism. This is because by eliminating many refresh operations,
CROW-ref decreases the interference of refresh operations with
DRAM access operations. This helps CROW-cache, as a row that
would have been closed by a refresh operation may now stay open,
and no longer needs to be reactivated. As a result, CROW-cache
can use its limited copy rows to help accelerate the activation of
other rows than the ones that would have been closed by refresh.

Second, CROW-cache and CROW-ref significantly improve per-
formance and reduce DRAM energy for all LLC capacities. For
four-core workloads, we observe 22.4%/20.0%/15.7% performance
improvement and 22.0%/22.3%/22.8% DRAM energy reduction for
1/8/32MiB LLC capacity.

Third, the combination of CROW-cache and CROW-ref achieves
performance and DRAM energy improvements close to the ideal
mechanism (100% hit rate CROW-cache and no refresh). Using an
8MiB LLC, the combination of the two mechanisms achieves 71%
of the performance and 99%10 of the DRAM energy improvements
of the ideal mechanism.

We conclude that CROW is a flexible substrate that enables
multiple different mechanisms to operate simultaneously, thereby
improving both DRAM performance and energy efficiency.

9 RELATEDWORK
To our knowledge, this paper is the first to propose a flexible and
low-cost DRAM substrate that enables multiple mechanisms for
improving DRAM performance, energy efficiency, and reliability.
We briefly discuss closely related prior work that propose in-DRAM
caching, latency reduction, refresh reduction, and RowHammer
protection mechanisms.

In-DRAM Caching Mechanisms. In Section 8.1.4, we qualita-
tively and quantitatively compare CROW to the two most-closely
related prior works, TL-DRAM [58] and SALP [53], which also pro-
pose in-DRAM caching. We show that CROW-cache is lower-cost
to implement and consumes less DRAM energy compared to the
two mechanisms. Since TL-DRAM and SALP exploit different obser-
vations to enable low-latency regions in DRAM, CROW-cache can
be implemented in combination with both TL-DRAM and SALP to
further improve system performance.

Chang et al. [8] propose LISA to enable efficient data movement
between two subarrays. They also propose LISA-VILLA, which
changes the bank architecture to include small (but fast) subar-
rays [67] to enable dynamic in-DRAM caching. Their approach
1) requires more changes to the DRAM chip compared to CROW-
cache and 2) is orthogonal to CROW-cache as a copy row can be im-
plemented in both the small and regular subarrays of LISA-VILLA.

Hidaka et al. [29] propose to add SRAM memory cells inside a
DRAM chip to utilize as a cache. Implementing SRAM-based mem-
ory in DRAM incurs very high area overhead (e.g., 38.8% of the
DRAM chip area for 64KiB SRAM cache as shown in [53, 58]). Prior
works [22, 27, 94] that propose implementing multiple row buffers
(that can be used as cache) also suffer from high area overhead.
CROW-cache can be used in combination with all these prior mech-
anisms to reduce the latency of fetching data from a DRAM row to
the in-DRAM cache.

Multiple Clone Row (MCR-DRAM) [10] is based on an idea that
is similar to simultaneously activating multiple duplicate rows. The
key idea is to dynamically configure a DRAM bank into different
access-latency regions, where a region stores data in a single row or
duplicates data into multiple rows. MCR-DRAM does not propose
a hardware-managed in-DRAM cache as it requires support from
the operating system (or the application) to manage 1) the size
of each region and 2) data movement between different regions.
However, both operations are difficult to perform for the operating
system due to memory fragmentation, which complicates dynamic
resizing of a region and determining which data would benefit

10The combination of CROW-cache and CROW-ref almost reaches the energy reduc-
tion of the ideal mechanism because the ideal mechanism always hits in the CROW-
table, and thus always uses an ACT-t command to activate a row (which consumes
more energy than a regular ACT).

12

from a low-latency region. In contrast, CROW is much more prac-
tical to implement, as it is hardware managed and thus completely
transparent to the software.

Mitigating Refresh Overhead. Many prior works tackle the
refresh overhead problem in DRAM. RAIDR [64] proposes to bin
DRAM rows based on their retention times and perform refresh
operations at a different rate on each bin. Riho et al. [93] use a tech-
nique based on simultaneous multiple-row activation. However,
their mechanism is specifically designed for optimizing only refresh
operations, and thus it is not as flexible as the CROW substrate,
which provides copy rows that enable multiple orthogonal mecha-
nisms. Other prior works [2, 3, 7, 11, 12, 19, 33, 38, 41, 42, 44, 49, 50,
66, 69, 76, 83, 84, 86–88, 107, 114] propose various techniques to op-
timize refresh operations. These works are specifically designed for
only mitigating the refresh overhead. In contrast, CROW provides
a versatile substrate that can simultaneously reduce the refresh
overhead, reduce latency, and improve reliability.

Reducing DRAM Latency. ChargeCache [26] reduces the
average DRAM latency based on the observation that recently-
precharged rows, which are fully restored, can be accessed faster
compared to rows that have leaked some charge and are about
to be refreshed soon. Note that ChargeCache enables low-latency
access when DRAM rows are repeatedly activated in very short
intervals, e.g., 1ms. In contrast, a copy row in CROW-cache enables
low-latency access to a regular row for an indefinite amount of
time (until the row is evicted from CROW-table). Thus, CROW-
cache captures higher amount of in-DRAM locality. CROW-cache
is also orthogonal to ChargeCache and the two techniques can be
implemented together.

Recent studies [4, 6, 47, 48, 57] propose mechanisms to reduce
the DRAM access latency by reducing the margins present in tim-
ing parameters when operating under appropriate conditions (e.g.,
low temperature). Other works [7, 9, 22, 46, 57, 60, 101, 105, 119]
propose different methods to reduce DRAM latency. These works
are orthogonal to CROW, and they can be implemented along with
our mechanism to further reduce DRAM latency.

10 CONCLUSION
We propose CROW, a low-cost substrate that partitions each DRAM
subarray into two regions (regular rows and copy rows) and en-
ables independent control over the rows in each region. We lever-
age CROW to design two new mechanisms, CROW-cache and
CROW-ref, that improve DRAM performance and energy-efficiency.
CROW-cache uses a copy row to duplicate a regular row and simul-
taneously activates a regular row together with its duplicated copy
row to reduce the DRAM activation latency (by 38% in our experi-
ments). CROW-ref remaps retention-weak regular rows to strong
copy rows, thereby reducing the DRAM refresh rate. CROW’s flexi-
bility allows us to simultaneously employ both CROW-cache and
CROW-ref to provide 20.0% speedup and 22.3% DRAM energy sav-
ings over conventional DRAM. We conclude that CROW is a flexi-
ble DRAM substrate that enables a wide range of mechanisms to
improve performance, energy efficiency, and reliability. We hope
future work exploits CROW to devise more use cases that can take
advantage of its low-cost and versatile substrate.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for feedback. We thank the
SAFARI Research Group members for feedback and the stimulating
intellectual environment they provide. We acknowledge the gen-
erous gifts provided by our industrial partners: Alibaba, Facebook,
Google, Huawei, Intel, Microsoft, and VMware. This research was
supported in part by the Semiconductor Research Corporation.

REFERENCES
[1] Arizona State Univ., NIMO Group, “Predictive Technology Model,” http://ptm.

asu.edu/, 2012.
[2] S. Baek et al., “Refresh Now and Then,” TC, 2014.
[3] I. Bhati et al., “Coordinated Refresh: Energy Efficient Techniques for DRAM

Refresh Scheduling,” in ISLPED, 2013.
[4] K. Chandrasekar et al., “Exploiting Expendable Process-Margins in DRAMs for

Run-Time Performance Optimization,” in DATE, 2014.
[5] K. Chandrasekar et al., “DRAMPower: Open-Source DRAM Power & Energy

Estimation Tool,” http://www.drampower.info.
[6] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:

Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS,
2016.

[7] K. K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes
with Accesses,” in HPCA, 2014.

[8] K. K. Chang et al., “Low-cost Inter-linked Subarrays (LISA): Enabling Fast
Inter-subarray Data Movement in DRAM,” in HPCA, 2016.

[9] K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern
DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,”
SIGMETRICS, 2017.

[10] J. Choi et al., “Multiple Clone Row DRAM: A Low Latency and Area Optimized
DRAM,” in ISCA, 2015.

[11] Z. Cui et al., “DTail: A Flexible Approach to DRAM Refresh Management,” in
ICS, 2014.

[12] P. G. Emma et al., “Rethinking Refresh: Increasing Availability and Reducing
Power in DRAM for Cache Applications,” IEEE Micro, 2008.

[13] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, 2008.

[14] M. Ferdman et al., “Clearing the Clouds: A Study of Emerging Scale-Out Work-
loads on Modern Hardware,” in ASPLOS, 2012.

[15] J. E. Fritts et al., “Mediabench II Video: Expediting the Next Generation of Video
Systems Research,” in Electronic Imaging, 2005.

[16] M. Ghasempour et al., “Armor: A Run-Time Memory Hot-Row Detector,” http:
//apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer, 2015.

[17] S. Ghose et al., “Demystifying Complex Workload–DRAM Interactions: An
Experimental Study,” in SIGMETRICS, 2019.

[18] S. Ghose et al., “Understanding the Interactions of Workloads and DRAM Types:
A Comprehensive Experimental Study,” arXiv:1902.07609 [cs.AR], 2019.

[19] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced Memory Controller
Design for Reducing Energy in Conventional and 3D Die-Stacked DRAMs,” in
MICRO, 2007.

[20] D. Gruss et al., “Another Flip in the Wall of Rowhammer Defenses,” in SP, 2018.
[21] D. Gruss et al., “Rowhammer.js: A Remote Software-Induced Fault Attack in

Javascript,” in DIMVA, 2016.
[22] N. D. Gulur et al., “Multiple Sub-Row Buffers in DRAM: Unlocking Performance

and Energy Improvement Opportunities,” in SC, 2012.
[23] A. Gutierrez et al., “Full-System Analysis and Characterization of Interactive

Smartphone Applications,” in IISWC, 2011.
[24] T. Hamamoto et al., “On the Retention Time Distribution of Dynamic Random

Access Memory (DRAM),” TED, 1998.
[25] G. Hamerly et al., “SimPoint 3.0: Faster and More Flexible Program Phase

Analysis,” JILP, 2005.
[26] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row

Access Locality,” in HPCA, 2016.
[27] E. Herrero et al., “Thread Row Buffers: Improving Memory Performance Isola-

tion and Throughput in Multiprogrammed Environments,” TC, 2012.
[28] J. Hestness et al., “A Comparative Analysis of Microarchitecture Effects on CPU

and GPU Memory System Behavior,” in IISWC, 2014.
[29] H. Hidaka et al., “The Cache DRAM Architecture: A DRAM with an On-Chip

Cache Memory,” IEEE Micro, 1990.
[30] Y. Huang et al., “Moby: A Mobile Benchmark Suite for Architectural Simulators,”

in ISPASS, 2014.
[31] S. Iacobovici et al., “Effective Stream-Based and Execution-Based Data Prefetch-

ing,” in ICS, 2004.
[32] E. Ipek et al., “Self-Optimizing Memory Controllers: A Reinforcement Learning

Approach,” in ISCA, 2008.
[33] C. Isen and L. John, “ESKIMO - Energy Savings Using Semantic Knowledge of

Inconsequential Memory Occupancy for DRAM Subsystem,” in MICRO, 2009.
[34] ITRS Reports, http://www.itrs2.net/itrs-reports.html.
[35] JEDEC Solid State Technology Assn., “JESD79-3F: DDR3 SDRAM Standard,”

July 2012.
[36] JEDEC Solid State Technology Assn., “JESD209-4B: Low Power Double Data

Rate 4 (LPDDR4) Standard,” March 2017.
[37] JEDEC Solid State Technology Assn., “JESD79-4B: DDR4 SDRAM Standard,”

June 2017.
[38] M. Jung et al., “Omitting Refresh: A Case Study for Commodity and Wide I/O

DRAMs,” in MEMSYS, 2015.
[39] M. Kandemir et al., “Memory Row Reuse Distance and Its Role in Optimizing

Application Performance,” in SIGMETRICS, 2015.
[40] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM

Process Scaling,” in The Memory Forum, 2014.

13

http://ptm.asu.edu/
http://ptm.asu.edu/
http://www.drampower.info
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
http://www.itrs2.net/itrs-reports.html

[41] S. Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.

[42] S. Khan et al., “PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM,” in DSN, 2016.

[43] S. Khan et al., “A Case for Memory Content-Based Detection and Mitigation of
Data-Dependent Failures in DRAM,” CAL, 2016.

[44] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by
Exploiting Current Memory Content,” in MICRO, 2017.

[45] D.-H. Kim et al., “Architectural Support for Mitigating Row Hammering in
DRAM Memories,” CAL, 2015.

[46] J. Kim et al., “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the
Variation in Local Bitlines,” in ICCD, 2018.

[47] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical Un-
clonable Functions by Exploiting the Latency–Reliability Tradeoff in Modern
Commodity DRAM Devices,” in HPCA, 2018.

[48] J. S. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.

[49] J. Kim and M. C. Papaefthymiou, “Dynamic Memory Design for Low Data-
Retention Power,” in PATMOS, 2000.

[50] J. Kim and M. C. Papaefthymiou, “Block-based Multiperiod Dynamic Memory
Design for Low Data-Retention Power,” TVLSI, 2003.

[51] K. Kim and J. Lee, “A New Investigation of Data Retention Time in Truly
Nanoscaled DRAMs,” EDL, 2009.

[52] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors,” in ISCA, 2014.

[53] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM,” in ISCA, 2012.

[54] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” in MICRO, 2010.

[55] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” in CAL, 2015.
[56] Y. Konishi et al., “Analysis of Coupling Noise Between Adjacent Bit Lines in

Megabit DRAMs,” JSSC, 1989.
[57] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the

Common-Case,” in HPCA, 2015.
[58] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” in HPCA, 2013.
[59] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory

Bandwidth at Low Cost,” TACO, 2016.
[60] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips:

Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS,
2017.

[61] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic
by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.

[62] E. Lee et al., “TWiCe: Time Window Counter Based Row Refresh to Prevent
Row-Hammering,” CAL, 2018.

[63] M. Lipp et al., “Nethammer: Inducing Rowhammer Faults Through Network
Requests,” arXiv, 2018.

[64] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[65] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Profiling Mechanisms,” in
ISCA, 2013.

[66] S. Liu et al., “Flikker: Saving DRAM Refresh-Power Through Critical Data
Partitioning,” ASPLOS, 2012.

[67] S.-L. Lu et al., “Improving DRAM Latency with Dynamic Asymmetric Subarray,”
in MICRO, 2015.

[68] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation,” in PLDI, 2005.

[69] Y. Luo et al., “Characterizing Application Memory Error Vulnerability to Opti-
mize Datacenter Cost via Heterogeneous-Reliability Memory,” in DSN, 2014.

[70] J. Mandelman et al., “Challenges and Future Directions for the Scaling of Dy-
namic Random-Access Memory (DRAM),” IBM JRD, 2002.

[71] J. D.McCalpin, “STREAM: SustainableMemory Bandwidth in High Performance
Computers,” https://www.cs.virginia.edu/stream/.

[72] Micron Technology, Inc., “RLDRAM 2 and 3 Specifications,” http://www.micron.
com/products/dram/rldram-memory.

[73] Micron Technology, Inc., “x64 Mobile LPDDR4 SDRAM Datasheet,”
https://prod.micron.com/~/media/documents/products/data-sheet/dram/
mobile-dram/low-power-dram/lpddr4/272b_z9am_qdp_mobile_lpddr4.pdf.

[74] Y. Mori et al., “The Origin of Variable Retention Time in DRAM,” in IEDM, 2005.
[75] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory

Service in Multi-Core Systems,” in USENIX Security, 2007.
[76] J. Mukundan et al., “Understanding and Mitigating Refresh Overheads in High-

Density DDR4 DRAM Systems,” in ISCA, 2013.
[77] N. Muralimanohar et al., “CACTI 6.0: A Tool to Model Large Caches,” HP

Laboratories, Tech. Rep. HPL-2009-85, 2009.
[78] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW, 2013.
[79] O. Mutlu, “The RowHammer Problem and Other IssuesWeMay Face as Memory

Becomes Denser,” in DATE, 2017.
[80] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” TCAD, 2019.
[81] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.
[82] O.Mutlu and L. Subramanian, “Research Problems andOpportunities inMemory

Systems,” SUPERFRI, 2015.

[83] P. Nair et al., “A Case for Refresh Pausing in DRAMMemory Systems,” in HPCA,
2013.

[84] P. J. Nair et al., “Refresh Pausing in DRAM Memory Systems,” TACO, 2014.
[85] H. Park et al., “Regularities Considered Harmful: Forcing Randomness to Mem-

ory Accesses to Reduce Row Buffer Conflicts for Multi-Core, Multi-Bank Sys-
tems,” in ASPLOS, 2013.

[86] K. Patel et al., “Energy-Efficient Value-Based Selective Refresh for Embedded
DRAMs,” in PATMOS, 2005.

[87] M. Patel et al., “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions,” ISCA, 2017.

[88] M. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh
for DRAM Systems,” in DSN, 2015.

[89] Rambus Inc., “DRAM Power Model,” http://www.rambus.com/energy/. 2016.
[90] K. Razavi et al., “Flip Feng Shui: Hammering a Needle in the Software Stack,” in

USENIX Sec., 2016.
[91] M. Redeker et al., “An Investigation into Crosstalk Noise in DRAM Structures,”

in MTDT, 2002.
[92] P. J. Restle et al., “DRAM Variable Retention Time,” in IEDM, 1992.
[93] Y. Riho and K. Nakazato, “Partial Access Mode: New Method for Reducing

Power Consumption of Dynamic Random Access Memory,” TVLSI, 2014.
[94] S. Rixner, “Memory Controller Optimizations for Web Servers,” in MICRO, 2004.
[95] S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.
[96] SAFARI Research Group, “CROW — GitHub Repository,” https://github.com/

CMU-SAFARI/CROW.
[97] SAFARI Research Group, “Ramulator: A DRAMSimulator —GitHub Repository,”

https://github.com/CMU-SAFARI/ramulator.
[98] Y. Sato et al., “Fast Cycle RAM (FCRAM); A 20-ns Random Row Access, Pipe-

Lined Operating DRAM,” in VLSIC, 1998.
[99] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug

to Gain Kernel Privileges,” https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015.

[100] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data
Copy and Initialization,” in MICRO, 2013.

[101] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” in MICRO, 2017.

[102] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to
Improve the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.

[103] S. M. Seyedzadeh et al., “Mitigating Wordline Crosstalk Using Adaptive Trees
of Counters,” in ISCA, 2018.

[104] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simultaneous
Mutlithreading Processor,” ASPLOS, 2000.

[105] Y. Son et al., “Reducing Memory Access Latency with Asymmetric DRAM Bank
Organizations,” ISCA, 2013.

[106] Standard Performance Evaluation Corp., “SPEC CPU® 2006,” http://www.spec.
org/cpu2006/, 2006.

[107] J. Stuecheli et al., “Elastic Refresh: Techniques to Mitigate Refresh Penalties in
High Density Memory,” in MICRO, 2010.

[108] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost,” in ICCD, 2014.

[109] L. Subramanian et al., “BLISS: Balancing Performance, Fairness and Complexity
in Memory Access Scheduling,” TPDS, 2016.

[110] A. Tatar et al., “Defeating Software Mitigations Against Rowhammer: A Surgical
Precision Hammer,” in RAID, 2018.

[111] Transaction Processing Performance Council, “TPC Benchmarks,” http://www.
tpc.org/.

[112] A. N. Udipi et al., “Rethinking DRAM Design and Organization for Energy-
Constrained Multi-Cores,” in ISCA, 2010.

[113] V. van der Veen et al., “Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms,” in CCS, 2016.

[114] R. Venkatesan et al., “Retention-Aware Placement in DRAM (RAPID): Software
Methods for Quasi-Non-Volatile DRAM,” in HPCA, 2006.

[115] T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random
Access Memories,” in MICRO, 2010.

[116] Y. Wang et al., “Reducing DRAM Latency via Charge-Level-Aware Look-Ahead
Partial Restoration,” in MICRO, 2018.

[117] Y. Xiao et al., “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation,” in USENIX Sec., 2016.

[118] D. Yaney et al., “A Meta-Stable Leakage Phenomenon in DRAM Charge Storage
- Variable Hold Time,” in IEDM, 1987.

[119] T. Zhang et al., “Half-DRAM: A High-bandwidth and Low-power DRAM Archi-
tecture from the Rethinking of Fine-grained Activation,” in ISCA, 2014.

[120] X. Zhang et al., “Exploiting DRAM Restore Time Variations in Deep Sub-micron
Scaling,” in DATE, 2015.

[121] X. Zhang et al., “Restore Truncation for Performance Improvement in Future
DRAM Systems,” in HPCA, 2016.

[122] W. Zhao and Y. Cao, “New Generation of Predictive Technology Model for
Sub-45 nm Early Design Exploration,” TED, 2006.

[123] Y. Zhu et al., “Microarchitectural Implications of Event-Driven Server-Side Web
Applications,” in MICRO, 2015.

[124] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That
Maximizes Throughput by Allowing Memory Requests and Commands to Be
Issued Out of Order,” U.S. Patent No. 5,630,096, 1997.

14

https://www.cs.virginia.edu/stream/
http://www.micron.com/products/dram/rldram-memory
http://www.micron.com/products/dram/rldram-memory
https://prod.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr4/272b_z9am_qdp_mobile_lpddr4.pdf
https://prod.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr4/272b_z9am_qdp_mobile_lpddr4.pdf
https://github.com/CMU-SAFARI/CROW
https://github.com/CMU-SAFARI/CROW
https://github.com/CMU-SAFARI/ramulator
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/
http://www.tpc.org/
http://www.tpc.org/

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Organization
	2.2 DRAM Operation

	3 Copy-Row DRAM
	3.1 CROW: A High-Level Overview
	3.2 Copy Rows
	3.3 CROW-table

	4 Applications of CROW
	4.1 In-DRAM Caching (CROW-cache)
	4.2 Reducing Refresh Overhead (CROW-ref)
	4.3 Mitigating RowHammer

	5 Circuit Simulations
	5.1 Simultaneous Row Activation Latency
	5.2 MRA-based Row Copy Latency

	6 Hardware Overhead
	6.1 Memory Controller Overhead
	6.2 DRAM Die Area Overhead

	7 Methodology
	8 Evaluation
	8.1 CROW-cache
	8.2 CROW-ref
	8.3 Combining CROW-cache and CROW-ref

	9 Related Work
	10 Conclusion
	References

