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1. INTRODUCTION

Many of the important computational challenges facing scientists and
engineers today involve solving problems with very large data sets. For
example, global climate modeling, computational physics and chemistry,
and many engineering problems (e.g., aircraft simulation) can easily in-
volve data sets that are too large to fit in main memory [Crandall et al.
1995; del Rosario and Choudhary 1994; Poole 1994]. For such applications
(which are commonly referred to as “out-of-core” applications), main mem-
ory simply constitutes an intermediate stage in the memory hierarchy, and
the bulk of the data must reside on disk or other secondary storage. Ideally
one could efficiently solve an out-of-core problem by simply taking the
original in-core program and increasing the problem size. In theory, a
paged virtual memory system could provide this functionality by transpar-
ently migrating data between main memory and disk in response to page
faults and memory pressure. While this approach does yield a logically
correct answer, the resulting performance is typically so poor that it is not
considered a viable technique for solving out-of-core problems [Womble et
al. 1993].

In practice, scientific programmers who wish to solve out-of-core prob-
lems typically write a separate version of the program with explicit I/O
calls for the sake of achieving reasonable performance. Writing an out-of-
core version of a program is a formidable task—it is not simply a matter of
inserting a few I/O read or write statements, but often involves significant
restructuring of the code, and in some cases can have a negative impact on
the numerical stability of the algorithm [Womble et al. 1993]. Thus the
burden of writing a second version of the program (and ensuring that it
behaves correctly) presents a significant barrier to solving large scientific
problems.

The goal of our research is to preserve the abstraction of unlimited
virtual memory for the programmer, while providing performance competi-
tive with that which can be achieved by explicitly managing I/O. To
motivate the approach we have taken, we first discuss the limitations of
existing methods. Section 1.1 explains why existing virtual memory sys-
tems perform poorly for these types of applications. Section 1.2 explains
why existing explicit I/O approaches are undesirable. Given the limitations
of current methods, Section 1.3 gives a high-level description of our scheme
and presents the key contributions of this work.

1.1 The Problem with Paged Virtual Memory

The promise of virtual memory is to free programmers from concerns of the
underlying system such as the size of memory and the available I/O
devices. This approach works well, as long as the application exhibits good
temporal and spatial locality, i.e., as long as the application’s working set
fits in physical memory most of the time. Unfortunately, it does not work
well for applications with poor locality, even if disks are available to deliver
the data fast enough. Womble et al. note that the general-purpose nature of
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VM systems makes them inefficient for many scientific applications
[Womble et al. 1993]. The performance of out-of-core applications that rely
simply on paged virtual memory to perform their I/O is typically quite poor,
as we will demonstrate later in Section 5.

For persistent data (e.g., input and output data sets), mapped file I/O
shares many of the advantages and disadvantages of virtual memory. It
presents the same familiar interface to the application programmer, and
the same page fault mechanism is used to bring data into memory. The
difference is that the data are backed by an ordinary file, rather than the
system swap file. Compared with explicit I/O requests, mapped file I/O has
reduced copying overhead, reduced memory overhead (since there are no
redundant copies of the same data and since only the data actually touched
will be brought into memory), and allows concurrency of reads, as multiple
threads can have outstanding faults to the same mapped region. Unlike
explicit I/O which provides a uniform interface to all I/O devices, however,
mapped file I/O can only be used for devices that support block-oriented
random accesses such as disks [Krieger et al. 1991]. For our purposes, we
will not distinguish further between virtual memory and mapped files,
since they share many important characteristics.

There are three primary reasons why virtual memory systems are unable
to provide the best I/O performance for out-of-core applications: the timing
of requests, the size of requests, and replacement decisions.

First, in a virtual memory system data are brought into memory in
response to a page fault, which occurs when the process attempts to read a
virtual memory location that is not in physical memory. Since the request
is triggered when the data are needed, the process must stall for the full
latency of a disk read. Typically, the operating system will give the CPU to
another process when a page fault occurs because the latency is so large. If
other runnable processes exist, this technique keeps the CPU busy and
improves system throughput, but it does not help the performance of the
faulting process in any way.

Second, page faults typically result in only a single outstanding page-
sized read request at a time for a given process. High-bandwidth disk
arrays cannot generally be exploited for such small requests (unless a
single page is striped across multiple disks), since only a single disk is busy
at any time. Although most operating systems attempt some form of page
fault prefetching both to hide latency and to have multiple outstanding
disk requests, it is difficult to do this efficiently for reasons we will discuss
later in Section 2.2. In our experiments, the performance loss is not due to
limited I/O bandwidth (in fact, the disk utilization is fairly low), but rather
to I/O latency, since each page fault causes the application to suffer the full
delay of a disk read.

Finally, when the amount of data accessed is greater than the size of
physical memory, the operating system must decide what to evict to make
room for new requests. Without knowledge of the application’s future
accesses the memory manager may reallocate pages that are about to be
used again, increasing the need to perform I/O and further degrading
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performance. Park, Scott, and Sechrest have shown that customizing the
replacement policy on a per-application basis can significantly improve the
performance of out-of-core applications [Park et al. 1996]. An additional
concern from a resource management perspective is that the memory
manager may allocate more memory to a process than it actually needs in
order to delay making these replacement decisions. This may have a
negative impact on competing processes.

Having shown why virtual memory delivers poor performance for out-of-
core applications, we now discuss how explicitly managing I/O can over-
come some of these difficulties and the new complications that explicit I/O
introduces.

1.2 The Problem with Explicit I/O

One can potentially achieve better performance by rewriting out-of-core
applications to use explicit I/O calls (e.g., the read/write interface in UNIX)
for the following three reasons: (i) nonblocking I/O calls allow file accesses
to be overlapped with computation; (ii) large requests make better use of
available bandwidth; and (iii) replacement decisions are made by the
application and can therefore take into account the application’s access
patterns.

First, asynchronous I/O interfaces are available that allow applications
to issue I/O requests without blocking. By properly scheduling these
requests, the application can overlap file I/O with computation, in the best
case allowing all the disk latency to be hidden.

Second, read and write requests can affect a large number of blocks in a
single request. This is important in a system with high disk bandwidth
(i.e., a large number of disks), since issuing large requests is one way to
exploit the parallelism in the underlying disk system.

Finally, with a read/write interface the application specifies the buffers
that are the source or target of the file data. Hence, the application can
ensure that data that will soon be accessed are buffered in memory. Also,
the application can minimize the amount of memory used by ensuring that
buffers that it will not access for a long time are freed, and if modified,
written to disk.

While explicit I/O offers the potential for improved performance over
paging, it unfortunately suffers from several disadvantages. The primary
drawback is the large burden placed on the programmer of rewriting an
application to insert the I/O calls—our goal is to avoid this burden
altogether. Another disadvantage is the performance overhead of these I/O
system calls, which typically involve copying overhead to transfer data
between the system’s I/O buffers and the buffers managed by the applica-
tion.

A third, less obvious disadvantage is that with explicit I/O the applica-
tion is implicitly making low-level policy decisions with its I/O requests
(e.g., the size of the requests, and the amount of memory to be used for I/O
buffering). However, the best policy decisions depend not only on application
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access patterns, but also on the physical resources available. Hence an
application written assuming a particular amount of physical memory and
disk bandwidth may perform poorly on a machine with a different set of
resources, or in a multiprogrammed environment where some of the re-
sources are being used by other applications. To illustrate how the avail-
able physical resources affect an application’s performance, consider the
amount of memory available for buffering I/O. If sufficient physical memory
is available such that the entire data set can fit in memory, then an
application with explicit I/O will pay the system call overhead with no
benefit. On the other hand, if the application uses more buffer space for I/O
than the available physical memory, then the buffers will suffer page
faults, possibly resulting in worse performance than if the application had
simply relied on paged virtual memory from the start.

1.3 Our Solution

It seems clear that if a paged virtual memory system had full knowledge
about an application’s future access pattern, all the performance advan-
tages of explicit I/O could be achieved without the disadvantages. In
particular, the memory manager could make large requests to allow disk
bandwidth to be efficiently exploited, manage the memory efficiently to
minimize memory used and to avoid paging out data that will soon be
accessed, and prefetch data that will soon be accessed to hide from
applications the latency of I/O. Moreover, the memory manager could
perform these optimizations while taking into account the total resources
available, and while avoiding the system call and copying overhead of
explicit I/O interfaces.

The application access patterns are best known at the application level,
either as the result of programmer intervention or analysis performed by a
compiler. Knowledge regarding resource usage is naturally available to the
operating system. To unify the required information, there is thus a choice
between communicating access patterns down to the operating system
where resource usage is known or communicating resource usage up to the
application level. Most (if not all) current research in improving I/O
performance has focused on informing the operating system about applica-
tion access patterns. The problem with this approach is that applications
may have very complicated (but regular) access patterns which are difficult
to convey to the OS. Even if full disclosure is possible, the complexity
required by the memory manager to make the best use of the given
information may hurt performance for in-core applications that do not
require such functionality. In contrast, the relevant information about
memory usage can be transferred to the application level quite concisely,
which is the approach we use.

In our scheme, the compiler provides the crucial information on future
access patterns without burdening the programmer; the operating system
provides a simple interface for managing I/O which is optimized to the
needs of the compiler; and a run-time layer uses information provided by
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the operating system to accelerate performance by adapting to dynamic
behavior and minimizing prefetch overhead. In this paper, we propose and
evaluate a fully automatic scheme for prefetching I/O whereby the operat-
ing system and the compiler cooperate to combine the advantages of both
explicit I/O and paged virtual memory without suffering from the disadvan-
tages. Our experimental results demonstrate that our scheme effectively
hides the I/O latency in out-of-core versions of the entire NAS Parallel
benchmark suite [Bailey et al. 1991], thus resulting in speedups of roughly
twofold for the majority of these applications, and over threefold in one
case.

This paper is organized as follows. We begin in Section 2 by discussing
how the compiler and the operating system can cooperate to automatically
prefetch disk accesses for out-of-core applications. Section 3 provides a
more detailed description of the analysis performed by the compiler and the
changes from the original compiler algorithm for cache prefetching that
were needed to support I/O prefetching. Next, Section 4 describes the
framework used to evaluate our ideas, and Section 5 presents our experi-
mental results. Finally, Sections 6 and 7 discuss related work and our
conclusions.

2. AUTOMATICALLY TOLERATING I/O LATENCY

This section describes our system for automatically tolerating I/O latency.
We begin by discussing the fundamental challenges that we have overcome.
We then present an overview of our system, and finally we discuss the
three major components of the system (i.e., the compiler, operating system,
and run-time layer support) in more detail.

2.1 Fundamental Performance Issues

Our goal is to fully hide I/O latency, thus eliminating its impact on overall
execution time. Conceptually, one can view our approach as enhancing the
performance of virtual memory, since that is the abstraction we present to
the programmer. Under paged virtual memory, an out-of-core application
invokes two types of disk accesses: (i) faulting pages are read from disk into
memory, and (ii) dirty pages are written out to disk to free up memory.
Hiding write latency is reasonably straightforward, since writes can be
buffered and pipelined. Hiding read latency, on the other hand, is difficult
because the application stalls waiting for the read (i.e., the page fault) to
complete. The key to tolerating read latency is to split apart the request for
data and the use of that data, while finding enough useful work to keep the
application busy in between. We can accomplish this by prefetching pages
sufficiently far in advance in the execution stream such that they reside in
memory by the time they are needed.

Since prefetching does not reduce the number of disk accesses, but simply
attempts to perform them over a shorter period of time, it cannot reduce
the execution time of an application whose I/O bandwidth demands already
outstrip the bandwidth provided by the hardware. Fortunately, we can
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construct cost-effective, high-bandwidth I/O systems by harnessing the
aggregate bandwidth of multiple disks [Chen et al. 1994; Krieger and
Stumm 1997; Sweeney et al. 1996]. Roughly speaking, one can always
increase the I/O bandwidth by purchasing additional disks. Since prefetch-
ing naturally results in many small, independent requests, it is possible to
harness the available bandwidth in a multiple-disk system.

In addition to hiding I/O latency and providing sufficient I/O bandwidth,
a third challenge in achieving high performance is effectively managing
main memory, which can be viewed as a large, fully associative cache of
data that actually resides on disk. There are two issues here. First, to
minimize page faults, we would like to choose the optimal page to evict
from memory when we need to make room for a new page that is being
faulted in. Toward this goal, most commercial operating systems use an
approximation of LRU replacement to select victim pages. While LRU
replacement may be a good choice for a default policy, there are cases
where it performs quite poorly, and in such cases we would like to exploit
application-specific knowledge to choose victim pages more effectively. The
second issue is that we would like to minimize memory consumption,
particularly when doing so does not degrade performance. For example,
rather than filling up all of main memory with data that we are streaming
through, we may be able to achieve the same performance by using only a
small amount of memory as buffer space. By minimizing memory consump-
tion, more physical memory will be available to the rest of the system,
which is particularly important in a multiprogrammed environment. To
accomplish both of these goals, we introduce an explicit release operation
whereby the application provides a hint to the operating system that a
given page is not likely to be referenced again soon, and hence is a good
candidate for replacement.

In summary, our approach overcomes the fundamental challenges of
accelerating paged virtual memory as follows: (i) prefetches are used to
tolerate disk read latency, (ii) multiple disks are used to provide high-
bandwidth I/O, and (iii) release operations are used to effectively manage
memory. We now discuss the overall structure of our software system.

2.2 Software Architecture Overview

To prefetch and release data effectively, we need detailed knowledge of an
application’s future access patterns. Although one might attempt to deduce
this information from inside the operating system by looking for repeated
patterns in the access history, such an approach would be limited only to
simple access patterns (e.g., even the simple indirect references that
commonly occur in sparse-matrix applications would be extremely difficult
for the operating system to predict), and would require adding additional
complexity to the operating system, which is something we wish to avoid.
(This additional complexity may not be acceptable in a general-purpose
operating system, since it would likely increase the critical page fault path,
thus hurting the performance of the majority of applications that do not
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require it.) Instead, we turn to the compiler to provide information on
future access patterns, since it has the luxury of being able to examine the
entire program all at once. Also, by using the compiler to extract this
information automatically, we avoid placing any burden on the program-
mer, who continues to enjoy the abstraction of unlimited virtual memory.

2.2.1 The Compiler/Operating System Interface. Given that the com-
piler will be extracting and passing access pattern information to the
operating system, an important question is what form this interface should
take. Note that this interface will only be used by the compiler, and not by
the programmer—the programmer’s interface will be unlimited virtual
memory, and the compiler and operating system cooperate to preserve this
illusion. Ideally, we would like an interface that requires minimal complex-
ity within the operating system (so that it can be readily incorporated into
existing commercial operating systems), and which maximizes the compil-
er’s ability to improve performance, given the strengths and weaknesses of
realistic compilation technology.

One possibility would be for the compiler to pass a summary of future
access patterns to the operating system through a single call at the start of
execution. However, from the compiler’s perspective this approach is unde-
sirable, since the access patterns in real applications often depend on
dynamic control and data dependencies that can only be resolved at
run-time. For example, in the bucket sort application (BUK) discussed later
in this paper, the important data accesses are indirect references based on
the contents of a large array. The values in this array are unknown at
startup time; but even if they were known, passing this very large array
along with a description of how to use it to compute addresses would
greatly complicate not only the interface and the compiler, but also the
operating system, which would ultimately be responsible for generating the
addresses. Another disadvantage of this approach is that it pushes the
complexity of matching up the access patterns with when those accesses
actually take place into the operating system. For example, if the compiler
indicates that the program will be streaming through a large array, it is
not helpful if the operating system brings the data into memory too fast (or
too slow) relative to the rate at which it is being consumed. Since tracking
an application’s access patterns means that the operating system must see
either page faults or explicit I/O on a regular basis, it is unclear that this
interface offers any less overhead than an interface requiring regular
system calls. Hence we will focus instead on an interface where prefetch
addresses are passed in at roughly the time when the prefetch should be
sent to disk, and where release addresses are passed in when the data are
no longer needed.

The next logical question is whether we can simply compile to an existing
asynchronous read/write I/O interface, or whether a new interface is
actually needed. There are two reasons why existing read/write I/O inter-
faces are unacceptable for our purposes. First, for the compiler to success-
fully move prefetches back far enough to hide the large latency of I/O, it is
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essential that prefetches be nonbinding [Mowry 1994]. The nonbinding
property means that when a given reference is prefetched the data value
seen by that reference is bound at reference time; in contrast, with a
binding prefetch, the value is bound at prefetch time. The problem with a
binding prefetch is that if another store to the same location occurs during
the interval between a prefetch and a corresponding load, the value seen by
the load will be stale. Hence, we cannot move a binding prefetch back
beyond a store unless we are certain that they are to different addresses—
unfortunately, this is one of the most difficult problems for the compiler to
resolve in practice (i.e., the problem of “alias analysis,” also known as
“memory disambiguation” or “dependence analysis”). Since an asynchro-
nous I/O read call implicitly renames data by copying it into a buffer, it is a
binding prefetch. To illustrate this problem, consider the code in Figure
1(a). If we use the read/write interface, we might generate code similar to
Figure 1(b). Unfortunately, this code produces an incorrect result if the
parameters a and b are aliased (e.g., foo(&X[0],&X[0]) ) or even partially
overlap (e.g, foo(&X[10],&X[0]) ). To implement nonbinding prefetching,
the data should have the same name (or address) both in memory and on
disk, which corresponds to the abstraction of paged virtual memory. Figure
1(c) shows the preferred code which uses nonbinding prefetch and release
operations, and always produces a correct result.

The second problem with an asynchronous read/write interface is that it
compels the operating system to perform an I/O access. Instead, we would

Fig. 1. Example illustrating the importance of nonbinding prefetches.
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prefer to give the operating system the flexibility to drop requests if doing
so might achieve better performance, given the dynamic demands for and
availability of physical resources. For example, if there is not enough
physical memory to buffer prefetched data, or if the disk subsystem is
overloaded, we may want to drop prefetches. Hence, the preferred interface
is a natural extension of paged virtual memory which includes prefetch and
release as nonbinding performance hints. This interface provides flexibility
on two fronts: the compiler can aggressively insert prefetches ahead of
references, and the operating system can still arbitrate between the com-
peting resource demands of multiple applications. (Note that the “MADV_
WILLNEED” and “MADV_DONTNEED” hints to the madvise() interface can
potentially be used to implement prefetch and release in UNIX.) In this
paper, we use the term “I/O prefetching” to refer to prefetching data from
disks into main memory. Given our preferred virtual memory interface,
this takes the form of prefetching pages, either from mapped files or from
the swap file.

2.2.2 Minimizing Prefetch Overhead. Earlier studies on compiler-based
prefetching to hide cache-to-memory latency have demonstrated the impor-
tance of avoiding the overhead of unnecessarily prefetching data that
already reside in the cache [Mowry 1994; Mowry et al. 1992]. To address
this problem, compiler algorithms have been developed for inserting
prefetches only for those references that are likely to suffer misses. An
analogous situation exists with I/O prefetching, since we do not want to
prefetch data that already reside in main memory—hence, we perform
similar analysis in our compiler (as we discuss later in Section 3). Unfortu-
nately, it is considerably more difficult to avoid unnecessary prefetches
with I/O prefetching, since main memory is so much larger than a cache
that our loop-level compiler analysis tends to underestimate its ability to
retain data. As a result, unnecessary prefetches do occur, and we must be
careful to minimize their overhead.

Compared with cache-to-memory prefetching, where the overhead of an
unnecessary prefetch is simply a wasted instruction or two (since unneces-
sary prefetches are dropped as soon as the cache tag check indicates that
the data are already in the cache), the overhead of an unnecessary I/O
prefetch is considerably larger, since it involves making a system call and
checking the page table before discovering that the prefetch can be
dropped. To reduce this overhead, we introduce a run-time layer in our
system which keeps track at the user level of whether pages are believed to
be in memory or not. Therefore we can typically drop unnecessary
prefetches without performing a system call, and we have found this to be
essential in achieving high performance, as we will show in Section 5.3.2.

Having introduced the three layers of our system—the compiler, the
operating system, and the run-time layer—we now discuss each layer in
more detail.
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2.3 Compiler Support

The bulk of our compiler algorithm is a straightforward extension of an
algorithm that was developed earlier for prefetching cache-to-memory
misses in dense-matrix and sparse-matrix codes [Mowry 1994; Mowry et al.
1992]. Conceptually, prefetching from disks into main memory entails
moving down one level in the memory hierarchy. To accommodate this
transition, we changed the input parameters that describe the cache size,
line size, and miss latency to correspond to main memory size, the page
size, and the page fault latency, respectively. Based on this memory model,
the compiler uses locality analysis to predict when misses (i.e., page faults)
are likely to occur; it isolates these faulting instances through loop splitting
techniques, and schedules prefetches early enough using software pipelin-
ing. More details on each of these steps and the changes needed to properly
support I/O prefetching are described in Section 3.

The static prefetching decisions made by the compiler may be inappropri-
ate if the amount of available memory or the time to service a page fault
are vastly different from the parameters used at compile-time (i.e.,
prefetches may not occur often enough if there is less memory, or they may
not occur early enough if the I/O latency is greater than expected). In
general, we try to underestimate the amount of available memory and rely
on the run-time layer to remove unnecessary prefetches; however, generat-
ing code that is fully adaptable to the range of conditions that could occur
during execution is beyond the scope of this paper. In our experiments (see
Section 5), we run each out-of-core benchmark on a dedicated machine,
eliminating variations in available memory and page fault service time due
to other applications.

2.4 Operating System/Run-Time Layer Interaction

The next two subsections describe the run-time layer that we introduce to
reduce the overhead of unnecessary prefetches, and the support provided
by the operating system.

2.4.1 The Run-Time Layer. The run-time layer tracks pages that are
expected to be in memory by using a bit vector to construct a map of the
application’s virtual memory space. Each bit in the vector represents one or
more contiguous virtual memory pages, with a set bit indicating that the
corresponding page is in physical memory. The run-time layer uses the bit
vector to filter the prefetches inserted by the compiler by checking to see if
the requested page is already in memory. In many cases this simple test
can avoid the cost of a system call to the operating system, thus substan-
tially reducing overhead. If a block of contiguous pages are specified in the
prefetch request, we check each page until one is found that is not in
memory or until the end of the block is reached. When a page is found that
needs to be prefetched, the run-time layer issues a request to the operating
system for the missing page and all subsequent pages in the block. In this
way, at most one system call is required for a block prefetch.
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Although it would be possible for the run-time layer to approximate the
state of main memory entirely at the user level by setting bits for
prefetched pages and clearing bits for released pages, the run-time layer
would be unaware of pages brought into memory by page faults, or
reclaimed by the operating system. To give the run-time layer a more
accurate view, we instead make the bit vector shared with the operating
system which is responsible for setting or clearing bits as pages are
transferred in or out of memory.

2.4.2 Operating System Support. To support compiler-directed prefetch-
ing, the operating system needs to be able to respond to the prefetch and
release requests issued by the application. For a prefetch request, the
operating system allocates a memory page from the list of free pages to
hold the requested data and issues an asynchronous read request to the file
system before returning control to the application. When the data become
available the page is mapped into the application’s page table, but no entry
is made in the TLB, thus preventing prefetched pages that are not yet in
use from evicting useful entries. In the event that there is no free memory
available the operating system is permitted to drop the prefetch request,
rather than forcing pages to be evicted to make room for the prefetched
data. This choice is reasonable because prefetching applications are ex-
pected to attempt to limit their memory consumption by releasing pages
that are not currently needed. If all pages are in use at some time, choosing
to evict one to satisfy a prefetch request could hurt performance. For a
release request the operating system unmaps the specified page and places
it on the free list, scheduling a write if necessary. Functionality for these
operations is easy to add, since most operating systems already support
asynchronous requests to the file system and need to be able to unmap
pages of memory for existing memory management activities.

A more interesting issue is having the operating system actively share a
data structure (i.e., the bit vector) with the user level. The operating
system agrees to provide a user-level process with a range of memory that
can be used as a map of the process’ virtual memory usage. The operating
system is reponsible for allocating memory for the shared data, making it
readable by the application, and mapping it into a specified location in the
application’s virtual address space. A new system call is thus needed to
allow the application to request the shared bit vector and provide the
address that the application will use to access it. The operating system
must, of course, record the address that it will use to access each prefetch-
ing application’s shared bit vector as well.

The memory overhead created by allocating the bit vector is minimal. For
small to medium sized systems, a single page of physical memory is
sufficient. In IRIX, for instance, the base page size is 16KB, which allows
us to map an entire 32-bit user-level virtual address space (214 3 8 pages
can be mapped using one bit per page, and each page is 214 bytes, allowing
231 bytes of virtual memory to be mapped). Bits in the page can be indexed
directly by virtual page number, making it simple and efficient to check
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and set or clear them. Smaller page sizes make it impossible to map the
entire virtual address space with a single page using one bit per page. Two
possible solutions are to use more than one page of memory for the shared
bit vector, or to increase the granularity of the bit vector, such that each bit
represents more than one contiguous page of the virtual address space. The
approach we have taken in our Hurricane implementation (in which the
base page size is only 4KB) is to increase the granularity of the bit vector
when necessary. Details on this implementation decision will be given in
Section 4.1. For applications that require 64-bit address spaces, however,
neither simply increasing the granularity or the number of pages used by
the bit vector will provide an acceptable solution if we wish to continue
indexing the bit vector directly by virtual page number. If the granularity
is increased, each bit will represent an unacceptably large number of
virtual pages; if enough pages are supplied to index the entire virtual
address space directly, the memory overhead will be unacceptably large.
Since such large address spaces are likely to be sparsely populated,
switching to a multilevel bit vector implementation (similar in spirit to
multilevel page table schemes) would allow fast indexing of the bit vector
with a reasonable amount of memory overhead.

3. THE COMPILER ALGORITHM

In this section we provide a more detailed description of our compiler
algorithm for generating prefetch and release requests. The bulk of this
algorithm is a straightforward extension of one that was developed earlier
for prefetching cache-to-memory misses in dense-matrix and sparse-matrix
codes [Mowry 1994; Mowry et al. 1992]. Essentially, we simply move down
one level in the memory hierarchy to prefetch data from disks into main
memory. Thus, the basic input parameters that describe the cache size, line
size, and miss latency in the original algorithm are changed to reflect
memory capacity, page size, and page fault latency, respectively.

Additional modifications to the original algorithm are needed for the
following reasons:

(1) We need to generate release requests to identify pages that are no
longer needed by the application.

(2) The cost of issuing a prefetch request is much greater for I/O prefetch-
ing, since operating system interaction is required. We seek to amortize
the system call overhead by requesting multiple pages with a single
block prefetch request whenever possible.

(3) A memory page contains many more data items than a cache line.
While this may seem obvious, the implications for how the compiler
schedules prefetches need to be carefully considered. In particular,
different techniques for splitting loops and pipelining prefetches must
be applied.
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We consider a reference to be an instruction that reads or writes a
memory location. Specifically, since the compiler analysis is only applied to
array accesses (i.e., A[i] ), we will use the term reference to mean memory
accesses through arrays.

Most of the required changes to the algorithm relate to how prefetches
are scheduled; however, it is difficult to understand why certain references
need to be handled in a particular manner without first seeing how the
compiler determines what needs to be prefetched. Hence, we begin in
Section 3.1 with a description of how the compiler uses locality analysis to
predict when misses (i.e., page faults) are likely to occur. Most of the work
in this section has been presented previously in Mowry’s thesis on cache
prefetching [Mowry 1994] and is reproduced here for completeness and ease
of reference. Next, Section 3.2 discusses how the compiler first isolates
these faulting instances through loop splitting techniques, and then sched-
ules prefetches early enough using software pipelining.

3.1 Locality Analysis

The goal of the locality analysis step of the prefetching algorithm is to
identify which references are likely to incur page faults. To accomplish this,
it is necessary to determine both when data are reused and whether those
data are expected to remain in memory between uses. The locality analysis
step is fundamentally unchanged from that developed for cache prefetch-
ing; however, it is important to understand how the compiler decides what
to prefetch to understand why some references are “missed.”

It should be noted that locality analysis is only applied to “direct” array
references (i.e., A[i] ) and not to “indirect” references (i.e., A[B[i]] ),
because it is impossible to determine the index values, B[i] , at compile-
time. In the best case, all of the values may be the same, and the reference
would only need to be prefetched on the first access. At the other end of the
spectrum, each index may point to a different page, and the reference
would need to be prefetched all the time. In general, we choose to always
prefetch indirect references (since the benefit of potentially eliminating I/O
stalls is so great) and rely on run-time techniques to reduce the overhead
when they are unnecessary.

The key ideas needed for locality analysis are introduced in Section 3.1.1,
and Section 3.1.2 uses an illustrative example to show how these ideas can
be expressed in terms of loop iterations. With this framework, the remain-
ing three subsections describe each step of the locality analysis algorithm
in detail.

3.1.1 Fundamental Concepts. A data item has reuse if it is referenced
multiple times. Reuse is thus an intrinsic property of a given data access
pattern. In contrast, locality only results when subsequent references find
the data item still in memory. Hence, it is a function of the size of memory,
the volume of data accessed between reuses, and the page replacement
policy used by the operating system. Since the operating system’s replace-
ment policy is beyond the compiler’s ability to analyze, we simply assume
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that a page is likely to be replaced if the amount of data accessed between
reuses is greater than the size of physical memory. This assumption would
be true for a strict LRU replacement policy. If memory were unlimited,
then reuse and locality would be identical; in reality, the references with
data locality are a subset of those with data reuse.

To properly identify what needs to be prefetched, we must distinguish
three types of data reuse (and three corresponding types of locality), each of
which needs to be handled in a different manner. Temporal reuse occurs
when a particular reference accesses exactly the same data location in
different iterations. Spatial reuse occurs when a particular reference ac-
cesses different data locations found on the same page. Group reuse occurs
when different references access data locations found on the same page.

Given the relationship between reuse and locality, the locality analysis
algorithm is comprised of three steps:

(1) Discover the intrinsic data reuses within a loop nest through reuse
analysis. This would be equivalent to solving the locality analysis
problem if memory were unlimited.

(2) Given that we have a finite memory, determine the set of reuses that
actually result in locality. This is accomplished by computing the
localized iteration space, which is the set of nested loops that access less
data than the specified memory capacity. Data locality is then com-
puted by intersecting the intrinsic data reuses with the localized
iteration space. i.e.,

Data Reuse ù Localized Iteration Space f Data Locality

(3) Express the data locality for each reference in terms of a prefetch
predicate, which is a logical predicate that is true during each dynamic
iteration when the reference is expected to incur a page fault. These
predicates are used during scheduling to split loops, statically isolating
the faulting references.

The first two steps produce a mathematical description of locality in a
vector space representation. The third step translates this description into
a representation which is more directly applicable to the problem of
scheduling the required prefetches. To gain an intuition for the concepts
captured by the vector space notation and the reuse analysis step, we
present an example in Section 3.1.2. We then show how the localized
iteration space is computed in Section 3.1.3 and converted into prefetch
predicates in Section 3.1.4. The details of computing the reuse vector space
are presented in Appendix A.

3.1.2 An Example of the Reuse Vector Space. The types of reuse that can
be identified using reuse analysis are shown in Figure 2(a). For this
example, assume the data are stored in row-major order and that each
memory page holds two array elements. These parameters are chosen for
illustrative purposes only, and are unrealistically small. The iterations that
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first touch a new page and those that reuse the same page are shown
graphically in Figure 2(b) using iteration space plots. In these plots, the
horizontal axis represents the j loop, while the vertical axis represents the
i loop. In other words, each row of the plots corresponds to a single
iteration of the i loop, while each node within a row corresponds to a single
iteration of the j loop. Hence, each node represents the result of the data
access in a particular iteration. During the execution of the corresponding
code, the nodes within a row would be visited from left to right, and the
rows would be visited from bottom to top.

The A[i][j] reference in Figure 2 accesses each data element exactly
once, traversing the rows of the matrix along the inner loop. Since each
page contains two array elements, a new page is touched on every other
iteration of the inner loop as page boundaries are crossed. The iterations
that first touch new pages are illustrated in the first plot of Figure 2(b).
This reference exhibits spatial reuse.

The B[j 11][0] reference traverses the columns of the matrix along the
inner loop, causing each reference to touch a different page during the first
iteration of the j loop. However, exactly the same locations are used again
on subsequent iterations of the i loop, resulting in temporal reuse for this
reference. This effect is illustrated in the second plot of Figure 2(b).

The B[j][0] and B[j 11][0] references provide an example of group
reuse. In this case, the B[j][0] reference uses the same data locations first

B[j][0]

A[i][j]

B[j+1][0]

i

i

i

j

j

j

First Access

Data Reuse

Fig. 2. Data reuse example.
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accessed by the B[j 11][0] reference during the previous iteration of the j
loop. Thus, the B[j][0] reference only touches a new page during the first
j loop iteration. The third plot of Figure 2 shows this effect. For references
with group locality, we need to identify the leading reference, which is the
reference that accesses new data first and thus will incur most of the page
faults. We also need to identify the trailing reference, which is the last
reference to touch the data. Only the leading reference is considered when
scheduling prefetches, while the trailing reference is used for releases. In
this example, B[j 11][0] is the leading reference, and B[j][0] is the
trailing reference.

For loops as small as the ones shown in this example, it is probable that
the reuse would also result in locality. Section 3.1.3 shows how the
compiler determines when reuse leads to locality, using the concept of the
localized iteration space. Details of how the reuse vector space is computed
are given in Appendix A.

3.1.3 Localized Iteration Space. The localized iteration space is defined
as the set of innermost loops that access less data in a single iteration than
the available memory capacity. This definition implies that the localized
iteration space includes only those loops for which reuse can result in
locality, since if the volume of data accessed in a single iteration is greater
than the size of memory, then reuse that occurs in subsequent iterations is
unlikely to find the data in memory. The total aggregate data traffic across
a particular loop nest is computed by taking the amount of data accessed by
each reference and multiplying it by the number of times that reference is
seen (i.e., the number of loop iterations), subject to the type of reuse that
the reference may have.

The localized iteration space is represented as a vector space so that it
can be directly compared with the vector space representation of data
reuse, facilitating the computation of data locality.

To illustrate these concepts, we consider the example shown in Figure 3.
For this example, we will assume that we have 500 memory pages, that
each page contains two array elements, and that the data are laid out in
row-major order. The code for Figure 3(a) is identical to that in Figure 2;
however, in Figure 3(b) the number of j loop iterations has been increased
from eight to 10,000. Iteration space plots are shown only for the
B[j 11][0] reference, which has temporal reuse along the outer loop. The
localized iteration space for this example is computed by comparing the
number of pages accessed by all references against the number of pages in
memory.

Consider first the A[i][j] reference, which has spatial reuse along the
inner loop (since each page contains two array elements) and no reuse
along the outer loop (since different columns are being accessed). A single
iteration of the j loop will bring one page into memory. To find the number
of pages accessed in a single iteration of the outer loop, we simply multiply
the number of pages accessed in an inner loop iteration and divide by the
spatial reuse factor. Thus, for a single iteration of the outer loop in Figure
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3(a) the A[i][j] reference brings ~8 3 1! / 2 5 4 pages into memory,
whereas in Figure 3(b) ~10,000 3 1! / 2 5 5,000 pages are brought into
memory. To find the number of pages accessed in the entire loop nest by
this reference, we simply multiply the pages accessed in a single iteration
by the number of iterations (since A[i][j] has no reuse along the outer
loop).

For the B[j][0] reference, which has group reuse with the B[j 11][0]
reference, only the first iteration of the inner loop (when j 5 0) causes a
new page to be brought into memory. Hence, for both examples in Figure 3,
this reference contributes a single page to the total data traffic across the
entire loop nest. In practice, because this reference has group reuse its
contribution to the total data traffic is expected to be small, and thus the
reference is ignored.

Finally, the B[j 11][0] reference, which has temporal reuse along the
outer loop, touches a distinct page during each iteration of the inner loop
with no savings due to spatial reuse. The number of pages accessed in a
single iteration of the outer loop is thus the same as the number of times
the inner loop is executed (i.e., 8 for the code in Figure 3(a) and 10,000 for
the code in Figure 3(b)). Since this reference has temporal reuse along the
outer loop, the total number of pages accessed in the entire loop nest does
not increase any further.

By summing each reference’s contribution to the total data traffic, we can
now determine whether each loop lies within the localized iteration space
or not. For the code in Figure 3(a), a single iteration of the j loop brings at
most three pages into memory (one for the A[i][j] reference, one for the
B[j][0] reference, and one for the B[j 11][0] reference). Since this is
much less than our memory capacity of 500 pages, we can conclude that the
j loop is within the localized iteration space. Similarly, a single iteration of

Page in Memory

Page Fault

B[j+1][0]

i

j

Page in Memory
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B[j+1][0]
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Fig. 3. Example of how loop iteration counts affect locality.
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the i loop brings only 13 pages into memory (four for A[i][j] , eight for
B[j 11][0] , and one for B[j][0] ). For this example, both loops are within
the localized iteration space. In contrast, for the code in Figure 3(b), a
single iteration of the inner loop brings only three pages into memory (as
before), while a single iteration of the outer loop brings 15,001 pages into
memory (5,000 for A[i][j] , 10,000 for B[j 11][0] , and one for B[j][0] ).
In this case, only the inner loop is within the localized iteration space.

Once the localized iteration space has been computed and expressed
using vector space notation, computing locality is simply a matter of
intersecting the reuse vector space with the localized iteration space, i.e.,

Reuse Vector Space ù Localized Iteration Space

f Locality Vector Space.

In practice, a number of considerations complicate the computation of
data locality. First, symbolic loop bounds make it difficult to determine the
exact amount of data accessed in a loop nest. Aggressive constant propaga-
tion can resolve some of these cases, but in other instances the compiler
must simply assume unknown loop bounds to be either small (always
localized) or large (never localized). Second, the actual amount of memory
available at run-time may be quite different from that specified at compile-
time, due to the resource demands of other applications. This problem can
be handled by underestimating the amount of available memory at compile-
time and relying on the run-time layer to reduce the overhead of unneces-
sary prefetches generated by this approach.

We turn now to the final step in the locality analysis algorithm—
converting the vector space representations of data locality into prefetch
predicates that can be used for scheduling the prefetches.

3.1.4 The Prefetch Predicate. The purpose of constructing prefetch pred-
icates is to associate a logical predicate which evaluates to “True” whenever
a reference is expected to incur a page fault. These predicates can then be
used to split loops such that iterations where the predicate has the same
value are grouped together, and faulting iterations are isolated. Different
predicates are constructed corresponding to each type of locality that a
reference may have. For instance, if a reference has no locality, it is
expected to page fault on every iteration, and the associated prefetch
predicate is simply “True.” A reference with temporal locality with respect
to a particular loop will only page fault during the first iteration of that
loop; thus the associated predicate is “loop_index 5 initial_value .” A
reference that has spatial locality with respect to a given loop will only
page fault when page boundaries are crossed. If the number of data
elements in a page is l, this will occur whenever “loop_index mod l 5 0,”
which is the prefetch predicate for spatial locality. Finally, references with
group locality that are not the leading reference are rarely expected to
incur page faults; thus the prefetch predicate is set to “False,” indicating
that these references should never be prefetched.
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To calculate the overall prefetch predicate for a reference within a
multilevel loop, we first construct the predicate with respect to each
surrounding loop and then take the conjunction of all these predicates.
Figure 4(b) shows an example of how prefetch predicates are constructed
for the given code. For instance, the A[i][j] reference has spatial locality
with respect to the j loop, and each page contains two array elements,
yielding a predicate of “j mod 2 5 0.” This reference has no locality with
respect to the i loop, giving a predicate of “True.” Taking the conjunction of
these two predicates, the overall prefetch predicate for A[i][j] is simply
“j mod 2 5 0.” The other two references are handled in a similar fashion,
and the results are shown in Figure 4.

The reasoning applied to the locality vector space representation to
construct prefetch predicates can also be applied to determine when data
are no longer needed and can thus be released. In general, the instances
when we want to release pages are closely related to when we need to
prefetch them. For example, a reference with no locality needs to be
prefetched before every use, and can be released after each use (since it will
not be used again). A reference with temporal locality needs to be
prefetched before the first loop iteration, and can only be released after the
last iteration. For spatial locality, we prefetch before the first reference to a
new page, and release after the last reference to that page. For references
with group locality, we need to prefetch ahead of the leading reference and
release after the trailing reference.

After constructing the prefetch predicates, the compiler needs to schedule
prefetches for the references that are expected to incur page faults (i.e.,
those for which the predicate evaluates to true), and releases for data that
are no longer being used. The next section describes how loop splitting
techniques are applied to transform loops and isolate faulting references,
and how software pipelining is used to schedule prefetches the right
amount of time before the expected reference.

Fig. 4. Example of how prefetch predicates are constructed.
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3.2 Scheduling Prefetches

Most of the changes made to the original compiler algorithm for prefetching
[Mowry 1994] are related to how loops are split and how prefetch and
release operations are scheduled. The objectives of the scheduling phase
are twofold: first, we want to issue prefetches early enough that the
requested data are found in memory when they are needed; second, we
want to minimize the overhead associated with issuing prefetch and release
requests. To minimize overhead, we apply two techniques. First, we isolate
faulting references by splitting loops to avoid introducing conditional
statements in inner loops. This technique was developed for cache prefetch-
ing and remains an important optimization. Second, we attempt to mini-
mize the number of times the application/system boundary is crossed, since
the cost of making a system call contributes greatly to the software
overhead of issuing prefetches.

In the following subsections, we discuss how prefetch and release opera-
tions are scheduled, and emphasize the changes required for I/O prefetch-
ing.

3.2.1 Loop Splitting Techniques. The purpose of loop splitting is to
isolate statically all iterations in which the prefetch predicate for a partic-
ular reference has the same value. Once this has been done, there is no
need to evaluate the predicate to decide when to prefetch—we either
always prefetch at a given static point in the code, or never prefetch. Just
as a different predicate was constructed for each type of locality, a different
splitting technique is applied for each type of predicate.

The simplest case is if the prefetch predicate is either “True” or “False”;
no transformation is required, since the loop is already in a form where we
either always prefetch or never prefetch.

For temporal locality, the predicate is “loop_index 5 0”; we need to
prefetch during the first iteration and release during the last iteration. In
this case, we would isolate the instances where we need to prefetch and the
instances where we need to release by peeling the first and last iterations
respectively. An example of the effect of this transformation on a generic
loop is shown in Figure 5.

For spatial locality, the predicate is “loop_index mod l 5 0”; we need to
prefetch and release once every l iterations. With cache prefetching, the
preferred technique was to replicate the body of the loop l times, using loop

Fig. 5. Example of peeling the first and last iterations of a loop.
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unrolling. However, for I/O prefetching l may be large (typically several
hundred or thousand elements will fit on a page), and the preferred
technique is to strip-mine the loop by a factor of l, since replicating the loop
body several hundred times is unreasonable. Examples of both unrolling
and strip-mining are shown in Figure 6. These large strip-mining factors
lead to one additional complication: if a given loop nest accesses less than a
full page of data, it will be impossible to strip-mine the loop. Since many
items fit on a page, it is quite likely that the innermost loop, and even
several surrounding loops, will not access enough data to make strip-
mining feasible. In contrast, with cache prefetching it was extremely
unlikely that a loop would access less data than a cache line; thus it was
reasonable to focus on the innermost loop. We also need to be more careful
about scheduling for these types of references, as will be discussed in more
detail in the following section.

These loop splitting techniques can be applied recursively to nested loops
to handle multiple prefetch predicates. One possible area of concern is the
amount of code expansion that results from repeatedly replicating loops.
Increasing the code size may have a negative impact on the instruction
cache as well as on the ability of compilers to optimize the code. To manage
these concerns, the original compiler algorithm records how large a loop is
growing and suppresses transformations that replicate the loop body (e.g.,
peeling) when it becomes too large. In our experiments, however, we have
found that the benefits of successfully prefetching needed pages from disk
far outweigh the harmful effects of code expansion.

3.2.2 Software Pipelining. For prefetches to be effective, they should be
issued early enough that the data arrive in memory before they are needed,
but not so early that they risk being replaced before they are used. To hide

Fig. 6. Example of unrolling and strip-mining a loop by a factor of 64.

132 • A. D. Brown et al.

ACM Transactions on Computer Systems, Vol. 19, No. 2, May 2001.



the latency of disk accesses, we overlap prefetches for a future iteration
with the computation of the current iteration using a technique called
software pipelining [Lam 1988]. A simple example of this technique is
shown in Figure 7. The important part of the software pipeline is the steady
state, where we have both prefetches issued and computation performed.
The prolog section is used to initialize the pipeline, while the epilog
performs the last few iterations where prefetching is no longer needed.

Given that loop iterations are used as the unit of scheduling in the
pipelining algorithm, two key issues need to be resolved to schedule
prefetches effectively. The first issue is unique to I/O prefetching: how to
choose the proper loop across which to pipeline in the presence of multiple
loop nests. As discussed in Section 3.2.1 with regard to strip-mining, it is
possible that several levels of loop nests access less than a page of data. Not
only is it impossible to strip-mine these loops, attempting to software
pipeline across them is also ineffective, since the pipeline never gets into
the steady state. The second issue, common to both cache and I/O prefetch-
ing, is determining the prefetch distance (i.e., the number of iterations in
advance that prefetches should be issued).

To illustrate how the proper choice of pipeline loop is affected by the
presence of small loop bounds, it is useful to first look at an example of how
software pipelining is used to transform code and schedule prefetches. We
will thus tackle the problem of finding the prefetch distance first, and
examine a simple example of how prefetches are scheduled. We will then
consider a slightly more complicated example, where the correct choice of
pipeline loop is essential to scheduling the prefetches effectively.

3.2.2.1 Finding the Prefetch Distance. Given the amount of latency that
needs to be hidden, the problem of finding the prefetch distance (in terms of

Fig. 7. Example of how software pipelining is used to schedule prefetches the proper amount
of time in advance. For this example, 12,288 iterations are required to hide I/O latency.
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the number of iterations of the pipeline loop) is simply a matter of
determining how much computation is needed. If the latency is expressed
as a number of cycles, and we assume that each instruction takes a single
cycle, then the number of iterations required, d is given by

d 5  lm

s 1 lp (1)

where d is the prefetch distance, lm is the expected I/O latency, s is the
number of instructions in the shortest path through the loop body, and lp is
the software overhead introduced by adding a prefetch instruction to the
loop body. In general, it is impossible to determine exactly how many
instructions will be executed; however, we choose the shortest path to
ensure that prefetches are issued early enough. The prefetch overhead
latency parameter, lp, is used to more closely approximate the time spent
executing a loop iteration after a prefetch request is inserted in the loop.
This consideration is especially important for short loop bodies, since the
time spent issuing the prefetch can be a significant fraction of the time to
execute an iteration. The ceiling of the ratio is used to ensure that all of the
latency is hidden.

Figure 7 shows a simple example of how prefetches and releases are
scheduled using software pipelining. For this example, we have chosen
parameters that correspond to our experimental architecture: the page size
is 4,096 bytes; the I/O latency is 100,000 cycles; and the prefetch latency is
10,000 cycles. Since the A[i] reference has spatial locality, the i loop is
first strip-mined into loops i1 and i using a block size of four pages. Using
Eq. (1), the compiler then determines that six iterations of the outer i1 loop
(with a prefetch call added) are needed to fully hide the I/O latency. To
initialize the pipeline, a prolog is constructed to prefetch the first 24 pages
in a single block prefetch call, thus minimizing system call overhead. This
is in contrast to cache prefetching where a prolog loop would have been
constructed to request each page independently. Next, the steady state loop
is executed. In this loop, blocks of four pages are prefetched in every
iteration of the i1 loop, and used in the inner i loop. After each block of
pages has been used, block release calls are issued to free the pages.
Finally, the epilog loop performs the final iterations of computation, after
which a block release call frees the last block of pages. This example
presents a somewhat idealized version of how release requests are sched-
uled. In practice, we are also concerned about reducing the number of
system calls; hence release operations are bundled with prefetches in a
single call whenever possible. When there is no prefetch with which to
bundle the release, we simply suppress issuing it.

Now that we have seen how software pipelining schedules prefetches
using prolog, steady state, and epilog sections, we return to the question of
how to select the right loop across which to pipeline.
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3.2.2.2 Choosing the Pipelining Loop. Ordinarily, prefetches are soft-
ware pipelined around the innermost loop nest that changes the value of
the array-indexing function (i.e., the first loop that changes the address
referenced). For example, in Figure 8(a) the m loop would be chosen as the
pipeline loop. Also, since the m loop has spatial locality, we would like to
request blocks of four pages with each prefetch. Since each iteration of the
m loop accesses only 20 bytes of data, it would take 820 m loop iterations to
cover a four-page block, which means that strip-mining is not performed,
since only five iterations are available. Using Eq. (1), the compiler deter-
mines that prefetches need to be issued roughly 12,000 m loop iterations
ahead, causing a block prefetch for 12 pages to be inserted for the prolog
section of the pipeline, as shown in Figure 8(b). Now, since the spatial
locality of the A[i][j][k][l][m] reference suggests that we only need to
prefetch every 820 mloop iterations, and since there are only five iterations
in the code, the steady state and epilog sections of the pipeline are not
created. The effect is that when new pages are prefetched at all the request
is issued just before entering the mloop as part of the prolog, but are never
early enough to be useful. The fundamental problem is that the pipeline
never gets into the steady state.

To cope with this problem, we modified the scheduling part of the
algorithm to consider the amount of data actually used in what would
ordinarily be chosen as the pipeline loop. If the pipeline loop has spatial
locality, and the total data traffic across all iterations of that loop is less
than a block (i.e., four pages in our experiments), then we choose the next
surrounding loop nest as the pipeline loop instead. We apply this heuristic
recursively until a loop that accesses more than a block of data or the
outermost loop is found. The result of this modification is shown in Figure
8(c), where prefetches are software pipelined across the j loop, rather than
the mloop. It is now possible to schedule prefetches early enough to hide all
the latency.

3.2.2.3 Scheduling Indirect Prefetches. Indirect references such as
A[index[i]] are assumed to have no locality; hence it is not necessary to
perform any loop splitting transformations (i.e., the prefetch predicate is
always “True”). Indirect prefetches are scheduled using software pipelining
in the same manner as direct prefetches, with one minor modification. In
addition to fetching the indirect reference itself (A[index[i]] ), it may also
be necessary to schedule a prefetch for the indexing reference, index[i] .
The indexing reference is treated like any other reference for the purposes
of determining locality; however, for scheduling, it needs to be prefetched
early enough to be used in the prefetch of the indirect reference, rather
than in the indirect reference itself. More details on prefetching indirect
references are given in Mowry’s thesis on cache prefetching [Mowry 1994].

3.2.2.4 A More Detailed Example. Figure 9 shows an example of the
output of our compiler for a simple loop body (notice that it is able to
prefetch the indirect a[b[i]] reference as well as the dense b[i] and
c[i][j] references). Notice that loop i has been strip-mined twice (into
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loops i0 and i1 ) to account for the spatial locality of b[i] and c[i][j] .
(The i loop has been strip-mined twice, since c[i][j] accesses data more
quickly than b[i] , and therefore needs to be prefetched at a faster rate.)
Second, to fully exploit the available bandwidth in our I/O subsystem, we
prefetch several pages at a time for references with spatial locality (e.g.,
four pages are fetched at a time for b[i] and c[i][j] ). Similarly, we
convert the prolog loops from the original algorithm into block prefetches

Fig. 8. Example of software pipelining with small loop bounds.
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whenever possible, as shown in the first two lines of Figure 9(b). For
references without spatial locality—e.g., a[b[i]] —we prefetch only a
single page at a time. Also notice how the b[i] reference is prefetched well
in advance of the prefetch for a[b[i]] so that the data will be available to
compute the prefetch address. Finally, this example also shows how we
bundle prefetch and release requests together whenever appropriate, to
minimize the number of system calls.

4. EXPERIMENTAL FRAMEWORK

We now describe our experimental platform including the hardware plat-
forms and the operating system and run-time support in each system, the
compiler framework used, and the applications which we study in our
experiments. Both of our hardware platforms are NUMA (nonuniform
memory access) shared-memory multiprocessors; however, the specific
memory model is unimportant to these experiments (all we require is
support for virtual memory). Our choice of systems was motivated primarily

Fig. 9. Example of the output of the prefetching compiler. The first argument to all prefetch
calls is the prefetch address; the second argument to prefetch_release_block is the release
address; the final argument to “block” versions is the number of 4KB pages to be fetched
and/or released.
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by the availability of operating system source code and support from the
authors of the operating systems. A secondary consideration was support
for high-bandwidth I/O subsystems. In both of our experimental setups,
each out-of-core benchmark is executed alone on the system, thus eliminat-
ing variations in the amount of available memory and contention at the
disks due to other applications.

4.1 Research System Infrastructure

The first experimental platform used to evaluate our scheme is the Hurri-
cane File System (HFS) [Krieger and Stumm 1997] and Hurricane operat-
ing system [Unrau et al. 1995] running on the Hector NUMA (nonuniform
memory access) shared-memory multiprocessor [Vranesic et al. 1991].
Hurricane is a hierarchically clustered, microkernel-based operating sys-
tem that is mostly POSIX compliant. The Hurricane microkernel provides
basic interprocess communication and memory management facilities, in-
cluding support for mapped file I/O. Most of HFS is implemented outside of
the microkernel as a user-level server. HFS implements files using build-
ing blocks to specify the structure of the file and the file system policies
applied to a file [Krieger and Stumm 1997]. Applications are allowed to
specify the structure of the file (for instance, the layout of data across the
disks) at creation time, and to dynamically change the policies applied
when using a file (for example, for replicated files, the application can
specify which replica should be used). The basic characteristics of our
experimental platform (with the instrumentation disabled) are shown in
Table I, and more detailed descriptions of the platform can be found in
earlier publications [Krieger and Stumm 1997; Unrau et al. 1995; Vranesic
et al. 1991].

Our experiments are performed on a 16-processor Hector prototype with
seven Conner CP3200 disks attached to it. Each disk is directly attached to

Table I. Hector/Hurricane Characteristics

Hardware Characteristics Software Characteristics
Processor Kernel Operation Overhead

Processor type: Motorola 88100 IPC request: 70 msec
Clock rate: 16.67MHz In-core fault: 200 msec
Data cache size: 16KB Out-of-core fault: 800 msec
Instruction cache size: 16KB Base prefetch: 60 msec

Physical Memory 1 per out-of-core page: 200 msec
Total size: 64MB 1 per in-core page: 30 msec
Available to application: 48MB 1 per in-page table page: 10 msec

Disks File System Operation Overhead
Number of disks: 7 Prefetch (per-page): 70 msec
Maximum transfer rate: 640 KB/sec Read/Write (per-page): 70 msec
Average rotational latency: 8.61 msec
Track-to-track seek time: 5 msec
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a different processor, and the local processor is responsible for initiating all
requests to its disk and servicing all interrupts from its disk. For all
experiments shown in subsequent sections, the pages of the applications
are striped by the file system round-robin across all seven disks. An
extent-based policy is used to store the file on each of the disks, where
contiguous file blocks are stored to contiguous blocks on the disk to avoid
seek operations for sequential file accesses. We chose to evaluate our ideas
under this system primarily because we had access to the source code for
Hurricane and were able to modify it to support the required operations
and to provide detailed information on system-level activities. The fact that
the hardware platform is a multiprocessor is largely irrelevant: the key
feature is the disk array that provides our applications with the bandwidth
that they require.

Hurricane supports our approach in the following three ways. First,
when a prefetch request is received by the operating system, the kernel
checks to see if the specified page is already in memory (or if another read
request for that page has already been scheduled). If the page is not in
memory, then (1) the memory manager allocates a physical page from the
free list to hold the file data, (2) an asynchronous read request is sent to
the Hurricane file system, and (3) control is returned to the application.
The disk scheduler treats prefetches the same as normal disk read requests
(both read and prefetch requests are serviced ahead of write requests). In
the event that there are no pages on the free list, the memory manager
drops the prefetch request and clears the corresponding bit in the shared
bit vector to indicate that the requested page has not been fetched. We
believe this to be a reasonable strategy, since prefetch requests are non-
binding performance hints that do not need to be satisfied for program
correctness. Also, we want to encourage prefetching applications to balance
their memory requirements by explicitly releasing pages that they no
longer need—thus, when all memory is in active use it is better to drop the
prefetch than risk replacing data that will be needed before the prefetched
data. Second, when a release request is received, the kernel removes the
mapping for that page from the process’ page table (and from the TLB if
necessary) and places the page at the end of the free list. We choose to place
explicitly released pages at the end of the free list rather than at the head
so that they can be reclaimed easily if imperfect compiler analysis causes
the page to be released too early. Third, the operating system supports the
shared bit vector as follows.

The operating system agrees to provide a user-level process with a single
4KB page of physical memory that can be used as a map of the process’
virtual address space. Since only a single page will be provided, the
granularity of the bit vector must be established. For instance, with a 4KB
page size and each bit representing a single page, the bit vector is capable
of tracking only 215 pages of virtual memory or 134MB of data. If the
application accesses more data than can be represented with a single bit
per page, then each bit must represent multiple pages, and both the
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operating system and the run-time layer must agree on the granularity to
use. In general, either the operating system or the run-time layer could
decide on the appropriate granularity and inform the other layer of the
choice; in our implementation the decision is made by the run-time layer.
The granularity of the bit vector needs to be considered by both the
run-time layer and the operating system, not only to ensure that the right
bits are set, but also to ensure that the the bit vector remains useful for the
purposes of the run-time layer. For example, if the compiler schedules a
prefetch request for a single page the corresponding bit is set, then it will
appear as if all pages in the same group (i.e., all pages represented by the
same bit) are already in memory. The result is that a prefetch request for
another page in that group will be filtered out by the run-time layer. The
same problem can occur when the operating system sets bits for pages
brought into memory through page faults. In our implementation we
handle granularities greater than a single page as follows. The run-time
layer asks the operating system to prefetch all the pages in a group
whenever a prefetch is needed for any page in that group, thus preserving
the notion that the pages are in memory if the corresponding bit is set. In
turn, when a single page is brought into memory due to a page fault the
operating system does not set the bit, allowing the run-time layer to still
issue prefetch requests for the other pages in the group.

When a prefetching application is executed, the run-time layer binds a
page-sized region of memory to a fixed virtual address to use as the bit
vector. Information about the size of mapped files is used to set the
granularity of the bit vector. Next, a system call passes the starting virtual
address and the granularity of the bit vector to the operating system, which
records the physical page corresponding to the specified virtual address
and the granularity in the process’ address space descriptor. At this point,
the operating system and the run-time layer have agreed on which page
will be shared and how it will be used to map the process’s virtual address
space. The operating system can now set bits in the vector whenever the
process page faults or prefetches, and clear them whenever pages belonging
to the process are unmapped.

In addition to adding prefetch and release operations to Hurricane and
supporting the shared page, we also added extensive instrumentation to
enable us to observe the effect of each static prefetch request. Each static
prefetch instruction in the code is given a unique identifier by the compiler.
This identifier is passed to the kernel together with the prefetch address
and the number of pages to fetch. When a prefetch request is received by
the kernel, we record the requested address, the time the request was
received, and the identifier of the static prefetch instruction in a prefetch
record. When a page fault occurs, the kernel checks if the faulting page was
prefetched, and updates a set of counters based on the result. This
technique allows us to observe the success rate of each static prefetch
instruction added to the code by the compiler, and was essential for us to be
able to identify the parts of the compiler algorithm that needed to be
modified to handle I/O prefetching efficiently. This instrumentation is also
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used to produce the detailed statistics shown in the Hurricane results
sections (Sections 5.1–5.5).

4.2 Commercial System Infrastructure

To further validate our scheme for tolerating page fault latency in out-of-
core applications, we also implemented our operating system support and
run-time layer on a current commercial system. We used a four-processor
SGI Origin 200 [Laudon and Lenoski 1997], running our modified version
of the IRIX 6.5 operating system to obtain our commercial system results.
The system was configured so that approximately 75MB of physical mem-
ory was available to user programs, and the system swap space was striped
across 10 Seagate Cheetah 4LP disks using raw swap partitions. Five SCSI
adapters each control two of these 10 disks; the SCSI adapters are in turn
connected to the PCI busses on the Origin. The basic hardware character-
istics of our system are summarized in Table II.

We have implemented support for user-level paging directives (i.e.,
prefetch and release) within the SGI IRIX 6.5 operating system. IRIX 6.5
supports a Memory Management Control Interface, which consists of policy
modules that allow users to select various policies for page size, allocation,
migration, and replication. A policy module may be connected to any range
of an application’s virtual address space, down to the level of a single page.
We have defined a new policy module—called “PagingDirected”—that
allows a user-level process to invoke prefetch and release operations on
pages of its address space associated with this policy. In addition, the
PagingDirected policy module shares information about memory usage
with the application through a single 16KB page. This page is allocated by

Table II. SGI Origin 200 Characteristics

Processor

Processor type: MIPS R10000
Number of Processors: 4

Clock rate: 180MHz

Physical Memory
Total size: 128MB

Available to application: 75MB
Page size: 16KB

Disks

Manufacturer: Seagate
Model: Cheetah 4LP

Number of disks used for swap: 10
Maximum external (I/O) transfer rate: 40MB/sec/disk

Average rotational latency: 2.99 msec
Track-to-track seek, read: 18 msec (typical)

Track-to-track seek, write: 19 msec(typical)
Number of SCSI controllers: 5

Disks per controller: 2
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the operating system and mapped read-only into the application’s address
space when the PagingDirected policy module is created. The page is used
primarily as a bitmap, indexed by virtual page number, in which bits are
set to indicate that the corresponding page is in memory, and cleared
otherwise.

When the PagingDirected policy module receives a request to prefetch a
page, it performs actions similar to those that occur for a page fault, with
two notable exceptions. First, if there is no free memory available to
allocate for the prefetched data, the prefetch request is discarded immedi-
ately. Second, when the request completes, the prefetched page is not fully
validated, and no entry is made in the TLB. The second feature prevents
mappings for prefetched (and not yet referenced) pages from displacing
TLB entries which are still in use.

Requests to release pages are handled by passing the released addresses
to a new system-releasing daemon—called the releaser—which is similar
in function to the paging daemon, but is specialized to reclaim only the
pages specified by the application. When a release request is made, the
PagingDirected policy module clears the bits for the pages and enters the
request in the releaser’s work queue. The releaser handles requests from
each prefetching/releasing application as they are received, first checking
the bit vector to make sure that the pages have not been referenced again
(either by a prefetch or a real reference) between the time that the
application made the request and the time that the request is handled. The
releaser then performs all actions needed to free the pages, including the
allocation of swap space and writing back dirty pages if necessary. Re-
leased pages are placed at the end of the free list, so that they will not be
reallocated for another purpose immediately. This strategy gives pages that
were released too early a chance to be rescued from the free list.

All updates to the shared page are handled by the operating system.
When the PagingDirected policy module is created, all bits in the shared
page are initially set. When the application attaches the policy module to a
region of its virtual address space, the bits corresponding to those ad-
dresses are all cleared. Thereafter, bits are set whenever a physical page is
allocated for a virtual page associated with this policy module, either due to
prefetch requests or ordinary page faults. Bits are cleared when pages are
reclaimed, either by an explicit release request or due to default page
replacement activity. Note, that since the base page size in IRIX 6.5 is
16KB, we are able to represent 2GB of memory using a granularity of one
page per bit, which is sufficient for a 32-bit address space. For 64-bit
address spaces that are expected to be sparsely populated, a multilevel bit
vector scheme may be more appropriate than requiring a single bit to
represent multiple pages.

To achieve the full benefit of prefetching, we need to be able to both fetch
data asynchronously (so the application can continue after issuing the
prefetch) and take advantage of any available parallelism in the underlying
disk subsystem. The run-time layer accomplishes these requirements by
creating a number of Pthreads [IEEE 1992] that make the actual calls to
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the PagingDirected policy module and wait for the prefetches to complete.
When a prefetch request inserted by the compiler is intercepted by the
run-time layer, the bit vector is first checked to see if a prefetch is really
needed. Then, if necessary, the request is placed on a work queue, and then
one of the prefetching threads is signaled to handle the request. The
prefetching threads simply remove requests from the queue and issue them
to the PagingDirected policy. This Pthreads-based approach to achieving
asynchronous prefetching is very similar to the implementation of the
asynchronous I/O library in IRIX.

4.3 Compiler Framework and Benchmark Applications

We implemented our prefetching algorithm as a pass in the SUIF (Stanford
University Intermediate Format) compiler [Tjiang and Hennessy 1992].
The output from the SUIF compiler is C code containing prefetch and
release calls (as illustrated earlier in Figure 2(b)). We also use the SUIF
compiler to convert the original Fortran source code of each application into
C code for the original, nonprefetching versions that we use in our experi-
ments. We then compile the resulting C code into an executable for our
target system using gcc version 2.5.8 (with the -O2 optimization flag set)
for the Hurricane system and SGI’s MIPSpro compilers version 7.2.1 (with
the -O3 optimization flag set) for the IRIX system. During the second
compilation step, the prefetching versions are linked to a set of library
routines that implement the run-time layer support. Routines to check and
set the bit vector to filter prefetch requests are inlined for performance.

To evaluate the effectiveness of our approach, we measured its impact on
the performance of the entire NAS Parallel benchmark suite [Bailey et al.
1991]. We chose these applications because (1) they represent a variety of
different scientific workloads, (2) their data sets can easily be scaled up to
out-of-core sizes, and (3) they have not been written to manage I/O
explicitly. Our goal is to show that these scientific benchmarks can achieve
high performance with out-of-core data sets without requiring any extra
effort to rewrite the program.

Table III. Description of Applications

Name Description

BUK integer bucket sort algorithm
CGM solves an unstructured sparse linear system using the conjugate gradient

method
EMBAR Monte Carlo simulation

FFT 3D FFT PDE, performs forward and inverse FFTs
MGRID computes 3D scalar potential field on a uniform cubical grid using a

multigrid solver
APPLU solves four coupled parabolic elliptic PDEs using SSOR method to invert

jacobian matrix
APPSP solves five coupled parabolic elliptic PDEs using diagonalized approximate

factorization method
APPBT solves three coupled parabolic elliptic PDEs using block approximate

factorization method
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A brief description of each of the benchmarks is given in Table III. BUK
sorts a large array of integers using the bucket sort algorithm and contains
both direct and indirect references. This program illustrates a number of
features of I/O prefetching, yet is easy to understand and is thus the
subject of the case study in Section 5.5. CGM is an example of a sparse-
matrix computation; it also contains both direct and indirect references.
EMBAR has an extremely simple data access pattern—it repeatedly refer-
ences a single large array to perform a Monte Carlo simulation. MGRID, in
contrast, has a very interesting access pattern, despite all the references
being direct. In this application, a wavefront moves through a uniform
three-dimensional grid representing a potential field. At each point, a
computation is performed using the center of the wavefront and the 27
nearest neighboring points (i.e., 6 points that differ by one in only one
index, 12 points that differ by one in exactly two of the indices, and 8 points
that differ by one in all three indices) [Bailey et al. 1991]. Although the
references are all regular, and the pattern is detectable by the compiler, it
would be extremely difficult to identify the pattern dynamically in the
operating system. FFT solves three-dimensional partial differential equa-
tions using both forward and inverse fast-Fourier transforms. The data set
is accessed in a different order as this application switches between
forward and inverse FFT phases. Finally, APPLU, APPSP, and APPBT all
solve systems of coupled partial differential equations, using different
methods. The structure of these three applications is similar, although they
manage their data in slightly different fashions. The common characteristic
that is important in our experiments is that they all use multidimensional
loops in which the innermost dimensions are very small.

Because Hurricane is a research operating system, it does not contain all
the functionality that is required of a commercial system. In particular, it
does not have support for writing and reading virtual memory pages to and
from swap space. Instead, we needed to modify these benchmark programs
to use mapped files to provide the backing storage space for their data in
the Hurricane experiments. For the IRIX experiments, no changes were
made to the benchmarks, other than increasing the size of their data sets.
Characteristics of the benchmarks as used in each experimental setup are
given in Sections 5.1 and 5.6.

5. EXPERIMENTAL RESULTS

We now present the results of our experiments, first looking in-depth at the
results on our research platform, then presenting our results on the
commercial system. We begin by focusing on the impact of our scheme on
overall execution time. We then look at the performance from a system-
level perspective, including the effects on disk and memory utilization.
Section 5.3 examines the effectiveness of the compiler and the run-time
layer at scheduling prefetches and reducing overhead. In Section 5.4 we
look at the effect of varying problem sizes on our results. Section 5.5
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presents a detailed case study of one of the applications (BUK). Finally, we
present our IRIX results in Section 5.6.

5.1 Overall Performance on the Research System

Table IV gives basic characteristics of the NAS Parallel benchmarks as
executed on the Hurricane platform, including a description of the data set,
the total amount of memory required (both in megabytes and as a percent-
age of the physical memory available), and the absolute time required to
execute the original nonprefetching versions.

Figure 10(a) shows the overall performance improvement achieved
through our automatic prefetching scheme. For each application, we show
two bars representing normalized execution time: the original program
relying simply on paged virtual memory to perform its I/O (O), and the
program once it is compiled to prefetch and release data explicitly (P). In
each bar, the top section is the amount of time when the processor was idle,
which corresponds roughly to the I/O stall time, since we run only a single
application during these experiments. The bottom section of each bar is the
time spent executing in user mode—for the prefetching experiments, this
includes the instruction overhead of issuing prefetches, including any
overhead in the run-time layer of checking the bit vector to filter out
unnecessary prefetches. The middle sections of each bar are the time spent
executing in system mode. For the original programs, this is the time
required for the operating system to handle page faults; for the prefetching
programs, we also distinguish the time spent in the operating system
performing prefetch operations.

As we see in Figure 10(a), the speedup in overall performance ranges
from 9% to 270%, with the majority of applications speeding up by more
than 80%. Figure 10(b) presents additional information on page faults1 and
stall time. As we see in Figure 10(b), more than half of the I/O stall time

1Throughout this discussion, we will refer to page faults that cause the application to stall
waiting for I/O simply as faults, and ignore page faults for in-core data.

Table IV. Application Characteristics on Hurricane

Name Input Data Set

Memory Required Original
Execution

Time
(mins)Absolute

% of
Available

BUK 223 19-bit integers 103MB 215% 21.0
CGM sparse matrix with 7,607,024 nonzeros 103MB 215% 57.2

EMBAR 224 random numbers 134MB 279% 53.9
FFT 128 x 128 x 128 matrix of complex numbers 117MB 244% 87.9

MGRID 128 x 128 x 128 matrix 58MB 121% 31.9
APPLU 5 x 5 x 64 x 64 x 32 matrices 120MB 250% 48.9
APPSP 90 x 90 x 90 matrices 117MB 244% 224.3
APPBT 5 x 5 x 64 x 64 x 32 matrices 94MB 196% 85.2
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has been eliminated in seven of the eight applications, with three applica-
tions eliminating over 98% of their I/O stall time.

Having established the benefits of our scheme, we now focus on the costs.
Figure 10(a) shows that the instruction overhead of generating prefetch
addresses and checking whether they are necessary in the run-time layer
causes less than a 20% increase in user time in five of the eight applica-
tions—in the worst case (CGM), the user time increases by 70%. However,
in all cases this increase is quite small relative to the reduction in I/O stall
time. If we focus on the system-level overhead of performing prefetch
operations, we see in Figure 10(a) that in most cases this overhead is
directly offset by a reduction in system-level overhead for processing page
faults. Hence the overheads of our scheme are low enough to translate into
significant overall performance improvements in all of these applications.
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Fig. 10. Overall performance improvement from prefetching on Hurricane. (a) Execution
time breakdown (O 5 original, P 5 with prefetch), (b) I/O stall statistics.
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We wish to emphasize that all of these results are fully automatic—we
have not rewritten any of the applications or modified the code generated
by the compiler. Having discussed the performance from a high-level
perspective, we now look at the impact of explicitly prefetching and
releasing data on system resources.

5.2 Disk and Memory Utilization

In Figures 11(a) and (b) we break down the types of requests seen by the
disks and show average disk utilization during execution for both the
original and prefetching versions of the applications. In almost all cases,
the total disk requests do not increase as a result of prefetching, and for
two of the applications they actually decrease, as prefetches prevent the
system from writing out dirty pages that will be referenced again soon.
Hence, the increased disk utilization shown in Figure 11(b) is simply due to
the fact that we are performing roughly the same number of disk accesses
over a shorter period of time. Although we have increased disk utilization
by a considerable amount, the disks are still idle more than half of the time.

Memory usage during each application’s execution is summarized in
Figure 11(c). Since our current compiler implementation is not aggressive
about inserting release operations, most applications do not contain a
significant number of them. However, when release operations are used
(e.g., BUK and EMBAR), we see that a large percentage of memory is kept
free at all times. This result occurs because these applications return any
pages that are not actively being used to the system and because the
working set is significantly smaller than the total data set. We expect that
being able to increase the amount of free memory in the system would
greatly reduce the impact of an out-of-core program on other applications in
a multiprogrammed environment, and we intend to explore this issue
further in future work.

5.3 Effectiveness of the Compiler and Run-Time Layer

Figure 12 presents information which is useful for evaluating how effective
our compiler is at inserting prefetches appropriately, and how effective the
run-time layer is at minimizing prefetching overhead. We begin by examin-
ing the success of the static analysis performed at compile-time and then
look at how well the run-time layer adapts to the dynamic conditions
during execution.

5.3.1 The Compiler. To assess the compiler analysis, we consider what
happens to the original page faults when prefetching is added. There are
three possibilities: (i) a previously faulting page is successfully prefetched
(we call this a prefetched hit), (ii) a faulting page is prefetched but still
faults when the reference occurs (we call this a prefetched fault), and (iii)
no prefetch is issued for a faulting page (this is a nonprefetched fault). We
refer to the combination of the first two cases as the coverage factor (i.e.,
the fraction of original page faults that were prefetched). Figure 12(a)
shows a breakdown of the impact of prefetching on the original page faults
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in each application that we study. In all cases except APPBT, the coverage
factor is greater than 75% (in four cases it is greater than 99%), indicating
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that the compiler is quite successful at identifying references that need to
be prefetched. In the half the cases, however, we see that there are still a
nontrivial number of page faults that are not prefetched.

Although in most cases the coverage is extremely good, we are interested
in discovering why the compiler sometimes fails to prefetch needed data.
There are three basic causes that can contribute to poor coverage for the
types of applications that we are interested in.2 Briefly stated, they are:

(1) Loop bounds and array dimensions may be unknown at compile-time.

(2) Data may not be aligned well with respect to page boundaries.

(3) Some references that should be prefetched do not look like array
accesses when the prefetching pass of the compiler is executed.

Each of these causes are a contributing factor in the relatively poor
coverage for APPLU, APPSP, and APPBT.

First, when both the loop bounds and the array dimensions are unknown,
the compiler must make an assumption about the amount of data accessed
in the loop. If the compiler incorrectly assumes unknown loops to be small,
it can fail to schedule needed prefetches. The fundamental problem is that
such loops appear to be localized, implying that reuse can be exploited and
prefetching is needed only for the first reference. Unfortunately, simply
assuming unknown bounds to be large is not a reasonable solution, since it
can cause another scheduling problem if the loops are actually small (as
discussed in Section 3.2.2). A better solution would be to have the compiler
generate multiple versions of the loop. At run-time the correct version to
execute could be chosen based on the actual values of the loop bounds. The
question of how to handle quantities that are unknown at compile-time is a
subject for further investigation.

The second instance in which some pages are not prefetched arises when
the data are not well aligned with respect to the page boundaries. When
calculating group reuse, the compiler assumes that two references will
probably touch the same page if the data locations that they access are
separated by less than half a page (see Section A.3 of the Appendix for
details on the calculation of group reuse). If the two data locations are
actually on adjacent virtual pages, then only the first page will be
prefetched, and the second will still suffer a page fault. In general we
expected this problem to be rare; however, it arises relatively frequently in
APPLU, APPSP, and APPBT.

The final problem is best explained with the use of an illustrative
example. Consider the code shown in Figure 13. In this loop, procedure foo
is called with the address of A[i] , while procedure bar is called with the
value of B[i] . Ideally, we would like to prefetch both of these references,
but the current prefetching pass of the compiler only recognizes the B[i]

2A fourth potential cause involves data that are not accessed via affine array references (e.g.,
pointer dereferences); however, such accesses are insignificant in the Fortran applications we
consider, and are beyond the scope of this study.
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reference. The reason is that earlier passes of the SUIF compiler have
converted the high-level source code shown in Figure 13 to an internal
representation where &A[i] is not identified as an array reference.3 This
situation arises during the initialization phase in APPLU, APPSP, and
APPBT. While this problem does not contribute greatly to the non-
prefetched page faults in these applications, it could be an important case
to recognize in general.

Having shown why the compiler is unable to prefetch all of the original
faults, we now turn our attention to the prefetched fault category in Figure
12(a). A page fault can occur for prefetched pages for two reasons: either
the prefetch has not had time to complete and the page has not yet arrived
in memory, or the prefetch was issued far too early and the page has been
replaced from memory. This category reflects the effectiveness of our
compiler in scheduling prefetches the right amount of time in advance. In
the cases where prefetched faults are noticeable in Figure 12(a), the
problem is almost always that the prefetches were not issued early enough.

Two observations help to explain why prefetches may not have time to
complete before the data are needed. First, the compiler schedules
prefetches so that they will be issued early enough during the steady state
of the software pipeline. Prefetches issued in the prolog sections are
intended to initialize the pipeline, but are not scheduled to complete before
the data are needed. Second, when loop bounds in multidimensional loops
are unknown at compile-time, the compiler may pipeline around the wrong
loop nest. As shown in Section 3.2.2, the result is that prefetches are only
issued in the prolog and that the steady state is never reached. Again, we
expect that to correct this problem we will need to generate multiple
versions of such loops and choose the right one dynamically when the
program is executed.

Finally, the middle column of Figure 12(b) shows that most of the
prefetch requests scheduled by the compiler are actually unnecessary (i.e.,
the page was already mapped into memory) and are filtered out by the
run-time library. For BUK and CGM, most of these unnecessary prefetches
result from always prefetching indirect references. Locality analysis is not
applied to these types of references; instead, the compiler assumes that
each such reference could touch a different page of data. For these applications

3In fact, handling this case properly may require interprocedural analysis, since whether or
not the data at &A[i] need to be brought into memory depends on what the procedure foo
does with the argument that is passed to it. Also, scheduling a prefetch properly for these data
depends on when they are used by foo .

Fig. 13. Example of a reference not recognized as an array reference (inside foo ) by the
compiler.
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this “worst-case” behavior rarely occurs, and thus most of the prefetches
are unnecessary. We will examine the utility of prefetching indirect refer-
ences more closely during our case study of BUK in Section 5.5. In all cases,
unnecessary prefetches occur whenever the compiler underestimates mem-
ory’s ability to retain data. One cause of this effect is that locality analysis
is applied to each set of nested loops independently—if two independent
loops access the same data, both will be treated as the first reference to
that data, regardless of the amount of data accessed. Thus, the type of
reuse shown in Figure 14 cannot be discovered by the current compiler
algorithm. In general, this problem is extremely difficult to solve, since it
may require interprocedural analysis to evaluate all the loops in a pro-
gram. A notable exception to the problem of unnecessary prefetches is
EMBAR; the data access pattern in this program is simple enough to be
analyzed perfectly by the compiler. All array references are sequential and
within one-dimensional loops; thus the problems of strip-mining the loop
correctly and choosing a pipelining loop (discussed in Sections 3.2.1 and
3.2.2 respectively) do not occur. Furthermore, since the single array used in
EMBAR is large enough to flush all of memory, there are no unnecessary
prefetches that result from only considering a single loop at a time.

5.3.2 The Run-Time Layer. The primary purpose of the run-time layer
is to efficiently filter out prefetches for pages that are already in memory,
thus reducing the overhead of the unnecessary prefetches scheduled by the
compiler. To evaluate the effectiveness of the run-time layer at this task,
Figure 12(b) presents statistics on how many prefetches were unnecessary.
Note that a prefetch for a page that is in memory but is on the free list is
not considered to be unnecessary, since it performs useful work by reclaim-
ing the page. The left-hand column of Figure 12(b) shows that almost all of
the prefetches issued to the system by the run-time layer are useful. All
unnecessary prefetches that are issued to the system occur as part of a
block prefetch request in which prefetching is required for at least one
page. The middle column of Figure 12(b) shows the fraction of dynamic
prefetches that were inserted by the compiler and filtered out by the
run-time layer. As discussed in the previous section, it would be extremely
difficult to remove many of these unnecessary prefetches statically, making
run-time filtering the best option for reducing overhead. Finally in the
third column of Figure 12(b) we show how many prefetches are checked by
the run-time layer. The large numbers in this column provide a strong
argument for making the filtering as efficient as possible, and help to
explain why the user time component in Figure 10(a) increases signifi-
cantly for some applications.

Fig. 14. Example of reuse not identified by the compiler.
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Figure 12(c) quantifies the performance advantage of the run-time layer.
As we see in this figure, half of the applications (BUK, CGM, FFT, and
APPSP) run slower than the original nonprefetching versions when the
run-time layer is removed. This is not surprising, since the overhead of
dropping an unnecessary prefetch in the run-time layer is roughly 1% as
expensive as issuing it to the operating system. From these results, we
conclude that the run-time layer is clearly an essential component for
achieving good performance in our system.

5.4 Problem Size Variations

Having demonstrated the benefits of I/O prefetching where the problem
size is roughly twice as large as the available memory, we now look at the
performance when the problem size is varied.

5.4.1 In-Core Problem Sizes. We begin with cases where the data sets
fit within main memory. In these cases, we would expect prefetching to
degrade performance, since the prefetches incur overhead but provide little
or no benefit. Figure 15 shows two sets of experiments—the cold-started
and warm-started cases—on data sets that are roughly 10–35% as large as
the available memory. Starting with the cold-started cases, we see that
prefetching degrades performance in four cases, but actually improves
performance in three cases (BUK, APPLU, and APPBT) by hiding the
latency of cold page faults. To further isolate the prefetching overhead, we
also warm-started the applications by preloading all of their data from the
input files into memory before timing the runs. As expected, prefetching
typically degrades performance in the warm-started cases, since it offers no
potential advantage. However, we believe that the cold-started cases are
more realistic for most applications, since real programs must read their
input data from disk.
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In these experiments, we made no attempt to minimize prefetching
overhead for in-core data sets, but this is a problem that we are planning to
address in future work. In particular, we can generate code that dynami-
cally adapts its behavior by comparing its problem size with the available
memory at run-time, and suppressing prefetches (after the cold faults have
been prefetched in) if the data fit within memory. The fact that I/O
prefetching can still potentially improve performance even on relatively
small data sets by hiding cold page faults is an encouraging result.

5.4.2 Larger Out-of-Core Problem Sizes. In addition to looking at
smaller problem sizes, we also experimented with much larger data sets
than our earlier out-of-core problem sizes. Figure 16 shows the performance
of four applications where the problem size is 4–10 times larger than the
available memory.

For FFT, APPLU, and APPBT the problem size used in this experiment is
approximately 200MB, which requires that each bit in the bit vector
represent two contiguous virtual memory pages (recall from Section 2.4
that we restrict the size of the bit vector to a single page). A larger size is
used for MGRID because the structure of the program requires that the
data set be cubical. The problem size used in our earlier experiments was
only 20% larger than the available memory—the next larger problem size
(shown in Figure 16) requires 464MB of memory, which is approximately
10 times more than what is available; hence each bit in the bit vector
represents four pages.

The granularity of the bit vector can potentially have an impact on
performance because the run-time layer is given a less detailed view of the
state of main memory. However, the results in Figure 16 show, that for
these applications, the performance improvements remain large. In fact,
prefetching offers slightly larger speedup in all these cases, since there is
more I/O latency to hide. In addition, APPLU and APPBT benefit from the
coarser granularity, since fetching both pages in the set corresponding to a
given bit automatically solves the alignment problem discussed in Section 5.3.
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5.5 Case Study: BUK

In this section we take a closer look at how explicitly prefetching and
releasing pages affects application performance by focusing on a single
application. We have chosen to examine BUK for this case study for three
reasons: (i) the program is short and easy to understand; (ii) the problem
size can be scaled linearly; and (iii) the program contains both direct and
indirect references, allowing us to evaluate the costs and benefits of
indirect prefetches. Before looking at the indirect prefetches, we begin by
describing the computation and data accesses performed in BUK. Finally,
we examine what happens to execution time as we move from in-core
problem sizes to out-of-core problem sizes, both with and without prefetching.

5.5.1 Description of Application. Figure 17 shows the main computa-
tions performed by BUK as C source code. (The actual program that we use
in our experiments is written in Fortran; in our C representation of this
code, we only show the computations that are relevant to this discussion.)
BUK takes an array of unsorted integers that are held in key , computes the
position that each integer should have when sorted and stores the position
in rank , and finally copies the integers from key into key2 using the values
stored in rank .

The computations performed in BUK are organized in two phases.
During the bucksort procedure, the input array key and the temporary
storage array rank are both accessed using direct references. The tempo-
rary array keyden is used to record the number of times each distinct value
in the input array key occurs, and then to calculate the position each
integer should have when sorted. The keyden array is accessed by direct
references in some loops, and by indirect references in others. We refer to
this phase as the ranking phase in our discussion. The second phase occurs
after bucksort in the main procedure when the integers are sorted by
copying each one from key to its proper position in key2 using the values
stored in rank . In this phase, which we will refer to as the copying phase,
rank and key are accessed by direct references while key2 is accessed
indirectly.

All of the array references in BUK are identified and prefetched by our
compiler (the bar for BUK in Figure 12(a) shows that the coverage factor is
100%).

5.5.2 Benefits of Indirect Prefetches. Since the compiler has no informa-
tion about the locality of indirect references a decision must be made at
compile-time to either always or never prefetch them. To evaluate the costs
and benefits of prefetching indirect references we examine the performance
of BUK when only direct references are prefetched, and when both direct
and indirect references are prefetched. In addition to considering the
overall effects, we also consider the impact of prefetching indirect refer-
ences in each phase of the program separately. The results of these
experiments are shown in Figure 18. In this figure, all bars have been
normalized to the original, nonprefetching execution time. The first set of
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three bars (labeled Overall) show the execution time breakdown for the
entire program for the original (O), direct-only prefetching (D), and both
direct and indirect prefetching (B) versions. From these bars, it can be seen
that prefetching indirect references reduces execution time by an addi-
tional 9% over direct prefetching alone. The second set of three bars shows
what happens during the ranking phase, while the final set of three bars

Fig. 17. Source code (C representation) for BUK.
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shows what happens during the copying phase of the program. During
ranking, the indirect prefetches are for the keyden array, which is small
compared to the size of memory (only 2MB) and is always found in core. In
this phase, direct prefetching alone is able to capture all the important
references, and the indirect prefetches merely introduce overhead with no
benefit. In the copying phase however, the indirect prefetches are for the
key2 array, which is much larger (33MB). During this phase, a large
number of important references are missed by only prefetching the direct
references. The additional overhead of filtering the indirect prefetches is
amply offset by the reduction in I/O stall time for the copying phase.

Ideally, we would like to be able to achieve the best of both worlds—avoid
scheduling indirect prefetches when the locality of the indirect references is
good (as in the ranking phase) and issue indirect prefetches aggressively
when the locality is poor (as in the copying phase). Once again, this could
potentially be accomplished by creating multiple versions of the loops (one
in which indirections are prefetched and one in which they are ignored) and
choosing the best one to execute based on the dynamic conditions at
run-time.

5.5.3 Crossing the In-Core/Out-of-Core Boundary. In BUK, the amount
of work to be done grows linearly with the problem size. Ignoring page
faults, we would normally expect the execution time to also increase
linearly with the problem size. To show how performance is affected when
an application runs out of physical memory, we executed BUK with
problem sizes ranging from roughly one quarter to twice the size of main
memory both with and without prefetching. The execution times for each
problem size are plotted in Figure 19.

The original version of BUK (without prefetching) suffers a large discon-
tinuity in execution time once the problem no longer fits in memory (recall
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that our prototype has 64MB of physical memory, with about 48MB
available to the application). In contrast, the prefetching version of the code
suffers no such discontinuity—execution time continues to increase lin-
early. For this particular application, the prefetching version of the code
consistently outperforms the original code, since even small problem sizes
benefit from prefetching cold misses. (For BUK, it is more realistic to
cold-start the application, since it must always read its input data set from
disk.) Hence this application exemplifies what we are attempting to accom-
plish with automatic I/O prefetching: programmers can write their code in
a natural manner and still achieve good performance, even for out-of-core
data sets.

5.6 Overall Performance on the Commercial System

Having demonstrated the effectiveness of compiler-inserted I/O prefetching
on a research platform, we now focus on whether these significant perfor-
mance gains can also be achieved on a modern commercial system—in this
case, an SGI Origin 200 machine [Laudon and Lenoski 1997] running our
modified version of IRIX 6.5. Since this modern system has more available
physical memory than the research platform we considered earlier (75MB
versus 48MB, as discussed earlier in Section 4), we have increased the
problem sizes of the NAS Parallel benchmarks accordingly, as shown in
Table V.

Figure 20 shows the results of our experiments, where execution time is
once again broken down into four categories. Just as before, the top section
is I/O stall time; the bottom section is user mode time; and the middle two
sections are system mode time. In contrast with our Hurricane experi-
ments, however, these latter two components are now broken down into
time spent executing system code (system), which in this case is primarily
time spent in the fault-handling code, and time spent waiting for resources
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held by other processes (resource contention) such as locks, the CPU,
memory, etc.

As we see in Figure 20, most of the applications are enjoying large
performance gains as a result of compiler-inserted I/O prefetching on this
commercial system. In five of the eight cases (BUK, CGM, EMBAR, FFT,
and MGRID), the I/O stall times have been reduced by 50% to 99%, thus
resulting in overall program speedups ranging from 35% to nearly twofold.
In the other three cases (APPLU, APPSP, and APPBT), I/O stall times are
reduced by only 10% to 22%, resulting in more modest overall program
speedups. While a direct comparison with the earlier Hurricane experi-
ments would be meaningless because so many parameters have changed
(e.g., the hardware, the system software, the application inputs, etc.), we
nevertheless observe the same general trends.

In all cases, we observe in Figure 20 that system overheads (i.e., system
time and resource contention combined) actually decrease once we add
prefetching and releasing. There are two reasons for this. First, prefetch

Table V. Application Characteristics on IRIX

Name Input Data Set

Memory Required Original
Execution

Time
(mins)Absolute

% of
Available

BUK 224 20-bit integers 206MB 275% 10.7
CGM sparse matrix with 15,167,342 nonzeros 206MB 275% 40.7

EMBAR 224 random numbers 134MB 179% 10.6
FFT 256 x 128 x 128 matrix of complex numbers 235MB 313% 28.7

MGRID 256 x 256 x 256 matrix 452MB 600% 16.5
APPLU 5 x 5 x 62 x 62 x 62 matrices 219MB 292% 13.4
APPSP 110 x 110 x 110 matrices 213MB 284% 76.5
APPBT 5 x 5 x 64 x 64 x 64 matrices 189MB 252% 36.6
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requests are serviced by separate threads (implemented using Pthreads
[IEEE 1992], as discussed earlier in Section 4.2) that can potentially run on
other processors, since the Origin 200 is a multiprocessor. Hence some of
the system software overhead associated with servicing page faults can
potentially be overlapped with useful computation. Second, by using re-
lease operations to keep a sufficient amount of physical memory free, we
can avoid resource contention with the system-paging daemon as it tries to
determine which pages it should reclaim. (A detailed analysis of this latter
effect was published recently [Brown and Mowry 2000].) While the reduction
in I/O stall time is the dominant effect in improving performance, many
applications also benefit significantly from these overhead reductions.

To help gain further insight into the performance of these applications on
IRIX, Figure 21 shows a breakdown of how prefetching affected the original
page faults. It is interesting to compare this graph with Figure 12(a), which
showed the same breakdown for the Hurricane experiments. As expected,
the fraction of original page faults that the compiler failed to prefetch (i.e.,
the nonprefetched fault category) is quite similar across the two systems,
since it largely reflects limitations in the compiler analysis that are
common across both platforms. The most noticeable change between the
Hurricane and IRIX experiments is the relative fraction of prefetches that
were early enough (i.e., prefetched hit) versus too late (i.e., prefetched
fault). Comparing Figure 21 with Figure 12(a), we see that more of the
prefetches on the IRIX platform were not launched early enough, and thus
failed to hide all of the page fault latency. The reason is that we have a
significantly larger relative disk latency on the Origin 200, due to its much
faster processors, which is harder to hide fully. Problems with late
prefetches in the Hurricane experiments that were already apparent in
Figure 12(a)—as discussed in Section 5.3—tend to be amplified, and are
exposed in new places. The most dramatic example of this effect is CGM:
just over half of the prefetches are issued too late under IRIX, while they
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Fig. 21. Impact of prefetching on the original page faults under IRIX.
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were nearly perfect under Hurricane. To overcome this limitation, the
compiler must do a better job of using sofware pipelining to schedule
prefetches early enough in the presence of small or statically unknown loop
bounds; we are planning to investigate such techniques in our future work.
Despite these late prefetches, however, we are still achieving impressive
performance gains for the majority of the applications, confirming that
compiler-inserted I/O prefetching is an effective technique for accelerating
out-of-core applications, even on state-of-the-art commercial systems.

6. RELATED WORK

The problem that we address in this paper has been considered by many
other researchers in a range of different areas. We can classify related
research into six broad areas: (i) using prefetching to improve the perfor-
mance of paged virtual memory systems; (ii) using knowledge of applica-
tion-specific access information to improve the operating system’s replace-
ment policies; (iii) determining the best strategy for combined prefetching
and caching given complete and accurate information about all future
accesses; (iv) prefetching in file systems by automatically detecting access
patterns; (v) prefetching in file systems based on information supplied by
the application; and (vi) compilation techniques for out-of-core programs.
We now look at each of these areas in turn. The idea of using a compiler to
extract access patterns from an application and passing this information to
the operating system to improve virtual memory performance is not a new
one. The first study in this area was conducted nearly 20 years ago by
Trivedi [1977], who looked at the use of application access patterns ex-
tracted by a compiler to implement “prepaging.” Although the interface
between the compiler and the operating system is nearly identical to that
which we propose, there are some significant differences. First, Trivedi’s
compiler analysis was restricted to programs in which blocking could be
performed whereas previous studies on prefetching for caches have shown
that many programs which can be prefetched cannot be blocked [Mowry et
al. 1992]. Thus, our approach is much more widely applicable. Second, we
introduce the idea of a run-time layer to filter the prefetches inserted by
the compiler, thus allowing the compiler to be much more aggressive about
adding prefetches when the analysis cannot be performed perfectly. This
component of our system is essential to achieving good performance.
Without a way to filter prefetches efficiently, the compiler must be much
more careful and may fail to fetch many important references. Earlier work
did not try to prefetch indirect references or references in loops where the
bounds were unknown.

Other work has also been done in the area of prefetching for paged
virtual memory systems; however, this research generally depends on the
operating system being able to detect patterns to initiate prefetching.
Curewitz, Krishnan, and Vitter investigate using techniques developed for
data compression to predict what to prefetch [Curewitz et al. 1993]. Their
target environments are object-oriented databases and hypertext systems,
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and they assume that the CPU will be mostly idle, allowing the operating
system to perform complicated calculations without affecting a user’s
perceived response time. Song and Cho use the fault history to detect
patterns and initiate prefetching [Song and Cho 1993]. These techniques
all suffer from the fact that some number of faults are required to establish
patterns before prefetching can begin, and when the patterns change
unnecessary prefetches will occur. For instance, in FFT these schemes
would incur page faults whenever the application moves between forward
and inverse FFT phases.

Using application-specific knowledge to assist memory management re-
placement policies was studied by Malkawi and Patel [1985] and by Park et
al. [1996]; however, these schemes only consider retaining needed pages in
memory and do not attempt to prefetch. Although the amount of I/O needed
can be reduced by intelligent memory management, the latency of the
remaining I/O operations is still a serious concern.

Finding the best combined prefetching and caching strategy (i.e., the one
that gives the shortest execution time) for a fully known sequence of
accesses has been studied by Cao et al. [1995] for the case of a single disk
and by Kimbrel et al. [1996] for varying numbers of disks. Kimbrel et al.
show that the best behavior depends on the amount of contention of the
disks, but that for reasonable data layouts on more than four disks
contention is rarely a problem.

Prefetching in file systems by automatically detecting file access patterns
has been well studied [Arunachalam et al. 1995; Griffioen and Appleton
1994; Grimshaw and Loyot 1991; Huber et al. 1995; Kotz and Ellis 1990;
1993; Kroeger and Long 1996]. Kroeger and Long look at using the
compression technique known as prediction by partial match to detect
access patterns and to decide what to prefetch [Kroeger and Long 1996].
Griffioen and Appleton construct a probability graph based on prior file
system accesses. Both approaches attempt to improve the performance of
the overall file system by predicting which files are likely to be referenced
next when a particular file is opened. In contrast, our focus is on improving
performance for out-of-core applications that typically access a small num-
ber of very large files. Once again, techniques that depend on being able to
detect an access pattern cannot prefetch until the pattern has been
established, may do the wrong thing when the pattern changes, and may
have difficulty detecting the types of complicated access patterns that can
occur in scientific codes. Another technique implemented in file systems is
to support prefetching based on information supplied explicitly by the
application [Patterson et al. 1995; Singh and Choudhary 1994; Thakur et
al. 1994b]. Of these approaches, the TIP system developed by Patterson et
al. [1995] is most relevant to our work in that hints provided by the
application level are used by the operating system to optimize file prefetch-
ing and replacement. In fact, the cost model employed by TIP might be very
useful for our memory manager. However, TIP targets applications which
are written to use explicit I/O, and they depend on the programmer (rather
than the compiler) instrumenting the code with hints. Also, they expect
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applications to fully disclose their access patterns at start-up, relying on
the operating system to decide what to do with this information. Thus, no
concept of time is embedded in the hints, and the operating system must be
able to determine when the prefetch should be initiated. The resulting
operating system support is more complex than ours, and would be even
more difficult to provide in a mapped file or virtual memory system where
the operating system does not see regular read requests. Recently, another
approach for automatically modifying applications to provide hints about
their future accesses to the TIP system has been presented by Chang and
Gibson [1999]. Applications are modified automatically (using a binary
modification tool on the program executable) to speculatively execute the
code for the purpose of generating read request hints to be passed to the
TIP system. Because it is much more costly to track all virtual memory
references (versus explicit file requests only) we believe it would be difficult
to apply this technique to applications that did not contain explicit I/O.

Compiling for out-of-core codes tends to focus on three areas. The first
area is reordering computation to improve data reuse and reduce the total
I/O required [Bordawekar et al. 1996]. The second area is inserting explicit
I/O calls into array codes [Colvin and Cormen 1998; Kennedy et al. 1993;
Paleczny et al. 1995; Thakur et al. 1994a]. In general, the compilers are
aided by extensions to the source code that indicate particular structures
are out-of-core. In addition, some of the work specifically targets I/O
performance for parallel applications [Bordawekar et al. 1996], while we
have achieved impressive speedups for even single-threaded applications.
The third compilation approach is to take programs that already contain
explicit I/O calls, move them to an earlier program point, and change them
to asynchronous I/O calls instead. We feel that compiler analysis that
targets an I/O interface is limited by the alias analysis problem described
earlier in Section 2.2.1, and in general cannot be as aggressive as an
algorithm that supports nonbinding prefetching.

7. CONCLUSIONS

This paper has demonstrated that with only minor modifications to current
operating systems, we can enhance paged virtual memory to deliver high
performance to out-of-core applications without placing any additional
burden on the programmer. We have proposed and evaluated a fully
automatic scheme whereby the operating system and the compiler cooper-
ate as follows: the compiler analyzes future access patterns to predict when
page faults are likely to occur and when data are no longer needed; the
operating system uses this information to manage I/O through nonbinding
prefetch and release hints; and a run-time layer interacts with the operat-
ing system to accelerate performance by adapting to dynamic behavior and
minimizing prefetch overhead. We implemented our scheme in the context
of a modern research compiler and both research and commercial operating
systems.
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Our experimental results demonstrate that our scheme yields substantial
performance improvements when we take unmodified, “in-core” versions of
scientific applications and run them with out-of-core problem sizes. For our
initial implementation, we successfully hid more than half of the I/O
latency in all of the NAS Parallel benchmarks—in three cases, we elimi-
nated over 98% of the latency. For five of the eight applications, this
reduction in I/O stalls translates into speedups of roughly twofold, with two
cases speeding up by threefold or more. Using our implementation on a
commercial system, we were able to eliminate over 65% of the I/O latency
in six of the eight applications. Since I/O stall time generally contributes
less to the original execution time on the IRIX system, the speedups
achieved by reducing I/O stall time are correspondingly smaller. Overall
performance is still improved by a factor of 1.3 to 1.5 for five of the eight
benchmarks. The results obtained on a fully featured commercial operating
system demonstrate that automatic I/O prefetching can still yield signifi-
cant performance improvements for out-of-core applications over page fault
prefetching performed by the operating system alone.

We have also shown that good performance can only be achieved by
adapting to dynamic conditions, since the compiler analysis may be ham-
pered by quantities that are unknown at compile-time. Toward this end, we
have implemented a run-time layer that adapts by filtering out unneces-
sary prefetches at the user-level without performing an expensive system
call. In addition, we have shown that generating even more adaptive code
would be useful for scheduling prefetches the right amount of time in
advance.

APPENDIX

A. REUSE ANALYSIS

Since locality can only occur if there is reuse, the first step in locality
analysis is determining the intrinsic data reuse through reuse analysis.
Reuse analysis attempts to discover those instances of array accesses that
refer to the same page of memory. The difference is that while reuse is an
inherent property of code, locality also depends on the ability of memory to
retain data. Therefore, if we had an infinitely large memory, which would
retain data perfectly, reuse would be equivalent to locality.

A key simplification of reuse analysis is that rather than trying to
precisely compute the sets of iterations (i.e., actual loop index values) that
use the same data, which is prohibitively expensive, we instead express the
intuitive notion that reuse is carried by a specific loop with the following
mathematical formulation. We represent an n-dimensional loop nest as a
polytope in an n-dimensional iteration space (i.e., a finite convex polyhe-
dron bounded by the loop bounds), with the outermost loop represented by
the first dimension in the space. We represent the shape of the set of
iterations that use the same data by a reuse vector space [Wolf and Lam
1991]. The remainder of this subsection describes how this mathematical
representation is used to compute temporal, spatial, and group reuse.
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A.1 Temporal Reuse

Since temporal reuse occurs whenever a given reference accesses the same
location in multiple iterations, we can isolate these cases by solving for
whenever the array-indexing functions yield identical results given differ-
ent loop indices. To facilitate this task, we represent an array-indexing

function fY~ iY! which maps n loop indices into d array indices, where n is the
depth of the loop nest and d is the dimensionality of the array, as

fY~iY! 5 HiY 1 cY

where H is a d 3 n linear transformation matrix, iY is an n-element
iteration space vector, and cY is a d-element constant vector. For example,
the three array references in Figure 2 would be written as

A@i #@ j # 5 ASF 1 0
0 1 GF i

j G 1 F 0
0 GD,

B@ j #@0# 5 BSF 0 1
0 0 GF i

j G 1 F 0
0 GD,

and

B@ j 1 1#@0# 5 BSF 0 1
0 0 GF i

j G 1 F 1
0 GD.

Given this representation, temporal reuse occurs between iterations iY1

and iY2 whenever HiY1 1 cY 5 HiY2 1 cY , i.e., when H~ iY1 2 iY2! 5 0Y . Rather

than worrying about individual values of iY1 and iY2, we say that reuse occurs

along the direction vector rY when H~rY ! 5 0Y . The solution to this equation is
ker H (also known as the nullspace of H), which is a vector space in Rn (i.e.,
each vector has n components).

To make this analysis more concrete, consider the B[j 11][0] reference
from our example in Figure 2. This reference accesses the same location in
iterations ~i1, j1! and ~i2, j2! whenever

F 0 1
0 0 GF i1

j1
G 1 F 1

0 G 5 F 0 1
0 0 GF i2

j2
G 1 F 1

0 G
or

F 0 1
0 0 GF i1 2 i2

j1 2 j2
G 5 F 0

0 G.

This equation is true whenever j1 5 j2, and regardless of the difference
between i1 and i2. In our vector space representation, we would say that
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temporal reuse occurs whenever the difference between the two iterations

lies in the nullspace of F 0 1
0 0 G , i.e., span$~1, 0!%. We refer to this vector

space as the temporal reuse vector space. This mathematical approach
succinctly captures the intuitive concept that the direction of reuse of
B[j][0] lies along the outer loop. More complicated access patterns can
also be expressed using the same analysis.

A.2 Spatial Reuse

Computing spatial reuse requires a slight variation on how we compute
temporal reuse. Assuming the data are stored in row major order (an
assumption we make without loss of generality), accesses to the same page
will only occur when the same row is accessed.4 In addition, the row index
expressions must be different, but still fall within the size of a cache line.
We can test for all of these conditions as follows.

Two different iterations access the same row whenever all but the row
index are equivalent. This is in contrast with temporal reuse, where all
indices, including the row, must be equivalent. To extract this spatial reuse
vector space, we simply replace the last row in H with zeros to create HS,
and solve for the nullspace of HS. For example, consider the A[i][j]

reference in Figure 2, where H 5 F 1 0
0 1 G , and therefore HS 5 F 1 0

0 0 G .

The resulting nullspace of F 1 0
0 0 G is span$~0, 1!%, which indicates that

the same row of A[i][j] is accessed along the inner loop.
To check whether different elements are being accessed within the same

row, we compare whether the temporal and spatial reuse vector spaces are
identical. This can occur, since reusing the same data item is a degenerate
case of reusing the same page (i.e., ker H , ker HS). If the temporal and
spatial reuse vector spaces are identical, then there is strictly temporal
reuse—if they differ, then there is spatial reuse along the vectors that are
unique to the spatial reuse vector space. For example, the A[i][j]
reference in Figure 2 has a temporal reuse vector space of span$~0, 1!%
(i.e., there is no temporal reuse), and a spatial reuse vector space of
span$~0, 1!%; therefore, unique elements within the row are accessed along
span$~0, 1!% (i.e., the inner loop). For the B[j][0] reference, however, the
temporal and spatial reuse vector spaces are both span$~1, 0!%, and there-
fore there is only temporal reuse.

Once we identify accesses to different elements within the same row, the
final step is to check whether the stride is less than the page size. If so,
then the reference has spatial reuse.

4If the data are laid out in column major order, then accesses to the same page can only occur
when the same column is accessed.
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A.3 Group Reuse

For reuse among different array references, Gannon et al. observe that
data reuse is exploitable only if the references are uniformly generated, i.e.,
references whose array index expressions differ in at most the constant
term [Gannon et al. 1988]. For example, references B[j][0] and
B[j 11][0] in Figure 2 are uniformly generated, while references C[i]
and C[j] in Figure 22 are not. In the former case, B[j][0] is accessing
data brought into the cache by B[j 11][0] during the previous j iteration,
making it very likely that this reuse will result in locality. In the latter
case, only iterations near the diagonal (i.e., when i 5 j ) are likely to have
exploitable reuse. Thus we will only consider group reuse among sets of
uniformly generated references.

Although uniformly generated references are the likely candidates for
group reuse, it is still possible that they never access the same data. For
example, the D[2i][j] and D[2i 11][j] references in Figure 22 are
uniformly generated, but never touch the same data, since D[2i][j] only
accesses even rows while D[2i 11][j] only accesses odd rows of matrix D.
To exclude such cases, we check whether a particular solution to the
common transformation matrix H exists that yields the constant difference
between the two array index functions. We express this mathematically by

saying that two distinct references A[ HiY 1 cY1 ] and A[ HiY 1 cY2 ] access
the same data if and only if

?rY : HrY 5 cY1 2 cY2. (2)

For example, the two references to the D matrix in Figure 22 would be
represented as

D@2i #@ j # 5 DSF 2 0
0 1 GF i

j G 1 F 0
0 GD

and

D@2i 1 1#@ j # 5 DSF 2 0
0 1 GF i

j G 1 F 1
0 GD.

These two references access the same data if an integer solution ~ir, jr!
exists to

F 2 0
0 1 GF ir

jr
G 5 F 1

0 G.

Fig. 22. Example of references without exploitable group reuse.
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However, there is no integer solution in this case, since there is no integer
ir such that 2ir 5 1. In contrast, the B[j][0] and B[j 11][0] references
in Figure 2 access the same data, since ~ir, jr! 5 ~0, 1! is one particular
solution to

F 0 1
0 0 GF ir

jr
G 5 F 1

0 G.

While Eq. (2) specifies cases where distinct references access the same
data item, we are also interested in cases where distinct references access
the same page.

To detect all of these group reuse cases, we modify Eq. (2) slightly by
replacing the last rows in H, cY1, and cY2 with zeros to form HS, cYS, 1, and cYS, 2,
respectively. We therefore say that two distinct references A[ HiY 1 cY1 ]
and A[ HiY 1 cY2 ] have group reuse if and only if

?rY : HSrY 5 cYS, 1 2 cYS, 2, (3)

and provided that the constant difference between the last rows of cY1 and cY2

is less than the page size divided by the element size. In reality, the
alignment of the two references with respect to the page boundaries may also
be a concern. In the worst case, adjacent references may always straddle page
boundaries, potentially never reusing the same pages. In our implementation,
we account for this probabilistically by assuming that two references
within half a page of each other probably fall within the same page.
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