
Disk Reads with DRAM Latency

Garth A. Gibson†, R. Hugo Patterson‡, M. Satyanarayanan†

†School of Computer Science
‡Dept. of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3890
garth.gibson@cs.cmu.edu

1. Introduction

The gap between the access time of primary and secondary storage technologies, often called

the access gap, has long constrained the performance of computer systems. Unfortunately, this

gap is growing, not shrinking. While today’s technologies improve the capacity of both of these

storage media at a furious pace, they are not as successful at reducing access times. Instead, the

speed of computations using only primary memory is increasing five to ten times faster than is the

speed with which blocks on magnetic disk can be accessed [Katz89, Patterson88].

To overcome this relative deterioration of secondary storage performance, Input/Output sys-

tems are being designed around highly parallel disk arrays [ATC90, Gibson91, Kim86, Patter-

son88, Salem86], high bandwidth optical networks [Arnould89, Computer90], and cache-

specialized file systems [Lazowska86, Nelson88, Ousterhout89, Rosenblum91, Satyanaray-

anan85]. Disk arrays increase secondary storage throughput by spreading data over many disks so

that large accesses are striped for parallel operation and so that many small accesses can operate

concurrently. Fast networks preserve throughput improvements derived from disk arrays on file

servers as data is delivered to increasingly distant client systems. Secondary storage latency, on

the other hand, is primarily addressed by large client and server file caches. Whenever data to be

read is found in the cache or data to be written can be delayed in the cache, latency is as short as if

secondary storage were constructed with semiconductor memory. Our research focuses on reduc-

ing the access latency for data to be read that is not already cached.

This material is based (in part) upon work supported by the National Science Foundation under grant num-
ber ECD-8907068. The government has certain rights in this material.

Appears inThird Workshop on Workstation Operating Systems, Key Biscayne, FL, April, 1992, pp. 126-131.



2. Focusing on Read Latency.

While file caching is usually effective at masking the long access latency of secondary stor-

age, read misses can still be critical to performance. Caches, unfortunately, all too frequently

experience misses. For example, large caches can have long transient states while the cache is

being filled the first time or is being refilled because a new set of tasks have begun. This effect is

particularly pronounced in frequently power-cycled portable computers [Kistler91] and heavily

shared compute servers. Caches also experience high miss rates when some active files are large

enough to flush most or all of the cache [Baker91].

Caches also fail to mask access latency when access patterns inherently peruse data only once.

This is the case while reading bulletin boards on a remote workstation or portable computer.

While this example may not comprise a large fraction of a system’s cycles, its responsiveness

may significantly effect user behavior. One technique for overcoming long response times while

accessing a file for the first time is to “read ahead” later portions of the file. Where files are being

read sequentially, caches employing readahead may be able to overlap latency for all blocks

except the first. While this overlapping is largely successful, it does not help accesses to small

files and it can hurt non-sequential accesses.

The primary/secondary access gap is not the only source of long read latencies. Network

latencies sometimes add significantly to response time. This component of access time is likely to

grow in importance as geographically distributed remote file systems and weakly connected,

mobile file systems become more common.

3. Using Hints for Informed Prefetching.

We believe that access pattern hints are the key to avoiding long access latencies. Informed

with accurate and timely hints about future accesses, a file system can prefetch data to overlap I/O

latency with useful computation. We further believe that the extraction and collection of such

accurate and timely hints is feasible. The rest of this extended abstract discusses the utility and

feasibility of using hints for informed prefetching and our current research plans.

4. Exploiting Hints.

Hints enable informed prefetching to overlap those accesses for which caches are ineffective

with useful computation. Hints specifying the set of files needed by a program to work effectively

can minimize latency penalties by pre-loading the cache. Where resources are not available to

entirely cache such a “working set,” hints about access order and access pattern allow “reada-

head” of non-sequential and first referenced accesses as well as early release of precious memory



resources.

When hints identify a sequence of accesses, sequential or otherwise, large enough to flush

most or all of the file cache, caching can be bypassed in favor of simple double buffering. This

limits the impact of large files on the performance of accesses into other files.

Of course, access pattern hints can also be effectively used to prefetch files that are only

accessed once. Such files include the bulletin boards that will be read and the next message of

interest within a bulletin board.

5. Obtaining Hints.

Critical to the success of very smart prefetching is the availability of accurate and timely hints.

An important part of our research will be to expose these hints. However, we don’t think this will

be as hard as it might seem. After all, the success of sequential readahead is largely the product of

“discovering” that the application is sequentially accessing its files; this is really known a priori

because a programmer chosen to do so. It is a simple step to have programmers notify the I/O sys-

tem, through a hint, of a sequential access pattern.

Using a hint based mechanism to determine what to read ahead, data can be prefetched in a

programmer defined, nonsequential pattern. An important beneficiary of this approach will be the

large scientific programs that execute alternating row and column access patterns on huge matrix

data files [Miller91]. At least one of these access patterns will not be sequential in the file’s linear

storage, but is easily and obviously specified by a programmer. While this information could be

used by the programmer to explicitly and asynchronously prefetch sequential and non-sequential

data, fewer programs than we might expect actually do this [Miller91] because it expands virtual

memory requirements in systems where memory is a critical resource, because it is not always

portable, and because it requires more than a few lines of code. In contrast, system-level prefetch-

ing can be driven by very short and simple hints and can easily compensate for reluctance on the

part of programmers.

With an interface for programmers to pass hints, there is good reason to extend optimizing

compiler techniques to also issue hints. While file names and access patterns could be concealed

in complex data structures, we believe that many programs access files simply; file names come

as arguments, access calls are made from outer loops, and offsets are computed simply from pre-

vious offsets or loop indices. With such straightforward styles, we expect that precise hints can be

extracted automatically.

Another source of early, if more speculative, hints is the process’ or thread’s parent code. For



example, a software compilation tool such as “make” has extensive knowledge of the tasks that

are going to be executed in the immediate (and sometimes not so immediate) future. To the degree

that “make” can internally recognize the functions it spawns, it can give hints about the source,

object, and library files that will be needed. Another example is a user shell. When a shell is

required to do filename completion or wildcard expansion, it could pass these filenames as hints

about what will soon be accessed.

For more accurate hints, a user shell could recognize certain program names on the command

line it has constructed for execution. With recognized programs, file arguments can be named in

hints before or in parallel with the program’s invocation. To recognize and issue hints for specific

programs, tools like a user shell will need program specific information. This could be available

in a file of hints registered during program installation, or a specially formatted string in the first

page of a program’s binary. Alternatively, a program-specific “hint” binary whose name is con-

structed by simple rules could be invoked in parallel.

Finally, our last example method for generating hints exploits the efficient workload tracing

tools developed for file system research [Mummert91]. A compactly represented trace of a pro-

gram’s access patterns could be collected and reported so that a programmer can gauge the accu-

racy of the hints already issued and construct new hints based, possibly literally, on previous

traces.

6. Research Goals and Challenges.

Where hints are successfully used, deeper queues of anticipated accesses may develop. This

will allow more efficient use of the I/O system by exploiting seek scheduling and grouping

accesses into larger transfer units. To achieve these higher levels of efficiency without compro-

mising on the latency of demand reads, we expect to pursue changes in the interfaces to disk con-

trollers. For example, low priority prefetches of very large blocks of data should be preemptable if

high priority demand fetches arrive. The impact of successful hints on peripheral interface design

and on disk array design is an importance facet of our research.

While deep disk queues improve secondary storage throughput, they also forebode the rapid

exhaustion of cache memory resources. Our research will have to take a careful look at the bal-

ance of memory demands from recently used data, anticipated data, and virtual memory.

One key to limiting the memory demands of hints will be to track the consumption of

prefetched data. This may allow consumed data to be flushed from memory. It should also deter-

mine which data to prefetch next. However, with tasks giving hints for other tasks and programs

constructed from modules coded (and, therefore, “hinted”) separately, it may be hard to determine



just which hint is retired by a particular access.

If matching correctly specified hints to demand access patterns is a problem, it will be small

compared to identifying incorrectly and imprecisely specified hints. Yet, allowing for imprecise

and incorrect hints is necessary. We must find ways to terminate or adjust such hints so that

prefetching does not adversely effect performance.

Finally, and perhaps most importantly, we must find a good mechanism to take hints from

high levels of abstraction and deliver them to lower levels. Some hints may be best exploited by

database code, some best processed by cache management code, some targeted at device drivers,

and some useful at many or all lower levels. We need interfaces and abstractions for distributing

this type of performance optimization information without disturbing the benefits of layering and

modularity in modern applications and operating systems. From a practical point of view, estab-

lishing the right interfaces is essential if tools as invasive of other parts of the system as are ours

are to survive in today’s standards driven environments.

7. Future Plans.

We begin our research simply; we are looking at a subset of applications available in our local

Mach/Coda Unix environment that exploit different hint mechanisms and are likely to benefit

substantially. The first two target applications have already been mentioned: the compilation tool

“make” and large scientific applications. Hints from “make” are about the files accessed by other

programs, primarily compilers and loaders (and sed and awk). On the other hand, hints from large

scientific applications are likely to be given by the programmer or compiler and apply to a few

large files possibly accessed many times. These applications will provide an early test of the

opportunity and utility of our ideas.

As our experience grows, we expect to apply our ideas to a much wider domain of systems

and applications. We plan to modify compilers to automatically extract access patterns and issue

hints from application code. We will also modify a Unix cache manager to expose and exploit

issued hints. Eventually, we plan to integrate the extraction and exploitation of hints into an effi-

cient, hierarchical interface for optimizing secondary storage performance.
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