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ABSTRACT
Big Data applications, those that require large data cor-
pora either for correctness or for fidelity, are becoming in-
creasingly prevalent. Tashi is a cluster management system
designed particularly for enabling cloud computing appli-
cations to operate on repositories of Big Data. These ap-
plications are extremely scalable but also have very high
resource demands. A key technique for making such ap-
plications perform well is Location-Awareness. This paper
demonstrates that location-aware applications can outper-
form those that are not location aware by factors of 3-11 and
describes two general services developed for Tashi to provide
location-awareness independently of the storage system.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems

General Terms
Design
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1. INTRODUCTION

Big-data computing is perhaps the biggest in-
novation in computing in the last decade. [2]

Increasingly, the most interesting computer applications
are those that compute on large data corpora. These “Big
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Data” applications draw from information sources such as
web crawls, digital media collections, virtual worlds, simu-
lation traces, and data obtained from scientific or medical
instruments. Historically only of interest to a narrow seg-
ment of the computing community, Big Data applications
now play a significant role in all aspects of society– from
scientific study to enterprise data mining to consumer web
applications.

These applications, beyond simply operating on data that
is big, are also typically data hungry in that the quality of
their results improves with the quantity of data available.
Consequently, a strong need exists for computing technolo-
gies that are scalable– to accommodate the largest datasets
possible.

Fortunately, these applications are typically disk band-
width limited (rather than seek-limited) and exhibit extremely
good parallelism. Therefore, commodity cluster hardware,
when employed at scale, may be harnessed to support such
large dataset applications. For example, the cluster at Intel
Research Pittsburgh that is part of the OpenCirrus consor-
tium (http://opencirrus.org/) consists of a modest 150
server nodes, yet provides more than 1000 computing cores
and over 400 TB of disk storage– enough to accommodate
many current Big Data problems.

One unfortunate ramification of data set size is potentially
inescapable; namely, that Big Data sets are relatively immo-
bile. With a 1 Gbps connection to the Internet, moving a 100
TB data set into or out of a cluster like the one mentioned
above would require approximately 10 days. (The actual
state of affairs is worse; access to the Pittsburgh cluster is
through a T3 (45 Mbps) connection.) Consequently, unless
the ratio of transfer bandwidth to data set size increases
dramatically, computation on Big Data sets will be in situ.

In other words, Big Data facilities will host not only data
sets, but also all the computation that operates on those
data sets. A site will enable such computation through one
or both of two models. In the first model, sites provide a
traditional query service through a narrowly defined inter-
face (e.g. contemporary image search). In the second model,
which combines Cloud Computing with Big Data, sites pro-
vide a computation-hosting framework (such as a virtual
machine-hosting service) where users bring their own, cus-
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Figure 1: Example cluster organization with mini-
mal networking. The uplinks from the Top of Rack
(TOR) switches to the Cluster Switch often intro-
duce communication bottlenecks.

tom applications to the facility to operate on the data. Be-
cause of the flexibility provided by the second approach, we
believe that, in the future, hosted computation will play an
increasingly significant role in the consumption of Big Data.

The authors are currently developing an open-source, vir-
tual machine-based, cluster-management software package
called Tashi that is designed to support Cloud Computing
applications that operate on Big Data. Currently, Tashi is
in production use at the OpenCirrus site mentioned above,
and the project is hosted by the Apache Software Foun-
dation incubator. A key feature of Tashi is its support for
location-aware computing, which can impact performance by
a factor of 3-11, even in modestly-sized clusters, as shown in
Section 2. This paper presents two basic services, described
in Section 3, that support location-aware computing. These
services, a Data Location Service and a Resource Telemetry
Service, provide a standard interface between application
runtimes and storage systems and are essential to optimiz-
ing the performance of Big Data applications.

2. SYSTEM CONSIDERATIONS
Figure 1 depicts the hardware organization we assume for

modest-sized Big Data clusters. The server nodes are orga-
nized into R racks; each rack contains N nodes. Each node
contains p processors and d disk units, which are either tra-
ditional magnetic disks or solid state drives (SSDs), and all
nodes in the rack are connected to a commodity switch, the
Top of Rack (TOR) switch. The uplinks of the R TOR
switches are connected to a single cluster switch or router.

The Big Data repository is assumed to be distributed
across the disk devices in the server nodes, as opposed to
being maintained in dedicated storage. This simple arrange-
ment provides a total of R ∗ N ∗ d disks with a minimal in-
vestment in networking components. While more sophisti-
cated networking arrangements (e.g. [1]) can provide higher
cross-sectional bandwidth, this improvement comes at the
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Figure 2: Performance comparison of location aware
task placement with random task placement. The
labels on the data bars show the performance im-
provement for the Location-Aware Placement rela-
tive to the Random Placement.

cost of a reduced number of compute nodes, given a fixed
capital budget for the cluster. As an alternative, we are in-
vestigating techniques that reduce pressure on the network
connectivity, which enables a greater portion of the avail-
able budget to be spent on computing resources– effectively
scaling the cluster.

For example, systems based on the MapReduce paradigm [4,
7] attempt to schedule computing tasks to execute on the
nodes that contain the data those tasks expect to consume.
A straightforward analysis can show the effectiveness of this
approach. In particular, when tasks consume data from the
node on which they are executing, the data can be con-
sumed at the disk bandwidth rate. When tasks are not
properly placed, they pull data from a distant node across
the network, and this data is now constrained not only by
the bandwidth of the network components, but by any other
contending data flows.

To evaluate this effect, we developed an analytical model
based on R = 20, N = 30, d = 2, and BWswitch = 10Gbps.
Figure 2 shows the difference, in terms of delivered through-
put, between a Location-Aware Placement, where tasks con-
sistently consume data from the node on which they execute,
and a Random Placement, where tasks are placed randomly
in the cluster without regard to data location. As shown in
the figure, we experimented with two types of disks: a tra-
ditional magnetic disk with BWdisk = 80MB/s and a solid
state disk (SSD) with BWdisk = 250MB/s. We also evalu-
ated two values for BWnode: 1Gbps and 10Gbps. The results
show clearly that an intelligent placement may improve the
performance of the cluster by 3-11 times. In other words, a
small cluster with location-aware placement can outperform
a significantly larger (up to ten times larger) cluster with
random placement.

Given that Location-Aware Placement is crucial to good
performance in Big Data applications, should all Big Data
applications be written in the MapReduce style? The answer
is no, for two reasons.

First, as has been described previously [9], not all appli-
cations can be efficiently implemented as MapReduce pro-



grams. Software developers who understand the data flow
of their application should not be forced to use any partic-
ular tool to express their program– instead they should be
able to leverage the mechanisms deemed most suitable for
any particular task. Of course, programmers will want to
take advantage of location-aware execution for the perfor-
mance reasons outlined above. However, location-awareness
is a property that can be abstracted for use in many cluster
environments, not just MapReduce.

Second, in hosting environments, users with varying soft-
ware needs will place a management burden on the cluster
administration team in the form of software package instal-
lations. Rather than providing a single application interface
to all users, a better solution is to provide virtual machine
containers; with such an arrangement, users can manage
their own software installations.

Given these observations, the guiding principles for the
Tashi design are as follows:

1. Tashi will provide cluster management services– par-
ticularly, Tashi will host and administer virtual ma-
chine containers.

2. Where possible, Tashi will provide the mechanisms
necessary for location-aware placement of computing
tasks.

3. Tashi will be virtual machine monitor (VMM) neutral;
the current implementation supports KVM and Xen.

4. Tashi will be distributed file-system neutral. In par-
ticular, support is planned for both centralized (e.g.
NFS) and decentralized file systems (e.g. HDFS and
PVFS).

3. TASHI SOFTWARE DESIGN
Tashi is a virtualization-based cluster management system

that provides facilities for managing virtual machines. Users
of Tashi are able to create collections of virtual machines
that run on the cluster’s physical resources. These virtual
machine collections form “virtual clusters” that operate on
the Big Data stored in the cluster, and when distinctions
are necessary, users who create virtual machines in Tashi
are called virtual cluster owners. Virtual clusters may host
services that are then consumed by clients, users that inter-
act with, but do not own, the virtual machines managed by
Tashi.

A sample listing of the Tashi management interface is
provided in Table 1. In terms of these basic virtual ma-
chine management facilities, Tashi is similar to Cluster-on-
Demand [8], Usher [10], Amazon’s EC2 infrastructure [5],
and Eucalyptus [11]. Where Tashi differs from these sys-
tems is in its support for location-aware computing.

3.1 Filesystems
Because Big Data applications demand access to very large

datasets, a cluster file system is required for any system de-
signed to support such applications. Parallel data access is
also a key property of any viable Big Data storage systems.
While Tashi is designed to be inter-operable with many dif-
ferent distributed file systems, two particularly interesting,
currently available, candidates are the Hadoop file system [7,
6] and PVFS [3].

Because application developers will typically consider par-
allel data access as well as compute parallelism very carefully
when writing Big Data applications, completely abstracting
differences between file systems may not only be unneces-
sary, it may be counter-productive. Consequently, we be-
lieve exposing important properties of the file systems (such
as if data blocks are striped across data nodes or randomly
placed) is desirable, and while we believe that developing an
API that is common across file systems may be desirable,
we expect that most high-performance applications will ac-
cess distributed file systems through their native interfaces,
particularly for data access.

However, performance-sensitive applications, as a class,
will benefit from exploiting data location information, and
the access of this information is not necessarily performance-
critical. Therefore, providing a standardized facility across
file systems for accessing location information will enable ap-
plications to become location-aware with minimal program-
mer effort. By “location aware”, we mean that, when an
application determines that it needs to spawn a task to op-
erate on data block B of file F , it is able to determine on
which server node block B is physically stored so that the
task could possible be instantiated on that node, or a nearby
node (one in the same rack, e.g.).

In our current work, we assume that all data placement
decisions have been made a priori. Due to the high cost
of re-distributing very large datasets, most applications will
need to be scheduled with the data layout pre-determined.
In future work, however, we plan to relax this assumption
and address questions relating to how data placement and
scheduling operations may work in concert.

3.2 Application Software Stacks
To take advantage of location information, Big Data appli-

cations typically rely on a location-aware runtime, which is
responsible for interacting with the file system to extract lo-
cation information and make task placement decisions. Such
runtimes are often explicit components of the system pro-
gramming model, as in the case of the MapReduce model.
In some cases, though, applications include custom runtime
components. Therefore, the service that provides location
information must be queryable not only from well-know run-
time components, but from individual applications as well.

The high-level software architecture for providing location-
aware services is shown in Figure 3. We consider two dif-
ferent environments for location-aware applications. In part
(a) of the figure, we see an application stack executing di-
rectly on the host server node. Part (b) depicts a similar
application structure, except that it is executing within a
virtual machine that is located on that node. In both cases,
the location-aware runtime and/or application accesses two
services to determine location information: a Data Location
Service, which provides a mapping from file data blocks to
storage node identifiers, and a Resource Telemetry Service,
which provides information regarding the relative location
of resources such as storage node identifiers.

3.3 Exposing Location Information
The Data Location Service provides a mapping from file

data blocks to storage node identifiers, which may be simple
hostnames or IP addresses. In our current design, each data
location service is associated with a particular file system;
hence, specifying a named data location service implicitly



Table 1: Listing of sample Tashi management commands.

createVm –name < string > [–cores < n >] [–memory < n >] –disks < string >
createMany –basename < string > [–cores < n >] [–memory < n >] –disks < string > –count < n >
destroyVm –instance < n >
destroyMany –basename < string >
migrateVm –instance < n > –targetHostId < n >
pauseVm –instance < n >
unpauseVm –instance < n >
suspendVm –instance < n > –destination < n >
resumeVm –name < string > [–cores < n >] [–memory < n >] –disks < string > –source < string >
shutdownVm –instance < n >
vmmSpecificCall –instance < n > –arg < string >
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Figure 3: Software components supporting loca-
tion awareness in Tashi. Location-aware (LA) ap-
plications leverage the Data Location Service and
Resource Telemetry Service to obtain information
regarding the location of data objects in the Dis-
tributed File System (DFS) and may execute either
(a) directly on the host infrastructure or (b) inside
virtual machine containers.

identifies a particular file system. The data location service
is a small daemon, running somewhere in the cluster, that
provides the interface shown in Figure 4.

This interface assumes that the file system divides files
into a series of data blocks numbered sequentially. Each
block corresponds to a particular byte range of the file, but
may be replicated within the file system (to provide failure
tolerance, for example). The blockInfo structure returned
by calls to getBlockInfo(), then, provides a listing of all
nodes that maintain a copy of the given block. In fact, the
replicas may not even be exact copies; the encodingType

enables the data location service to identify blocks that are
encoded with M-out-of-N codes, for example [12].

In some cases, the information returned by the data loca-
tion service may be sufficient for location-aware systems to
place computation tasks. However, note that two scenarios,
in particular, require the additional information provided by
the Resource Telemetry Service (RTS): determining if two
hosts reside in the same rack and determining on which host
virtual machines reside. The RTS is responsible for relating
information such as notions of distance between hostId val-
ues. The API for this service is shown in Figure 5. We
have intentionally left the notions of metricType generically
specified because we believe that this interface may be use-

struct blockInfo {

encodingType type;

byteRange range;

list<hostId> nodeList;

};

list<blockInfo>

getBlockInfoByteRange(fileId f,

byteRange r);

Figure 4: Data Location Service (DLS) interface.
DLS clients specify a range of bytes in a large file,
and the service returns a list of block descriptions
the application may use to reconstruct the byte
range.

ful for a number of different metrics such as observed la-
tency, observed bandwidth, nominal bandwidth, and other
application-defined measures of distance.

However, this interface is particularly useful in identify-
ing notions of network distance. With a simple map of the
cluster installation, the resource telemetry service is able to
supply useful information such as how many switches must
be traversed on communication paths from one hostId to
another; given our simple network topology, a value of 1
indicates that the two hosts are in the same rack, and a
value of more than one indicates that communication must
traverse the central switch.

Further, note that virtualization obscures some location
information. If VMs are provided with cluster-wide IP ad-
dresses, determining which VM is “closest” to a particular
data block (and hence should host a task operating on that
block) is challenging. The responsibility of resolving such
vagaries falls to the Resource Telemetry Service. For ex-
ample, the switch-hop metric might be defined to return a
value of 0.5 when comparing two hostIds if one is a virtual
machine and the other is the host on which the virtual ma-
chine resides. Such an assignment might be used to inform
the scheduling agent that placing a task directly on a host
machine is preferable to placing the task in a VM running
on that host.

3.4 Leveraging Location Information
In order to support applications with different levels of

location awareness, Tashi aims to provide a flexible inter-
face that separates location information, resource informa-
tion and scheduling decisions in different components. Lo-



typedef double metricValue;

metricValue

getMetric(hostId from, hostId to,

metricType t);

list< list<metricValue> >

getAllMetrics(list<hostId> fromList,

list<hostId> toList,

metricType t);

Figure 5: Resource Telemetry Service (RTS) inter-
face. RTS clients are able to use getMetric() to
obtain the distance from one resource to another,
and getAllMetrics() returns the all-pairs distances
with a single call. Note that the interface does not
assume symmetry; a measure from host1 to host2
might yield a value that is not equal to the same
measure from host2 to host1.

cation information is consumed by the scheduling modules
in Tashi and location-aware clients. For example, when ex-
ecuting applications that are not location aware, Tashi han-
dles the initial allocation of VMs to hosts based on resource
requirements (e.g., VM memory size) and resource availabil-
ity at the hosts. VMs may be relocated in response to (a)
requests submitted through the client API or (b) decisions
made by the Tashi scheduling agent. In contrast, location-
aware applications query the Data Location Service to ob-
tain information about the placement of the input data. The
application can then use the Resource Telemetry Service to
determine the distance between the input data and the ini-
tial set of VMs. Based on this information, the application
can determine a task to host assignment that reduces the
overall data movement. More sophisticated location-aware
applications could interact directly with the Tashi schedul-
ing agent to request a particular placement of the VMs based
on the location of the input data. A key observation, here,
is that the location service architecture enables an effective
decoupling of admission control, scheduling, and data place-
ment.

3.5 Adapting to Location Changes
Note that while the resource telemetry service provides

the right abstraction for determining appropriate placement
decisions in the presence of virtualization, they do not cur-
rently provide interfaces that enable adaptation in the pres-
ence of arbitrary location changes. Consider two cases: location-
aware VM placement and location-aware task placement.

In the first case, the cluster manager explicitly places
virtual machines according to some assumptions regarding
the data access patterns of those virtual machines. If a
higher-priority task arrives, the cluster manager may consol-
idate/migrate those virtual machines– yielding a sub-optimal
placement. As the cluster manager set up both the initial
and subsequent schedules, it has the information necessary
to inform the re-scheduled virtual machines of their new sta-
tus in order to make any necessary adjustments.

In the second case, an application distributed across a
number of virtual machines may have optimized the data
access patterns of the individual tasks after the VMs were
placed. If the cluster manager subsequently redistributes the

VMs across the cluster, the application may remain oblivious
to the change and continue executing with, what is now, a
sub-optimal task placement. To compensate, tasks could
either register callbacks with the cluster manager or poll
the Resource Telemetry Service to determine if there were
any changes in their status. Determining the reasonable
interface for change notification is part of our ongoing work.

4. CURRENT STATUS
The Tashi project is currently in production use at the

OpenCirrus cluster at Intel Research Pittsburgh, a cluster
of approximately 150 server nodes, comprising 1000 cores
and 400 disks.

The source code is available at the Apache Software Foun-
dation incubator where it is hosted. The current implemen-
tation is under active development and should be considered
of alpha quality. In particular, we have prototyped the Data
Location and Resource Telemetry Services but those services
are not yet part of the mainline implementation. Initial re-
sults are promising however; a test application was able to
leverage the prototype services to significantly improve its
performance. The stand-alone application read through a 1
TB dataset stored in HDFS on a 28-node cluster using a ran-
dom task layout in 139 minutes, but using a location-aware
assignment, the same application read the same dataset in
14.5 minutes– nearly a 10X improvement.

We plan to use the Tashi implementation, enhanced with
the location services described above to execute future re-
search in several adjacent areas, particularly power manage-
ment and failure-resilience.

5. CONCLUSIONS
Location-awareness is an important tool in providing Big

Data services with good performance; even on modest clus-
ters the performance impact can be significant. We propose
that the Data Location and Resource Telemetry Services of-
fer the right abstraction for general, cluster-wide location
services.
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