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Using Transparent Informed Prefetching (TIP)
to Reduce File Read Latency
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Outline

I/O performance is lagging

No current solution fully addresses read latency

TIP to reduce latency
• exploits high-level hints that don’t violate modularity
• converts throughput to latency

Preliminary TIP test results

As processor performance gains continue to outstrip Input/Output gains, I/O performance is becom-
ing critical to overall system performance. File read latency is the most significant bottleneck for high per-
formance I/O. Other aspects of I/O performance benefit from recent advances in disk bandwidth and
throughput resulting from disk arrays [Patterson88], and in write performance derived from buffered write-
behind and the Log-structured File System [Rosenblum91]. The access gap problem limiting improvements
in read latency is exacerbated by distributed file systems operating over networks with diverse bandwidth
[Spector89, Satyanarayanan85]. In this paper, we focus on extending the power of caching and prefetching
to reduce file read latencies by exploiting hints from high-levels of a system. We describe such Transparent
Informed Prefetching, TIP, and its benefits. We argue that hints that disclose high level knowledge are a
means for transferring optimization information across, without violating, module boundaries. We discuss
how TIP can be used to convert the high throughput of new technologies such as disk arrays and log-struc-
tured file systems into low latency for applications. Our preliminary experiments show reductions in wall-
clock execution time of 13% and 20% for a multiple module compilation tool (make) accessing data on a
local disk and remote Coda file server, respectively, and a reduction of 30% for a text search (grep) remotely
accessing many small files.
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Solutions to I/O Bottleneck

But, cache effectiveness is declining

Latency Throughput

Read

Write

demand caching
prefetching

buffered writes

disk arrays

disk arrays
buffered writes
LFS

This table shows the mechanisms most heavily used to combat the growing I/O bottleneck. Written
data benefits from write-behind buffering and log-structured files systems, while I/O throughput is directly
increased by parallelism in disk arrays. Read latency, however, is only reduced by caching and prefetching.
As will be shown next, caches will not, by themselves, be able to relieve the I/O bottleneck, and prefetching
will emerge as a critical approach to the problem.
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Effective I/O Performance with Caching

TI/O  = MCM+(1-M)C H ≈ MCM

TE = T C + N ATI/O  ≈ T C + N AMCM

TI/O  = I/O time M = cache miss ratio
CM = cost of a miss CH= cost of a hit
TE = execution time TC = computation time
NA = number of I/Os

CPU/IO Perf.

Miss Ratio

Current=1 10 100

40% 4% 0.4%

Miss ratio for effective I/O performance to scale with CPU performance

Caches reduce the average I/O service time by reducing number of I/O requests that must be ser-
viced by slow peripheral devices. The ratio of requests thus serviced to the total number of requests is the
miss ratio. For caches to compensate for the growing gap between CPU performance and I/O peripheral per-
formance, they must reduce their miss ratios. This simple model quantifies this relationship.

The average I/O service time, TI/O, is the weighted sum of the service times for requests that miss
in the cache and must be serviced by the I/O subsystem, CM, and for requests that hit in the cache, CH. The
cache miss ratio, M, weights the sum. Since CH << CM, the average I/O service time is roughly MCM. The
execution time for a program, TE, is the sum of the time spent on computation, TC, and the total time spent
on I/O. Time spent on I/O is, in turn, the product of the number of I/O requests, NA, and the average time
to service a request. As processor improvements reduce TC relative to CM, the miss ratio, M, must be
reduced to achieve corresponding reductions in the time spent on I/O. The table shows the improvement
needed in the cache miss ratio for the effective I/O performance to keep pace with processor gains. A cache
that currently has a 40% miss ratio must improve to 4% to match a ten-fold increase in processor perfor-
mance and to 0.4% to match the 100 fold increase expected in the next ten to fifteen years. As the next slide
shows, such miss ratios are most unlikely.
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Cache Miss Ratios

• Diminishing returns from larger caches

• Disappointing performance over time
> growing file sizes

Clearly, caching alone cannot provide the
needed performance improvements

Cache Size

Miss Ratio

1985 BSD Study

390KB 4MB 8MB 16MB

1991 Study

7MB (avg)

49.2% 28.0% 26.2% 25.0% 41.4%

The numbers in this table are drawn from [Ousterhout85] and [Baker91]. The 1985 tracing study of
the UNIX 4.2 BSD file system predicted cache performance for a range of cache sizes assuming a 30 second
flush back policy for writes. The 1991 study measured cache performance on a number workstations run-
ning Sprite. The Sprite cache size varied dynamically, but averaged 7MBytes. The diminishing returns from
increasing cache size are evident in the 1985 results. Also striking is the difference between the predicted
and measured performance of a large cache. The large cache was not nearly as effective as expected. The
authors of the study concluded that growing file sizes were to blame for the disappointing cache perfor-
mance. This result is strong evidence that we cannot rely on increased cache sizes to give us the extremely
low miss ratios needed to improve effective I/O performance. This leaves us with prefetching as a tool for
improving I/O read latency.
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Transparent Informed Prefetching (TIP)

1)  Encapsulate programmer knowledge about
future I/O requests in a hint

2)  Transfer hint to file system

3)  File system uses hints to transparently
prefetch data and manage resources

Prefetching can pre-load the cache to reduce the cache miss ratio, or, at least reduce the cost of a
cache miss by starting the I/O early and thereby improve effective I/O performance. While there have been
a number of approaches to prefetching [Kotz91, Smith85, McKusick84, Feiertag7], it is often difficult to
know what to prefetch, and prefetching incorrectly can end up hurting performance [Smith85].

To be most successful, prefetching should be based onknowledge of future I/O accesses, not infer-
ences. We claim that such knowledge is often available at high levels of the system. Programmers could give
hints about their programs’ accesses to the file system. Thus informed, the file system could transparently
prefetch needed data and optimize resource utilization. We call this Transparent Informed Prefetching (TIP).
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Obtaining Hints

Early knowledge of serial file access

Access patterns part of code algorithm

• large matrix supercomputing: read by row,
read by column

Hints generated by: programmer, compiler,
profiler

Critical to the success of informed prefetching is the availability of accurate and timely hints. An
important part of our research will be to expose such hints in important, I/O-dependent applications. How-
ever, we don’t think this will be as hard as it might seem. After all, the success of sequential readahead is
largely the product of “discovering” that an application is sequentially accessing its files; this is really
known a priori because a programmer has chosen to do so. Often, it is known well in advance that many
files will be thus accessed. It is a simple step to have programmers notify the I/O system, through a hint, of
sequential access patterns.

In addition to the simplest hints about sequential accesses, programmers could give hints about
more complex, non-sequential access patterns. An important beneficiary of this approach will be the large
scientific programs that execute alternating row and column access patterns on huge matrix data files
[Miller91]. At least one of these access patterns will not be sequential in the file’s linear storage, yet the pat-
tern is easily and obviously specified by a programmer.

In addition to programmer-generated hints, compilers could automatically generate hints, or a pro-
filer could be used to generate hints for future runs of a program.
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Application Examples

grep foo *
• Shell expands ‘*’ to a list of filenames.
• Grep searches for a string, ‘foo,’ in all of the files in

the list.
• From invocation, it is known that all of the files on

the list will be read sequentially.
• Give a hint about all of the files at once.

make
• makefile specifies all files to be touched from the

start
• make generates hints for binaries it will invoke and

the files they will touch.

While we believe that scientific applications will be major beneficiaries of TIP, common Unix appli-
cations can also benefit. Her are two examples.

Given the command ‘grep foo *,’ the shell expands the ‘*’ into a list of all files in the current direc-
tory and invokes the ‘grep’ program which searches for the string ‘foo’ in all the files. Grep, or even the
shell if it knows a little about grep from a command registry, can issue a hint notifying a TIP system that all
the files in the list will soon be read. If the system has stored these files on an underutilized disk array, many
or all will be fetched concurrently.

We expect programs issuing hints on behalf of other programs, such as the shell on behalf of grep,
to be a common occurrence. Another example is the ‘make’ program which orchestrates the compilation of
program modules and their linking with standard libraries. ‘Make’ determines its actions according to a
‘makefile’ of instructions. After parsing a ‘makefile’ and checking the status of all modules to be built,
‘make’ constructs a set of command sequences that it will pass to a shell for execution. These commands or
the shell itself can issue hints about their I/O accesses. Pursuing a TIP approach more aggressively, ‘make’
can use the same command registry as the shell to issue hints even before it issues the commands.
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TIP Converts High Throughput to Low Latency

Use excess storage bandwidth to pre-load
caches with future accesses and overlap I/O
with computation

Expose concurrency to pack low-priority queue
with prefetch requests

• Optimize seek scheduling

• High-throughput disk arrays simultaneously
service multiple requests

• Multiple network requests may be batched
together

Cache management superior to LRU

Armed with knowledge of future file accesses, a system employing TIP can improve performance
in three important ways.

1) At the most basic level, TIP, as for all prefetching, can overlap slow I/O accesses with other use-
ful work so that applications spend less time idly waiting for these accesses to complete. But, because TIP
systems know what to prefetch, they can prefetch more aggressively to pre-load the cache with future
accesses and further reduce cache misses.

2) Using TIP, normally short I/O queues can be filled with low-priority prefetch requests giving
more opportunities for low-level I/O optimizations. For an individual disk, deeper queues allow better arm
and rotation scheduling [Seltzer90]. For a disk array, deeper queues mean more requests are available for
concurrent servicing by independent disks. On a network, prefetch requests can be batched together, reduc-
ing network and protocol processing overhead.

3) TIP improves cache management to further reduce cache miss ratios. If it is known what data will
be needed in the future, it may be possible to outperform an LRU page replacement algorithm, even without
prefetching. Unneeded blocks can be released early, and needed blocks can be held longer.

The first two benefits make TIP an excellent mechanism for exploiting the high throughput of
emerging storage technology to provide the low latency that these technologies cannot provide. Combined
with improved cache management, these three benefits make TIP a powerful tool for overcoming the wid-
ening access gap.
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Hints are Disclosure not Advice

• Users not qualified to give advice

• Advice not portable, disclosure is

• Disclosure allows more flexibility

• Disclosure supports global optimizations

• Disclosure hints consistent with sound SWE
principles

Hints that disclose Hints that advise

cache file F
reserve B buffers & do not read-

ahead

I will read file F sequentially with
stride S

I will read these 50 files serially &
sequentially

As the previous slide showed, TIP is much more than simple prefetching; it is a strategy for opti-
mizing I/O. For a number of reasons, such powerful optimizations depend on having hints that disclose
knowledge of future I/O operations instead of hints that give advice about I/O subsystem operation.

Advice about low-level operations depends on detailed system-specific knowledge. Even if a user
had such knowledge of a system’s static configuration, they could not know about the system’s dynamic
state. Thus, the user is not qualified to give advice on how to optimize the dynamic operation of the system.
Furthermore, such system-specific knowledge would not apply to other systems, and so, advice that exploits
it would not be portable to other systems.

Additionally, hints that advise, such as, ‘cache this file,’ do not give much usable knowledge to the
TIP system. What should the TIP system do if it cannot cache the whole thing? Should it cache a part of the
file? Which part? If, instead, the application discloses how it will access the file, the TIP system has the flex-
ibility to respond appropriately. This flexibility is crucial for balancing competing demands for global
resources.

Good hints that disclose are specified using the same semantics that an application later uses to
demand access to its files, whereas bad hints which advise concern themselves with a system’s implemen-
tation. It is not a coincidence that good hints are compatible with modular software design. They are a means
for transferring optimization information across module boundaries without violating those boundaries.
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Preliminary Test

expands ∗

‘make xcalc’

exec make

fork

prefetch
file

more
files?exit

standard
make code

yes

no

‘hcsh grep foo ∗’

exit

csh

fork

exec grep
read

arguments

prefetch
file

more
files?

yes

no

exit

exit

Prefetching for shell expansion. Prefetching for ‘make.’

Our research into a TIP approach began with simple, controlled experiments demonstrating the
potential benefits and obstacles of informed prefetching. Our goals with these experiments were to validate
TIP as a tool for reducing read latency, determine if more than a simple, user-level mechanism is needed,
uncover implementation problems, and develop experience incorporating hints into applications.

We used two hardware platforms for our tests. The local disk tests were conducted on a Sun Sparc-
station 2 running Mach 2.5/BSD Unix 4.3. The remote tests were run on two Decstation 5000/200 running
Mach 2.5, one of them the client, and the other the server for the Coda distributed file system [Satyanaray-
anan90].

We tested the two applications previously mentioned, shell expansion of ‘*’ for ‘grep,’ and ‘make’
building a program called ‘xcalc.’ Flow charts for the two test programs are above. The chart on the left
shows the configuration for exploiting shell expansion of ‘*.’ A fork operation splits the program into two
processes. The command runs down the left side of the fork, while an independent prefetch process runs
down the right side of the fork. The prefetch process uses the expanded list of filenames to determine what
to prefetch. The right-hand chart shows the configuration for the ‘make’ example. It is similar to the previ-
ous example except that a tracing facility [Mummert92] is used to determine in advance the files to prefetch.

To prefetch from the local disk, the prefetch process simply read the appropriate files, indirectly
causing the data to be moved into the cache. To prefetch remotely from Coda, the prefetch process used a
special prefetch ioctl to explicitly and asynchronously transfer the file to the local machine.
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Test Results

• make xcalc: compile & link X window calcu-
lator

• grep foo *: 58 files, 1 MB

• Results limited by lack of parallelism in I/O
subsystem

Distributed File System (Coda)

cold
cache

cold cache
w/prefetch

%
reduction

hot
cache

Local Disk

cold
cache

cold cache
w/prefetch

%
reduction

hot
cache

Application

make xcalc

grep foobar*

9.17
(0.03)

14.19
(0.13)

12.40
(0.07)

12.6

1.22
(<0.01)

3.29
(0.13)

3.30
(0.04)

0

18.29
(2.00)

40.41
(3.63)

32.20
(2.74)

20.3

1.85
(0.01)

7.86
(0.77)

5.55
(0.68)

29.4

This table compares the elapsed times to run two applications with and without prefetching on both
the local disk and the Coda distributed file system. The first application, ‘make xcalc,’ compiles and builds
the X window calculator tool. The second, ‘grep foobar *,’ searches 58 files containing a total of 1 MByte
all stored in (the cache of) a remote Coda file server.

The numbers in parentheses are the standard deviations for the measurements. Since the local tests
were performed on a Sun Sparcstation 2 whereas the Coda tests were performed on Decstation 5000/200,
the numbers are not directly comparable. In the ‘hot cache’ runs, all data read throughout the job were in
the local buffer cache, so the job never blocked for the disk. These numbers represent a lower bound on the
elapsed time. At the start of the ‘cold cache’ runs, there was no data in the buffer cache or client disk cache,
though, in the distributed case, the server’s buffer cache was not cleared between runs. The ‘cold cache w/
prefetching’ runs were started just like the ‘cold cache’ runs, but they used prefetching to speed access to
the files. The ‘% reduction’ represents the benefits of prefetching.

TIP systems will only be able to approach the lower bound represented by the ‘hot cache’ numbers
when combined with high-throughput I/O subsystems unavailable for these tests. In the grep test on the local
disk, the execution time is dominated by I/O. The disk is already running flat out, so there is no time for
prefetching. Grep with a disk array would still keep one disk busy and would run in about the same amount
of time, but grep with TIP and a disk array would keep many disks busy. The total time spent on I/O would
drop and performance approaching the ‘hot cache’ lower bound should be possible.
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Lessons from Tests

• Independent prefetch process overhead too
high

• Single prefetch process⇒ no deep prefetch
queues

• Coda ioctl allowed too much prefetching
> thread starvation - need low-priority prefetching
> premature cache flushing - need to track consumption

• Poor cache buffer replacement performance

• Disk write scheduling often very inefficient

Although our experiments were preliminary, they served their purpose of demonstrating the benefits
of informed prefetching and educating us about implementation pitfalls.

Using independent prefetch processes incurred a lot of extra overhead, especially in the local disk
tests. Context switching, process scheduling inefficiencies, system call cost, and, on the local disk, data copy
costs all reduced the performance of the prefetch tests. But, the most serious hindrance to prefetching from
the local disk was that, because the read system calls used are blocking, there was never more than one
prefetch request in the queue at a time. Thus, we did not benefit from the scheduling advantages offered by
deeper queues.

The coda tests avoided this problem with the asynchronous prefetch ioctl. They suffered instead
from over-prefetching. Until we reduced the priority of the prefetches, they interfered with demand fetches,
reducing performance. Also, prefetches sometimes got ahead of the actual job and caused prefetched data
that had not yet been used to be replaced in the cache by newly prefetched data. Clearly, a real system will
need to track data consumption to avoid this problem. This was an extreme example of the cache manager
making uninformed decisions. The cache held onto data that had just been used in preference to prefetched
data that was about to be used. Integrating TIP with the cache manager should greatly improve performance.
In the tests, we avoided this problem by using a very large cache that could all of the data.

Writes of whole blocks were not buffered and thus were interleaved with both prefetch and demand
reads which led to very poor disk scheduling. This highlighted the importance of buffered writes.
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Summary

TIP uses hints to convert high throughput stor-
age to low latency where caching fails

Hints that disclose, not advise, provide the best
information and are consistent with sound
SWE principles.

Applicable to local disk and network file serv-
ers

Immediate Plans

• modify Coda/BSD/Mach to accept and exploit
correct hints

• find & instrument applications
> make, search, visualization, simulation

Transparent Informed Prefetching, TIP, extends the power of caching and prefetching to reduce
both local and remote file read latency by exploiting application-level knowledge of future access patterns.
TIP systems can cooperate with resource management policies to increase the utilization and efficiency of
high-throughput network and storage systems. Many future accesses become current accesses that can
exploit the parallelism of disk arrays or may batched to reduce network overheads. Disk accesses and buffer
allocation may be improved with foreknowledge of future accesses. TIP effectively converts the high
throughput of new peripheral technology into low read latency for application programs.

Informed prefetching depends on hints from applications that disclose their future I/O accesses in
terms of operations on files. Hints should not give advice about I/O subsystem operation nor be expressed
in terms of resource management policy options. This distinction is important for hint portability and con-
sistency with software engineering principles of modularity, and for the TIP system to be able to effectively
manage global resources.

Preliminary tests have confirmed the potential benefits of informed prefetching and highlighted
some of the potential pitfalls of implementation.

Our next step is to implement TIP in a Coda/BSD/Mach operating system. Then we will identify
and instrument applications to provide the required hints to the system.
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