
The Case for VOS: The Vector Operating System

Vijay Vasudevan, David G. Andersen, Michael Kaminsky1

Carnegie Mellon University, 1Intel Labs

Abstract
Operating systems research for many-core systems has
recently focused its efforts on supporting the scalability of
OS-intensive applications running on increasingly paral-
lel hardware. Lost amidst the march towards this parallel
future is efficiency: Perfectly parallel software may sat-
urate the parallel capabilities of the host system, but in
doing so can waste hardware resources.

This paper describes our motivation for the Vector OS,
a design inspired by vector processing systems that pro-
vides efficient parallelism. The Vector OS organizes and
executes requests for operating system resources through
“vector” interfaces that operate on vectors of objects. We
argue that these interfaces allow the OS to capitalize on nu-
merous chances to both eliminate redundant work found
in OS-intensive systems and use the underlying paral-
lel hardware to its full capability, opportunities that are
missed by existing operating systems.

1 Introduction
Over the last decade, computing hardware has promised
and delivered performance improvements by providing
increasingly parallel hardware. Systems with multi-core
CPUs, and GPUs with hundreds of cores have become
the norm. The gauntlet has been firmly thrown down at
the software community, who have been tasked to take
advantage of this increased hardware parallelism.

The operating systems community has largely risen
to the challenge, presenting new OS architectures and
modifying existing operating systems that enable paral-
lelism for the many-core era [2, 12, 3, 4]. Independently,
application writers have rewritten or modified their appli-
cations to use novel parallel programming libraries and
techniques. Both communities have improved software
without changing how applications request OS resources.

In this paper, we argue that OS-intensive parallel ap-
plications, including many of today’s driving datacenter
applications, must be able to express requests to the oper-
ating system using a vector interface in order to give the
OS the information it needs to execute these demands ef-
ficiently. To not do so will make “embarrassingly parallel”
workloads embarrassingly wasteful. We outline a new de-

sign, the Vector OS (VOS), that is able to let OS-intensive
applications be not just parallel, but efficiently parallel.

Consider a modern webserver that receives a new
connection using the accept() system call. accept()
returns exactly one connection from a list of pending
connections. The application then performs a series of
sequential operations to handle the connection—setup,
application-specific processing, and teardown. A high-
load webserver may be serving many requests in parallel,
but each request follows similar execution paths, wasting
resources executing redundant work that could be shared
across concurrent requests.

In VOS, work is executed using vector operations that
are specified through vector interfaces like vec accept()
(which returns multiple connections rather than just one),
vec open(), vec read(), vec send(), etc. Exposing
vector interfaces between applications and the operat-
ing system improves efficiency by eliminating redundant
work; moreover, vector interfaces open the door to new
efficiency opportunities by allowing VOS to more effec-
tively harness vector and parallel hardware capabilities
already present in many machines, such as SSE vector
instructions and GPUs.

This paper argues that vector interfaces are critical to
achieving efficient parallelism, thus requiring changes
to the OS interface that applications program to. But
this departure from a decades-old interface raises several
questions and challenges that are as exciting as they are
difficult: Should developers explicitly specify work in
terms of vectors of resources? If not, how should vector
execution be hidden from the programmer without intro-
ducing excessive complexity into the OS? What are the
semantics of vector system call completion? Should they
be synchronous or asynchronous, and how should they
handle exceptions? We address many of these questions
in this paper, but do not yet have answers to all of them.
Nonetheless, we believe that the Vector OS can enable
OS-intensive applications to make the maximum use of
today’s increasingly vector and parallel hardware.

2 The Parallel Landscape
Hardware parallelism is growing. Processors continue
to gain speed by adding cores; graphics engines improve
rendering performance by adding shaders; solid state

1

open(f):
 1. context switch
 2. alloc()
 3. copy(f)
 4. path_resolve(f):
 acl_check(f)
 h = hash(f)
 lookup(h)
 5. read(f)
 6. dealloc()
 7. context switch

 vec_open([f1,f2,f3]):
 1. context switch
 2. vec_alloc()
 3. vec_copy([f1,f2,f3])
 4. vec_path_resolve([f1,f2,f3]):
 vec_acl_check([f1,f2,f3])
 hset = vec_hash([f1,f2,f3])
 vec_lookup(hset)

 6. vec_dealloc()
 7. context switch

Redundancy eliminated}

Redundancy eliminated if joined}
} Parallelizable

}SSE
}Redundancy eliminated

}Redundancy eliminated

5a. vec_read_xfs([f1]) 5b. vec_read_ext4([f2,f3])

Figure 1: Pseudocode for open() and proposed vec open(). vec open() provides opportunities for eliminating
redundant code execution, vector execution when possible, and parallel execution otherwise.

drives improve throughput by adding more flash chips;
and CPUs increase throughput by making their vector
instructions, such as SSE, even wider.1 These trends are
expected to continue into the foreseeable future, barring a
revolution in device physics.

OS-intensive, parallel applications are adapting to
parallel hardware. memcached moved from single-
threaded to multi-threaded; event-based webservers such
as node.js and Python Twisted are improving support for
massive concurrency; languages and threading libraries
such as OpenMP, Cilk, Intel Thread Building Blocks, and
Apple’s Grand Central Dispatch library all encourage ap-
plications to break work into smaller independent tasks,
which the libraries can then assign to cores.

Parallel operating systems are making parallel ex-
ecution possible. Recent work on improving operating
system support for parallelism has made great strides in
enabling parallel execution of code by removing locks,
improving cache locality and utilization for data, carefully
allocating work to processors to minimize overhead, and
so on [4, 10, 12, 7].

Parallelism is necessary, but not necessarily effi-
cient. While parallel execution on parallel hardware may
sound ideal, it completely ignores efficiency, a metric that
measures how much of a system’s resources are necessary
to complete some work [1]. We therefore turn our atten-
tion to “efficient parallelism,” or making the best overall
use of resources on a parallel system.

3 Vectors will be Victors
Providing efficient parallelism requires that operating sys-
tems do the following:

1. Eliminate redundancy: Identify what work is com-
mon or redundant across a set of tasks and execute
that work exactly once.

1Intel’s Advanced Vector Extensions support 256-bit wide register
operations.

2. Vectorize when possible: Work should be expressed
as operations over vectors of objects so it can be both
executed efficiently using hardware techniques such
as SSE and better optimized by compilers.

3. Parallelize otherwise: If code paths diverge, con-
tinue to execute work in parallel.

Consider the example of the open() system call in
Figure 1 (left) simplified from the Linux 2.6.37 source
code. Opening a file requires context switches, memory
operations (e.g., copying the filename into a local kernel
buffer in alloc()), performing access control checks,
hashing file names, directory entry lookup, and reads
from a filesystem. Today, simultaneous open() calls can
mostly be executed in parallel, but doing so would not be
as efficient as it could be.

Figure 1 (right) shows the set of operations required
for vec open(), which provides a vector of filenames to
the operating system. In this example, file f1 exists in
an XFS filesystem while the other two reside in an ext4
filesystem. The code path is similar to open(), with the
exception that the interfaces are capable of handling vec-
tors of objects, e.g, vec hash() takes in several filenames
and returns a vector of hashes corresponding to those file-
names. These vector interfaces package together similar
work and can improve efficiency by using the techniques
described above.

Eliminating Redundancy: When provided vectors of
objects, a vector system call can share the common work
found across calls. Examples of common work include
context switching, argument-independent memory alloca-
tions, and data structure lookups. alloc() is an argument-
independent memory allocation that returns a page of ker-
nel memory to hold a filename string; the vec alloc()
version need only fetch one page if the length of all file-
name arguments fits within that page, eliminating sev-
eral additional page allocations necessary for each file
if processed one by one. vec path resolve() requires
traversing the directory tree, performing ACL checks and

2

lookups along the way. If files share common parent di-
rectories, resolution of the common path prefix need only
occur once for all files instead of once per file.

As yet another example, lookup(hash) must search a
directory entry hash list to find the one entry that matches
the input hash. In vec lookup(hset), the search algo-
rithm need only traverse the list once to find all entries
corresponding to the vector of hashes. While this search
can be performed in parallel, doing so would needlessly
parse the hash list once for each input hash, wasting re-
sources that could be dedicated to other work.

Vector interfaces provide general redundancy-
eliminating benefits (e.g., reducing context switches),
some of which can be provided by other batching
mechanisms [10]. But vector interfaces also can enable
specialized algorithmic optimizations (e.g., hash lookup)
because all operations in a batch are the same, even
though the operands may differ.

HW Vectorizing: Certain operations can be performed
more efficiently when they map well to vector hardware
already available but underutilized by existing operating
systems. An implementation of vec hash() might use
SSE instructions to apply the same transformations to
several different filenames, which may not be possible
when dealing with precisely one filename at a time.

Parallelizing: Not all work will perfectly vectorize
throughout the entire execution. In our vec open() ex-
ample, three files are stored on two different filesystems.
While most of the code can be vectorized because they
share common code paths, performing a read() from
two different filesystems would diverge in code execution.
Both calls can occur in parallel, however, which would
use no more resources than three parallel read() calls; in
this case it would probably use fewer resources because
there will exist common work between files f2 and f3
within vec read ext4().

When code paths diverge, the system should automati-
cally determine whether to join the paths together. In Fig-
ure 1, there is an optional barrier before vec dealloc()—
should both forked paths complete together, joining the
paths can save resources in executing deallocations and
context switches. But should they diverge in time signifi-
cantly, it may be better to let the paths complete indepen-
dently.

3.1 Quantifying Redundant Execution
How much redundancy exists for OS-intensive parallel
workloads running on highly parallel hardware? We ex-
plore this question by looking at the system call redun-
dancy of Apache 2.2.17 server web requests between four
different files in two different directories. We use strace
to record the system calls executed when serving a single
HTTP GET request for each file. Each request was traced
in isolation and we show the trace for the request with the

A-accept G-getsockbyname F-fcntl R-read
S-stat/shutdown O-open M-mmap/munmap
W-write/writev C-close P-poll

/home/user/foo.html

/home/user/bar.html

/var/www/htdocs/index.html

/var/www/htdocs/favicon.ico

 0 0.5 1 1.5 2 2.5 3 3.5
Time (ms)

Strace of Four Web Requests

A G FF R S OFF MRWMWCP RSPRCRA

A G F F R S O FF MRWMWCP RSPRCRA

A G FF R S OFF MRWMWCP RSPRCRA

A G FF R S O FF M RW MWC P RSPRCRA

Figure 2: Trace of four different web requests serv-
ing static files shows the same system calls are always
executed, and their execution paths in time are simi-
lar.

median response time out of five consecutive requests for
each file.

Figure 2 shows when each system call was executed
for each request for these four different static files. Each
request invoked the same set of system calls regardless
of which file was served, and the timings between sys-
tem calls were similar, with variances attributable to OS
scheduling. This simple experiment demonstrates that
real applications provide opportunities to take advantage
of the benefits of vector interfaces.

3.2 Scaling Redundancy With Load
Efficiency matters most when parallel systems are operat-
ing at high load, so we must understand how redundancy
scales as a function of incoming load. We argue that at
high load, redundancy is abundantly available, making
the Vector OS approach an appealing solution.

To illustrate this concept, the inline figure

Load

R
ed

un
da

nc
y

Best Case

Worst Case

shows how offered load af-
fects the redundancy available
in a parallel system. Here,
we define redundancy loosely
as the amount of work that is
identical to some unique work
currently being done in the
system. In the best case, each
additional request is identical
to existing requests in the sys-
tem, and requests arrive simultaneously; redundancy
therefore increases linearly with load.

In the worst case, requests are uncoordinated: they
differ in both type and/or arrival time. At low load, redun-
dancy is thus hard to find. As load increases, redundancy

3

increases for several fundamental reasons. First, a sys-
tem has a finite number of different types of tasks it is
likely to execute; a similar argument has been made for
applications running on GPUs [6]. By the pigeonhole
principle, redundancy must increase once a request of
each type already exists in the system. In addition, high
load systems are increasingly becoming specialized for
one type of workload (databases and filesystems, caching,
application-logic, etc.), further shrinking the number of
distinct types of work. Distributed systems often par-
tition work to improve data locality or further increase
specialization within a pool of servers, again increasing
the chance that a high-load system will see mostly homo-
geneous requests.

These homogeneous requests may also arrive closely in
time: Many systems already batch work together at the in-
terrupt level to cope with interrupt and context switching
overheads, creating an under-appreciated opportunity. To-
day’s operating systems make limited use of this interrupt
coalescing, but this mechanism plays a more fundamental
role in the Vector OS: It provides the basis for nearly au-
tomatic batching of I/O completions, which are delivered
to the application and processed in lockstep using conve-
nient vector programming abstractions. These “waves” of
requests incur additional latency only once during entry
into the system.

4 Towards the Vector OS
The Vector OS must address several difficult interface
and implementation challenges. The design must expose
an appropriate set of vector interfaces to allow applica-
tion writers to both easily write and understand software
running on parallel hardware. VOS must also organize
and schedule computation and I/O to retain vectorization
when possible and parallel execution otherwise.

Batching imposes a fundamental tradeoff between effi-
ciency gains by having a larger batch, and adding latency
by waiting for more requests to batch. However, at higher
loads, this tradeoff becomes a strict win in favor of vec-
torization, as the efficiency gains enable all requests to
execute faster because they spend less time waiting for
earlier requests to complete. VOS must therefore make
it easy for applications to dynamically adjust their batch-
ing times, much as has been done in the past for specific
mechanisms such as network interrupt coalescing. Fortu-
nately, even at lower load, Figure 2 shows that calls that
arrive together (e.g., subsequent requests for embedded
objects after an initial Web page load) present a promising
avenue for vectorization because their system call timings
are already nearly identical.

4.1 Interface Options
Today’s system call interface destroys opportunities for
easy vectorization inside the kernel—system calls are syn-

chronous and typically specify one resource at a time.
VOS must be able to package similar work (system calls,
internal vector function calls) together to be efficiently
parallel. We enumerate several interface possibilities be-
low and describe their impact on the efficiency versus
latency tradeoff.

1. Application-agnostic changes: One way to pro-
vide opportunities for making vector calls without ap-
plication support is to introduce system call queues to
coalesce similar requests. An application issues a sys-
tem call through libc, which inserts the call into a syscall
queue while the application waits for its return. Upon a
particular trigger (a timeout, or a number threshold), VOS
would collect the set of requests in a particular queue and
execute the set using a vector interface call—this imple-
mentation can build upon the asynchronous shared page
interface provided by FlexSC [10]. Another approach
is to rewrite program binaries to submit multiple inde-
pendent system calls as one multi-call by using compiler
assistance [9, 8]. Both approaches transparently provide
VOS with collections of system calls which it could vec-
torize, but these approaches have several drawbacks: First,
applications do not decide when to issue a vector call, so
they cannot override the timing logic built into the OS
or compiler, leading to a frustrating tension between ap-
plication writers and OS implementers. Second, a single
thread that wishes to issue a set of similar synchronous
system calls (e.g., performing a bunch of read() calls
in a for loop), will still execute all reads serially even if
there exists no dependence between them.

2. Explicit vector interface: Applications can help
VOS decide how to coalesce vector calls by explicitly
preparing batches of similar work using the vector inter-
face to system calls, such as vec open(), vec read(),
etc. VOS can use this knowledge when scheduling work
because it knows the application thread will be blocked
until all submitted work completes. This assumes these
vector calls are synchronous, though a non-synchronous
completion interface (e.g., return partial results) may be
useful for some applications.

As an example of how an application might use explicit
vector interfaces, the core event-loop for an echo server
may look as follows (in simplified pseudocode):

fds = vec_accept(listenSocket);
vec_recv(fds, buffers);
vec_send(fds, buffers);

As the application processing between vec recv() and
vec send() becomes more complicated, raw vector inter-
faces may prove difficult to use. The benefit is that the
OS is relieved of deciding how and when to vectorize,
leaving the application as the arbiter for the efficiency
versus latency tradeoff and eliminating that complexity
from the OS.

4

3. Libraries and Languages: Although our focus is
on the underlying system primitives, many applications
may be better served by library and language support
built atop those primitives. Several current event-based
language frameworks appear suitable for near-automatic
use of vector interfaces, including node.js and Python
Twisted. Programs in these frameworks specify actions
that are triggered by particular events (e.g., a new connec-
tion arrival). If the actions specified are side-effect free,
they could be automatically executed in parallel or even
vectorized as is done with some GPU programming frame-
works such as CUDA. System plumbing frameworks such
as SEDA [11] that use explicit queues between thread
pools also present a logical match to underlying vector
interfaces, with, of course, non-trivial adaptation.

Finally, the progress in general-purpose GPU program-
ming is one of the most promising signs that programming
for vector abstractions is possible and rewarding. Both
CUDA and OpenCL provide a “Single Instruction Multi-
ple Thread” (SIMT) abstraction on top of multi-processor
vector hardware that simplifies some aspects of program-
ming these systems. Although programmers must still
group objects into vectors, the abstraction allows them to
write code as if the program were a stream of instructions
to a single scalar processor. We believe that the amazing
success of GPGPUs in high-performance computing is a
telling sign that programmers who want performance are
willing and able to “think vector” in order to get it.

5 Discussion
We believe that restructuring for a vector OS is needed
to improve the efficiency of OS-intensive parallel soft-
ware, but to do so brings challenges and accompanying
opportunities for OS research:

Heterogeneity: As the multiple-filesystem example of
vec open() showed, VOS will need to move efficiently
between single-threaded execution of shared operations,
vector execution of SIMD-style operations, and paral-
lel execution when code paths diverge. We believe it is
clear that forcing the OS programmer to manually handle
these many options is infeasible; VOS will require new
library, language, or compiler techniques to render the
system understandable. In addition to code divergence,
VOS’s code should also be appropriately specialized for
the available hardware, be it a multi-core CPU, an SSE-
style CPU vector instruction set, an integrated GPU or a
high-performance discrete GPU.

Vector interfaces and parallel I/O: In contrast to the
“bad news” of heterogeneity, I/O presents a more rosy
picture for VOS. Today’s I/O devices themselves increas-
ingly require large numbers of outstanding requests and
batched I/O issuing and completion—characteristics that
make them perfectly tailored for VOS. Vector interfaces
such as vec read() can drastically reduce the overhead

needed to send many requests to a high-performance solid-
state drive, for example; recent research by the authors
and others has observed that the system overhead for these
requests can cripple the performance of fast SSDs [5].
Batched I/O completion and interrupt coalescing is neces-
sary for both network and fast storage devices [7], and the
batch arrivals create the basis for returning vectors of com-
pleted I/O operations to applications with substantially
reduced overhead.

6 Conclusion
The Vector OS aims to improve the efficiency of OS-
intensive parallel applications by exposing and using OS
interfaces that operate on vectors of objects. Doing so
builds upon existing natural opportunities for work co-
alescing to and from I/O devices; completing the loop
by extending large batches of completed work to applica-
tions in turn gives the OS the ability to fully harness the
underlying capabilities of vector and parallel hardware,
as well as to substantially reduce the amount of redundant
work performed in executing its duties. Deciding how
to expose applications to these vector interfaces remains
an open question: We hope that this work spurs further
research in finding the best way to contain OS and appli-
cation complexity while exploiting a powerful set of OS
vector interfaces.

References
[1] E. Anderson, J. Tucek. Efficiency matters! In Proc. HotStorage.

Oct. 2009.
[2] A. Baumann, et al. The multikernel: A new OS architecture for

scalable multicore systems. In Proc. 22nd ACM Symposium on
Operating Systems Principles (SOSP). Oct. 2009.

[3] S. Boyd-Wickizer, et al. Corey: An operating system for many
cores. In Proc. 8th USENIX OSDI. Dec. 2008.

[4] S. Boyd-Wickizer, et al. An analysis of linux scalability to many
cores. In Proc. 9th USENIX OSDI. Oct. 2010.

[5] A. M. Caulfield, et al. Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories. In IEEE
Micro. Dec. 2010.

[6] M. Garland, D. B. Kirk. Understanding throughput-oriented ar-
chitectures. Communications of the ACM, 53(11):58–66, Nov.
2010.

[7] S. Han, et al. PacketShader: a GPU-accelerated software router.
In Proc. ACM SIGCOMM. Aug. 2010.

[8] A. Purohit, et al. Cosy: Develop in user-land, run in kernel-mode.
In Proc. HotOS IX. May 2003.

[9] M. Rajagopalan, et al. Cassyopia: Compiler assisted system
optimization. In Proc. HotOS IX. May 2003.

[10] L. Soares, M. Stumm. FlexSC: Flexible system call scheduling
with exception-less system calls. In Proc. 9th USENIX OSDI. Oct.
2010.

[11] M. Welsh, D. Culler, E. Brewer. SEDA: An architecture for
well-conditioned, scalable Internet services. In Proc. 18th ACM
Symposium on Operating Systems Principles (SOSP). Oct. 2001.

[12] D. Wentzlaff, et al. An operating system for multicore and clouds:
Mechanisms and implementation. In Proc. 1st ACM Symposium
on Cloud Computing (SOCC). Jun. 2010.

5

	Introduction
	The Parallel Landscape
	Vectors will be Victors
	Quantifying Redundant Execution
	Scaling Redundancy With Load

	Towards the Vector OS
	Interface Options

	Discussion
	Conclusion

