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Abstract

SwitchKV is a new key-value store system design that
combines high-performance cache nodes with resource-
constrained backend nodes to provide load balancing in
the face of unpredictable workload skew. The cache
nodes absorb the hottest queries so that no individual
backend node is over-burdened. Compared with previous
designs, SwitchKV exploits SDN techniques and deeply
optimized switch hardware to enable efficient content-
based routing. Programmable network switches keep
track of cached keys and route requests to the appropri-
ate nodes at line speed, based on keys encoded in packet
headers. A new hybrid caching strategy keeps cache
and switch forwarding rules updated with low overhead
and ensures that system load is always well-balanced
under rapidly changing workloads. Our evaluation re-
sults demonstrate that SwitchKV can achieve up to 5x
throughput and 3% latency improvements over traditional
system designs.

1 Introduction

In pursuit of meeting aggressive latency and through-
put service level objectives (SLOs) for Internet services,
providers have increasingly turned to in-memory [32, 35]
or flash-based [2] key-value storage systems as caches or
primary data stores. These systems can offer microsec-
onds of latency and provide throughput hundreds to thou-
sands of times that of the hard-disk-based approaches
of yesteryear. The choice of flash vs DRAM comes
with important differences in throughput, latency, persis-
tence, and cost-per-gigabyte. Recent advances in SSD
performance, including new hardware technologies such
as NVMe [34], are opening up new points in the design
space of storage systems that were formerly the exclusive
domain of DRAM-based systems. However, no single
SSD is fast enough, and scale-out designs are necessary
both for capacity and throughput.

Dynamic load balancing is a key challenge to scal-
ing out storage systems under skewed real-world work-
loads [3, 5, 7]. The system performance must not become
bottlenecked due to unevenly partitioned load across
cluster nodes. Conventional static data partitioning tech-
niques such as consistent hashing [23] do not help with

dynamic load imbalance caused by skewed and rapidly-
changing key popularity. Load balancing techniques that
reactively replicate or transfer hot data across nodes often
introduce performance and complexity overheads [24].

Prior research shows that a small, fast frontend cache
can provide effective dynamic load-balancing by directly
serving the most popular items without querying the
backend nodes, making the load across the backends
much more uniform [13]. That work proves that the
cache needs to store only the O(nlog n) hottest items to
guarantee good load balance, where 7 is the total number
of backend nodes (independent of the number of keys).

Unfortunately, traditional caching architectures such
as the look-aside Memcached [15] and an on-path look-
through small cache [13] suffer a major drawback when
using a frontend cache for load balancing, as shown in
Table 1. In these architectures, clients must send all read
requests to the cache first. This approach imposes high
overhead when the hit ratio is low, which is the case when
the cache is small and used primarily for load balancing.
Some look-aside systems (Fig. 1a) make the clients re-
sponsible for handling cache misses [15], which further
increases the system overhead and tail latency. Other de-
signs that place the cache in the frontend load-balancers
(Fig. 1b) [13] are vulnerable to the frontend crashes.

SwitchKV is a new cluster-level key-value store ar-
chitecture that can achieve high efficiency under widely
varying and rapidly changing workloads. As shown in
Fig. 1c, SwitchKV uses a mix of server classes, where
specially-configured high-performance nodes serve as
fast, small caches for data that is hash partitioned across
resource-constrained backend nodes. At the heart of
SwitchKV’s design is an efficient content-based rout-
ing mechanism that uses software-defined networking
(SDN) techniques to serve requests with minimal over-
head. Clients encode keys into packet headers and send
the requests to OpenFlow switches. These switches
maintain forwarding rules for all cached items, and route
requests directly to the cache or backend nodes as appro-
priate based on the embedded keys.

SwitchKV achieves high performance by moving the
cache out of the data path and by exploiting switch hard-
ware that has already been optimized to match (on query
keys) and forward traffic to the right node at line rate with
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Figure 1: Different cache architectures.

Look-aside

On-path look-through

SwitchKV

Clients’ responsibilities handle cache misses

Cache load 100% queries
Latency with cache miss three machine transits
Failure points switches

Cache update involves cache, backends

nothing (transparent)
100% queries

two machine transits
load balancer, switches
cache, backends

Cache update rate limit high high

encode keys in packet headers
cache hits (likely <40% queries)
one machine transit

switches

cache, backends, switches

low (<10K/s in switch hardware)

Table 1: Comparison of different cache architectures.

low latency. All responses return within one round-trip,
and there is no overhead for the significant volume of
queries for keys that are not in the cache. SwitchKV can
scale-out by adding more cache nodes and switches, and
is resilient to cache crashes.

The benefits of using OpenFlow switches come at a
price: the update rate of forwarding rules in hardware is
much lower than that of in-memory caches. Our solution
includes an efficient hybrid cache update mechanism that
minimizes the cache churn, while still reacting quickly to
rapid changes in key popularity. Backends send periodic
reports to the cache nodes about their recent hot keys as
well as instant reports about keys that suddenly become
very popular. Cache nodes maintain query statistics for
the cached keys, add or evict the appropriate keys when
they receive reports, and instruct SDN controllers to up-
date switch forwarding rules accordingly.

Our SwitchKV prototype uses low-power backend
nodes. The same design principles and evaluation results
also apply to clusters with more powerful backends, by
using high-end cache servers [26] that can keep the same
order of performance gap between cache and backends.

The main contributions of this paper are as follows:

e The design of a new cost-effective, large-scale, persis-
tent key-value store architecture that exploits SDN and
switch hardware capabilities to enable efficient cache-
based dynamic load balancing with content routing.

o An efficient cache update mechanism to meet the chal-
lenges imposed by switch hardware and small cache
size, and to react quickly to rapid workload changes.

e Evaluation and analysis that shows SwitchKV can
handle the traffic characteristics of modern cloud ap-
plications more efficiently than traditional systems.

2 Background and Related Work

Clustered Key-Value Stores. Their simple APIs (e.g.,
get, put, delete) form a fundamental building block
of modern cloud services. Given the performance re-
quirements, some systems keep data entirely in mem-
ory [35, 38], with disks used only for failure recov-
ery; others put a significant fraction of data in cache to
achieve high hit ratio [32]. Systems that aggressively use
DRAM are often more expensive and power-hungry than
those that use flash storage.

Meanwhile, SSDs are becoming faster, as hard-
ware [34] and software stacks [27, 39] for flash storage
become optimized. With a proper design, SSD-based
key-value store clusters can be a cost-effective way to
meet the SLOs of many cloud services.

Load Balancing. Key-value workloads for cloud appli-
cations are often skewed [3, 7]. Many cloud services fur-
ther experience unpredictable flash crowds or adversarial
access patterns [22]. These all pose challenges to scaling
out SSD-based key-value clusters, because the service
quality is often bottlenecked by the performance of over-
loaded nodes. For example, a web server may need to
contact 10s to 100s of storage nodes with many sequen-
tial requests when responding to a page request [32], and
the tail latency can significantly degrade the service per-
formance at large scale [10].

Good load balancing is necessary to ensure that the
cluster can meet its performance goals without substan-
tial over-provisioning. Consistent hashing [23] and vir-
tual nodes [9] help balance the static load and space
utilization, but are unable to balance the dynamic load
with skewed query distributions. Traditional dynamic
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load balancing methods either use the “power of two
choices” [31] or migrate data between nodes [6, 24, 40].
Both are limited in their ability to deal with large skew,
are usually too slow to handle rapid workload changes,
and often introduce consistency challenges and system
overhead for migration or replication.

Caching can be an effective dynamic load balancing
technique for hash partitioned key-value clusters [4, 13].
A frontend cache can absorb the hottest queries and make
the load across the backends less skewed. Fan et al. [13]
prove that the size of the cache required to provide good
load balance is only O(nlog n), where n is the total num-
ber of backend nodes. This theoretical result inspired the
design of SwitchKV.

Caching Architectures. Look-aside [15] and on-path
look-through [13] are the two typical caching architec-
tures, shown in Fig. 1 and compared in Table 1. When the
cache is small, the hit ratio is usually low (e.g., <40%).
This is enough to ensure good load balance, but creates
serious overhead in both traditional architectures. The
cache is required to process all queries, including those
for keys that are not cached, wasting substantial system
I/O and network bandwidth in the process.

A cache miss in a look-aside architecture results in an
additional round-trip of latency, as the query must be sent
back to the client with a cache miss notification, and then
resent to the backend. Look-through architectures reduce
this latency by placing the cache in the on-path load bal-
ancer, however, the cache still must process each incom-
ing request to determine whether to forward or serve it.
Additionally, the load balancers become new critical fail-
ure points, which are far less reliable and durable than
network switches [16].

3 SwitchKYV Design

The primary design goal of SwitchKV is to remove re-
dundant components on the query path such that latency
can be minimized for all queries, throughput can scale
out with the number of backend nodes, and availability
is not affected by cache node failures.

The key to achieving this goal is the observation that
specialized programmable network switches can play a
key role in the caching system. Switch hardware has
been optimized for decades to perform basic lookups at
high speed and low cost. This simple but efficient func-
tion is a perfect match to the first step of a query process-
ing: determine whether the key is cached or not.

The core of our new architectural design is an effec-
tive content-based routing mechanism. All clients, cache
nodes, and backend nodes are connected with OpenFlow
switches, as shown in Fig. lc. Clients encode keys in
query packet headers, and send packets to the cluster
switch. Switches have forwarding rules installed, includ-

ing exact match rules for each cached key and wildcard
rules for each backend, to route queries to the right node
at line rate. Table 1 summarizes the significant benefits
of this new architecture over traditional ones.

Exploiting SDN and fast switch hardware benefits sys-
tem performance, efficiency and robustness. However,
it also adds complexity and limitations. The switches
have limited rule space and a relatively slow rule update
rate. Therefore, cached keys and switch forwarding rules
must be managed carefully to realize the full benefits of
this new architecture. The rest of this section describes
SwitchKV’s query-processing flow and mechanisms to
keep the cache up-to-date.

3.1 Content Routing for Queries

We first describe how SwitchKV handles client queries,
assuming both cache and switch forwarding rules are in-
stalled and up-to-date. The process of updating cache
and switch rules will be discussed in Section 3.2.

Query operations are performed over UDP, which has
been widely used in large-scale, high-performance in-
memory key-value systems for low latency and low over-
head [28, 32]. Because UDP is connectionless, queries
can be directed to different servers by switches with-
out worrying about connection states. With a well-
provisioned network, packet loss is rare [32], and sim-
ple application-driven loss recovery is sufficient to ensure
both reliability and high throughput [28].

3.1.1 Key Encoding and Switch Forwarding

An essential system component to enable content-based
routing is the programmable network switches that can
install new per cached key forwarding rules on the fly.
These switches can use both TCAM and L2/L.3 tables for
packet processing. The TCAM is able to perform flexible
wildcard matches, but it is expensive and power hungry
to include on switches. Thus, the size of the TCAM table
is usually limited to a few thousand entries [25, 37].! The
L2 table, however, matches only on destination MAC ad-
dresses; it can be more cost-effectively implemented in
switches and is more power-efficient. Modern commod-
ity switches support 128K [37] or more L2 entries. These
sizes may be insufficient for environments where a large
percentage of data must be cached, but is a large enough
cache size to ensure good load balancing in SwitchKV.

Key Encoding in Packet Headers. Because MAC ad-
dresses have more bits for key encoding and switches
usually have large enough L2 tables to store forwarding
rules for all cached keys, clients encode query keys in the
destination MAC addresses of UDP packets. The MAC

ISome high-end switches advertise larger TCAM table (e.g., 125K
to 1 million entries [33]), albeit at higher cost and power consumption.
Such capabilities would not meaningfully change our design, as our
design primarily relies on exact-match rules.
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Figure 2: Packet flow through a switch.

consists of a small prefix and a hash of the key, com-
puted by the same consistent hashing used to partition
the keyspace across the backends.

The prefix is used to identify the packet as being a
request destined for SwitchKV, and to let the switches
distinguish different types of queries. Only get queries
coming directly from the clients may need to be for-
warded to the cache nodes. Other types of queries should
be forwarded to the backends, including put queries,
delete queries, and get queries from a cache node due
to cache misses. Therefore, get queries from the clients
use one prefix, and all other queries use a different one.

In order to forward queries to the appropriate backend
nodes, each client tracks the mapping between keyspace
partitions and the backend nodes, and encodes identifiers
of backends for the query keys into the destination IP
addresses. This mapping changes only when backend
nodes are added or removed, so client state synchroniza-
tion has very low overhead.

Finally, the client’s address and identity information is
stored in the packet payload so that the node that serves
the request knows where to send responses.

Switch Forwarding. There are three classes of rules
in switches, which are used to forward get queries for
the cached keys to the cache nodes, other queries to
the backends, and non-query packets (e.g., query re-
sponses, cache updates) to the destination node respec-
tively. Fig. 2 shows the packet flow through a switch.
The L2 table stores exact match rules on destination
MAC addresses for each cached key and each cache and
backend node. The TCAM table stores wildcard match
rules on destination IP addresses for each backend node.
The L2 table is set to have a higher priority. A switch
will first look for an exact match in the L2 table and will
forward the packet to an egress port if either the packet
was addressed directly to a node or it is a get query for
a cached key. If there is no match in the L2 table, the
switch will then look for a wildcard match in the TCAM
and forward the packet to the appropriate backend node.
Below are the detailed switch forwarding rules:

e Exact match rules in L2 table for all cached keys. We
use prel to denote the prefix for get queries from
clients. For each cached key in cache node:

match:<mac_dst = prel-keyhash>
action:<port_out = port_cache_node>

DTl—‘%) O 000

get cached object get un-cached object
1 2 1 4
e e — e
<< <5\ <5
21 Ta

get query with cache miss (rare)

D cache @ backend

| pre2i keyhash | | client MAC |
— e

put/delete cached object

C] client O switch

MAC Headers: [ pre1 | keyhash |

—_—

Figure 3: Query packets flows and destination MAC addresses.
Internal messages for cache consistency during put or delete
operations are not included. A cache miss only occurs due to
key hash collision or temporarily outdated switch rules.

e Exact match rules in L2 table for all clients, cache
nodes, and backends. For each node:
match:<mac_dst = mac_node>
action:<port_out = port_node>
e Wildcard match rules in TCAM table for all backend
nodes. For each backend node:
match:<ip_dst/mask = id_node>
action:<port_out = port_backend_node>

3.1.2 Query Flow Through the System

A main benefit of SwitchKYV is that it can send queries to
the appropriate nodes with minimal overhead, especially
for queries on uncached keys which make up most of the
traffic. Fig. 3 shows the possible packet flows of queries.

Handle Read Requests. SwitchKV targets read-heavy
workloads, so the efficiency of handling read requests is
critical to the system performance. Switches route get
queries to the cache or backends based on match results
in the forwarding tables. When it receives a get query,
the cache or backend node will look for the key in its
local store, either in memory or SSD. The backend will
send a reply message with the destination MAC set as the
client address. The cache node will also reply if the key
is found. This reply will be forwarded back to the client.

In most cases, queries sent to the cache node will hit
the cache, because queries for keys not in the cache were
filtered out by the switches. However, it is possible for
a cache node to receive a get query but not find the key
in its local in-memory store. This may occur due to a
small delay in rule removal from the switch, or a rare
hash collision with another key. When this happens, the
cache node must forward the packet to the backends. To
do so, the cache will send the query packet back to the
switch, with the appropriate destination MAC address
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prefix (e.g., from prel to pre2 in Fig. 3). This prevents
the packet from matching the same L2 rule in switches
again, so that the query can be forwarded to the appro-
priate backend node via a wildcard match in TCAM.

Handle Write Requests. Clients send put and delete
queries with a MAC prefix that is different from the pre-
fix of get queries (as shown in Fig. 3), so that the packets
will not trigger a rule in the L2 table of switches, and will
be forwarded directly to the backends. When a backend
node receives a put or delete query for a key, it will
update its local data store and reply to the client.

Each backend node keeps track of which keys in its
local store are also being cached. If a put or delete
request for a cached key arrives, the backend will send
messages to update the cache node before replying to the
clients. The cache node is then responsible for commu-
nicating the update to the network controller for switch
rule updates. This policy ensures that data items in the
cache and backends are consistent to the client, but al-
lows temporary inconsistency between cached keys and
switch forwarding rules. The next section describes the
detailed mechanism of cache update and consistency.

3.2 Hybrid Cache Update

As our goal is to build a system that is robust for (nearly)
arbitrary workloads, the limited forwarding rule update
rate poses challenges for the caching mechanism. Since
each cache addition or eviction requires a switch rule
installation or removal, the rule update rate in switches
directly limits the cache update rate, which affects how
quickly SwitchKV can react to workload distribution
changes. Though switches are continuously being op-
timized to speed up their rule update and some switches
can now achieve 12K updates per second [33], they are
still too slow to support traditional caching strategies that
insert each recently-visited key to the cache.

To meet this new challenge, we designed new hybrid
cache update algorithms and protocols to minimize un-
necessary cache churn. The cache update mechanism
consists of three components: 1) Backends periodically
report recent hot keys to the cache nodes. 2) Back-
ends immediately report keys that suddenly become very
hot to the cache nodes. 3) Cache nodes add selected
keys from reports and evict appropriate keys when nec-
essary, and they instruct the network controller to make
corresponding switch rule updates through REST APIs.
Cache addition is prioritized over eviction in order to
react quickly to sudden workload distribution changes
at the cost of some additional buffer switch rule space.
Fig. 4 shows our cache update mechanism at a high level.

3.2.1 Update with Periodic Hot Key Report

In most caching systems, a query for a key that is not
in the cache would bring that key into cache and evict

switch rule update Top-k <key, load> list

vo1¢

Cache

(periodic)

fetch-request <key>

fetch-reply <key, value>
Controller Backend

update for consistency

(see section 3.2.4)

t bursty hot <key, value>

(instant)

Figure 4: Cache update overview.

another key if the cache is full. However, many recently
visited keys are not hot and will not be accessed again in
the near future. This would result in unnecessary cache
churn, which would harm the performance of SwitchKV
because its cache update rate is limited.

Instead, we use a different approach to add objects to
the cache less aggressively. Each backend node main-
tains an efficient top-k load tracker to track recent pop-
ular keys. Backend nodes periodically (e.g., every sec-
ond) report their recent hot keys and loads to the cache
nodes. Each cache node maintains an in-memory data
store and frequency counter for the cached items with the
same load metric. The cache node keeps a load threshold
based on the load statistics of cached keys. Upon re-
ceiving the reports, the cache node selects keys whose
loads are above the threshold to add to the cache. It
sends fetch requests for the selected keys to the corre-
sponding backend nodes to get the values. It then updates
the cache and instructs the network controller to update
switch rules based on the received fetch responses.

Time-segmented Top-K Load Tracker. Each backend
node maintains a key-load list with k entries to store its
approximated hottest k keys and their loads. It also keeps
a local frequency counter for the recently visited keys,
so that it can know what are the most popular keys and
how frequently they are queried. A backend node cannot
afford to keep counters for all keys in memory. Instead,
since only information about hot keys is needed, we can
use memory-efficient top-k algorithms to find frequent
items in the query stream [8].

To keep track of recent hot keys, we segment the query
stream into separate intervals. At the end of each inter-
val, the frequency counter extracts the top-k list of its
current segment, then clears itself for the next segment.
The key-load list is updated by the top-k list of the new
segment using weighted average. Suppose the frequency
of key x in the new segment is fy, and the current load
of x is L’ then the new load of x is

Ly=a-fx+(-a) L, ey
where « represents the degree of weighting decrease. A
higher « discounts previous load faster. Only keys in the
new top-k list will be kept in the new updated key-load
list. L’ is zero for keys not in the previous key-load list.
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Algorithm 1 Update Frequency Counter

1: function SEEQUERY(x)

2 if x is not tracked in the counter then

3 if the counter is not full then

4: create a bucket with f = 1 if not exists

5: add x to the first bucket; return

6 y « first key of first bucket, the least visited key
7 replace y with x and keep the same frequency
8 Uppate(x)

9: function Uppate(x) // key x is tracked in the counter
10: (b, f) < current (bucket, frequency) of x

11: if next bucket of b has frequency f + 1 then

12: move x to the next bucket

13: else if x is the only key of b then

14: increase frequency of b to f + 1

15: else move x to a new bucket with frequency f + 1

16: if b is empty then delete b

The frequency counter uses a ‘“‘space-saving algo-
rithm” [30] to track the heavy hitters of the query stream
in each time segment and approximate the frequencies
of these keys. Fig. 5 shows the data structure of the fre-
quency counter.

Figure 5: Structure of top-k frequency counter.

The counter consists of a linked list of buckets, each
with a unique frequency number f. The buckets are
sorted by their frequency in increasing order (e.g., fi <
f2). Each bucket has a linked list of keys that have been
visited for the same number of times, f. Keys in the
same bucket are sorted by their most recent visited time,
with newest key at the tail of the list. With this struc-
ture, getting a list of top-k hot keys and their load is
straightforward. For example, the top-5 list in Fig. 5 is
[{x7, f4) X6, [3) (x5, f3) (x4, f2) {x3, f1)].

The counter has a configurable size limit N, which is
the maximum number of keys it can track. Algorithm 1
describes how to update the counter. When processing
(e.g., create, delete, move) buckets and keys, the orders
described above are always maintained. The counter re-
quires O(N) memory, and has O(1) running time for each
query. To reduce the computational overhead, we can
randomly sample the query packets, and only update the
counter for a small fraction of the queries. Sampling can
provide a good approximation of the ranking of heavy
hitters in highly skewed workloads.

Cache Adds Selected Keys from Reports. The cache
also tracks the load for all cached keys. In order to be
comparable with the load of reported keys, it must keep
the same parameters (e.g., time segment interval, average
weights, sampling rate) with the tracker in the backends.

Cache nodes update a load threshold periodically based
on the loads of cached keys, and send fetch queries for
the reported keys with load higher than the threshold.
Too big of a threshold would prevent caching hot keys,
while a too small of one would cause frequent unneces-
sary cache churn. To compute a proper load threshold in
practice, the cache samples a certain number of key loads
and uses the load at a certain rank (e.g., 10’ percentile
from the lowest) as the threshold value. This process runs
in the background periodically, so it does not introduce
overhead to serving queries or updating cached data.

3.2.2 Update for Bursty Hot Keys

Periodic reports can update the cache effectively with
low communication and memory overhead, but cannot
react quickly when some keys suddenly become popular.
In addition to periodic reports, the backends also send in-
stant reports to the cache to report bursty queries, so that
those queries can be offloaded to the cache immediately.

Each backend maintains a circular log to track the re-
cently visited keys, and a hash table that keeps only en-
tries for keys currently in the log and tracks the number
of occurrence of these keys. As shown in Fig. 6, when
a key is queried, it is inserted into the circular log, with
the existing key at that position evicted. The hash table
updates the count of the keys accordingly and adds or
deletes related entries when necessary. If the count of
a key exceeds a threshold and the node’s overall load is
also above a certain threshold, the key and its value are
immediately sent and added to the cache. The size of
the circular log and hash table could be small (e.g., a few
hundreds of entries), which introduces little overhead to
query processing.

pos
0 v N1 count [x]++

tly] - -
LITTT T[] Lyl LI ot moan
Query for x: insert X evicty

Figure 6: Circular log and counter.

3.2.3 Handle Burst Change with Rule Buffer

The distribution changes in real-world workloads are not
constant. Sudden changes in the key popularity may lead
a large number of cache updates in a short period of
time. In traditional caching algorithms, a cache addition
when the cache is full would also trigger a cache evic-
tion, which in SwitchKV would mean that each addition
involves two forwarding rule updates in the switch. As a
result, the cache would only able to add keys at half of
the switch update rate on average.

In order to react quickly to sudden workload changes,
we prioritize cache addition over eviction. Cache evic-
tions and switch rule deletion requests are queued and
executed after cache additions and rule installations un-
til a maximum delay is reached. In this way, we can
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Figure 7: Updates to keep cache consistency.

reduce the required peak switch update rate for bursty
cache updates to half, so that new hot keys can be added
to cache more quickly. For example, if the switch update
rate limit is 2000 rules per second, and the maximum de-
lay for rule deletions is one second, then the cache can
update at 1000 keys/second on average, and a maximum
of 2000 keys/second for a short period (one second).

To allow delay in switch rule deletions, a rule buffer
must be reserved in the L2 table. The size of this buffer
is the maximum switch update rate times the duration of
maximum delay. In the example above, the switch should
reserve space for at least 2000 rules, which is small com-
pared to the available L2 table size in switches.

Delaying rule deletion may result in stale forwarding
rules in the L2 table. The stale rules will produce a
temporary cache miss for some queries, as shown in the
lower right block of Fig. 3. The miss overhead is small,
however, because the evicted or deleted keys are (by def-
inition) less likely to be frequently visited.

3.2.4 Cache Consistency

SwitchKV always guarantees consistent responses to
clients. As a performance optimization, it allows tempo-
rary inconsistency between switch forwarding rules and
cached keys, which (as described above) can introduce
temporary overheads for a small number of queries, but
never causes inconsistent data access.

In traditional cache systems such as Memcached [15],
when a client sends a put or delete request, it will also
send a request to the cache to either update or invali-
date the item if it is in cache. The cache in SwitchKV
is small and it is possible that most requests are for un-
cached keys, so forwarding each put or delete request
to the cache introduces unnecessary overhead.

The backends avoid this overhead by tracking, in-
memory, which keys in its local store are currently
cached. The backend only updates the cache when it re-
ceives requests for one of these cached keys. Keys are
added to the set whenever the backend receives a fetch
request, or sends an instant hot object detected by the
circular-log counter. When the cache evicts a key, or de-
cides not to add the item from a fetch response or in-
stant report, it sends a message to the backend so that the
backend can remove this key from its cached key set.

We use standard leasing mechanisms to ensure consis-
tency when there are cache or backend failures or net-
work partitions [17]. Backends grant the cache a short-
term lease on each cached key. The cache periodically

renews its leases and only return a cached value while
the lease is still valid. When a backend receives a put or
delete request for a cached key, it will send an update
request to the cache, as shown in Fig. 7, and will wait for
the response or until the lease expires before it replies to
the client. We choose to update the cached data rather
than invalidate it for a put request to reduce the cache
churn and rule update burden on switches.

3.3 Local Storage and Networking

Optimizing the single-node local performance of cache
and backends is not our primary goal, and has been ex-
tensively researched [27, 28, 39]. Nevertheless, we made
several design choices on local storage and networking
to maximize the potential performance of each server,
which we discuss here.

3.3.1 Parallel Data Access

Exploiting the parallelism of multi-core systems is crit-
ical for high performance. Many key-value systems use
various concurrent data structures so that all cores can
access the shared data in parallel [11, 14, 32]. However,
they usually scale poorly with writes and can introduce
significant overhead and complexity to our cache update
algorithms that require query statistics tracking.

Instead, SwitchKV partitions the data in each cache
and backend node based on key hash. Each core has ex-
clusive access to its own partition, and runs its own load
trackers. This greatly improves both the concurrency and
simplicity of the local stores. Prior work [14, 29, 41] ob-
served that partitioning may lower the performance when
the load across partitions is imbalanced. In SwitchKV,
however, backend nodes do not face high skew in key
popularity. By exploiting CPU caches and packet burst
I/O, a cache node that serves a small number of keys can
handle different workload distributions [28].

3.3.2 Network Stack

SwitchKV uses Intel® DPDK [21] instead of standard
socket I/O, which allows our user-level libraries to con-
trol NICs, modify packet headers, and transfer packet
data with minimal overhead [28].

Since each core in the cache and backend nodes has
exclusive access to its own partition of data, we can have
the NIC deliver each query packet to the appropriate RX
queue based on the key. SwitchKV can achieve this by
using Receive Side Scaling (RSS) [12, 20] or Flow Di-
rector (FDir) [28, 36].2 Both methods require informa-
tion about the key in packet headers for the NIC to iden-
tify which RX queue should the packet be sent to. This
requirement is automatic in SwitchKV where key hashes
are already part of the packet header.

2Qur prototype uses RSS. FDir enables more flexible control of the
network stack, but it is not supported in the Mellanox NICs that we use.
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3.4 Cluster Scaling

To scale system performance, the cluster will require
multiple caches and OpenFlow switches. This section
briefly sketches a design (not yet implemented) for a
scale-out version of SwitchKV.

Multiple Caches. We can increase SwitchKV’s total
system throughput by deploying additional cache nodes.
As each individual node can deliver high throughput be-
cause of its small dataset size (especially when keys fit
within its L3 cache), we do not replicate keys across
nodes and instead simply partition the cache across the
set of participating nodes.3 Each cache node is responsi-
ble for multiple backends, and each backend reports only
to its dedicated cache node. As such, we do not require
any cache coherency protocols between the cache nodes.

If the mapping between backends and cache nodes
changes, the relevant backends will delete their cached
items from their old cache nodes, and then report to the
new ones. If the change is due to a cache crash, the net-
work controller will detect the failed node and delete all
forwarding rules to it.

Network Scaling. To scale network throughput, we can
use the well-studied multi-rooted fat-tree [1, 19]. Such
an architecture may require exact match rules for cached
keys to be replicated at multiple switches. This approach
may sacrifice performance until the rule updates com-
plete, but does not compromise correctness (the back-
ends may need to serve the keys temporarily).

On the other hand, if the switching bottleneck is in
terms of rule space (as opposed to bandwidth), then each
switch must be configured to store only rules for a subset
of the backend nodes, i.e., we partition the backends, and
thus the rule space, across our switches. In this case,
queries for keys in a backend node must be sent through
a switch associated with that key’s backend (i.e., that has
the appropriate rules); that switch can be identified easily
by the query packets’ destination IP addresses.

4 Evaluation

In this section, we demonstrate how our new architecture

and algorithms significantly improve the overall perfor-

mance of a key-value storage cluster under various work-

loads. Our experiments answer three questions:

e How well does a fast small cache improve the cluster
load balance and overall throughput? (§4.2)

e Does SwitchKV improve system throughput and la-
tency compared to traditional architectures? (§4.3)

e Can SwitchKV’s new cache update mechanism react
quickly to workload changes? (§4.4)

3Note that while we are very concerned about load amongst our
backend nodes, our cache nodes have orders-of-magnitude higher per-
formance, and thus the same load-balancing concerns do not arise.
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Figure 8: Evaluation platform.

Our SwitchKYV prototype is written in C/C++ and runs
on x86-64 Linux. Packet I/O uses DPDK 2.0 [21]. In
order to minimize the effects of implementation (rather
than architectural) differences, we implemented the look-
aside and look-through caches used in our evaluation
simply by changing the query data path in SwitchK'V.

4.1 Evaluation Setup

Platform. Our testbed consists of four server machines
and one OpenFlow switch. Each machine is equipped
with dual 8-core CPUs (Intel® Xeon® ES5-2660 proces-
sors @ 2.20 GHz), 32 GB of total system memory, and
one 40Gb Ethernet port (Mellanox ConnectX-3 EN) that
is connected to one of the four 40GbE ports on a Pica8
P-3922 switch. Fig. 8 diagrams our evaluation platform.
One machine serves as the client, one machine as the
cache, and two machines emulate many backends nodes.
We derived our emulated performance from experi-
mental measurements on a backend node that fits our
target configuration: an Intel® Atom™ C2750 proces-
sor paired with an Intel® DC P3600 PCle-based SSD.
On this SSD-based target backend, we ran RocksDB [39]
with 120 million 1KB key-value pairs, and measured its
performance against a client over a 1Gb link. The back-
end could serve 99.4K queries per second on average.
Each emulated backend node in our experiments runs
its own isolated in-memory data structures to serve
queries, track workloads, and update the cache. It has
a configurable maximum throughput enforced by a fine-
grained rate limiter.# The emulated backends do not store
the actual key-value pairs due to limited memory space.
Instead, they reply to the client or update the cache with
a fake random value for each key. In most experiments
(except Fig. 14), we emulate a total of 128 backend nodes
in the two server machines, and limit each node to serve
at most 100K queries per second. Table 2 summarize the
default experiment settings unless otherwise specified.

4Since it is hard to predict the performance bottleneck at a backend
node if its load is skewed, we assume backends have a fixed throughput
limit as measured under uniform workloads.
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Number of backend nodes 128
Max throughput of each backend 100 KQPS
Workload distribution Zipf (0.99)

Number of items in cache 10000

Table 2: Default experiment settings unless otherwise specified

Workloads and Method. We evaluate both skewed and
uniform workloads in our experiments, and focus mainly
on skewed workloads. Most skewed workloads use a
non-uniform key popularity that follows a Zipf distribu-
tion of skewness 0.99, which is the same that used by
YCSB [7]. The request generator uses approximation
techniques to quickly generate workloads with a Zipf dis-
tribution [18, 28]. The keyspace size is 10 billion, so
each of the 128 backend nodes is responsible for serving
approximately 78 million unique keys. The mapping of
a given key to a backend is decided by the key hash. We
use fixed 16-byte keys and 128-byte values.

Most experiments (except Fig. 12) use read-only
workloads, since SwitchKV aims to load balance read
requests. All write requests have to be processed by the
backends, so they cannot be load balanced by the cache.

To find the maximum effective system throughput, the
client tracks the packet loss rate, and adjusts its sending
rate every 10 milliseconds to keep the loss rate between
0.5% to 1%. This self-adjusted rate control enables us to
evaluate the real-time system performance.

Our server machines can send packets at 28 Mpps, but
receive at only 15 Mpps. To avoid the system being bot-
tlenecked by the client’s receiving rate, the backends and
cache node fully process all incoming queries, but send
only half of the responses back to the client. The client
doubles its receiving rate before computing the loss rate.

4.2 Load Balancing with a Small Cache

We first evaluate the effectiveness of introducing a small
cache for reducing load imbalances.

Fig. 9 shows a snapshot of the individual backend node
throughput with caching disabled under workloads of
varying skewness. We observe that the load across the
backend nodes is highly imbalanced.

Fig. 10 shows how caching affects the system through-
put. Under uniform random workload, the backends total
throughput can reach near the maximum capacity (128
backends x 100 KQPS). However, when the workload
is skewed, the system throughput without the cache is
bottlenecked by the overloaded node and significantly re-
duced. Adding a small cache can help the system achieve
good load balance across all of nodes: A cache with only
10,000 items can improve the system’s overall through-
put by 7x for workloads with Zipf skewness of 0.99.

Fig. 11 investigates how different numbers of cached
items affect the system throughput. The backends’ load
quickly becomes well balanced as the number of cached
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Figure 9: Throughput of each backend node without cache un-
der workloads with different Zipf skewness. Node IDs (x-axis)
are sorted according to their throughput.
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Figure 10: System throughput with and without the use of a
cache. Figure illustrates the portion of total throughput handled
by the cache and that by backend nodes.
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Figure 11: System throughput as cache size increases. Even a
modest-sized cache of 10,000 items achieves significant gains.

—eo— total tput (uniform write) —0— backends tput (uniform write)
2 —=— total tput (skewed write) —o— backends tput (skewed write)

o

s 204

= 154

>

2 10+

S 54

o

E 0 1 1 1 1

= 0.0 0.2 0.4 0.6 0.8 1.0
Write ratio

Figure 12: System throughput with different write ratio.

items grows to 1000. Then, the system throughput con-
tinues to grow as more items are cached, but the bene-
fits from increased cache size diminish (as one expects
given a Zipf workload). The system would require sig-
nificantly more memory at the cache node or many more
cache nodes to further increase the hit ratio. We choose
to cache 10,000 items for the rest of the experiments.
Fig. 12 plots the systems throughput with different
write ratios and write workloads. We assume the back-
end nodes have the same performance for read and write
operations, and use two types of write workload: write
queries uniformly distributed across all keys and write
queries according to the same Zipf 0.99 distribution as
read queries. Write workloads cannot be balanced by

USENIX Association

13th USENIX Symposium on Networked Systems Design and Implementation (NSDI "16) 39



B Throughput limit (>1% of packets are dropped)

_. 300
% 250 - %- 99th percentile latency +
<. 2004 —— Average latency L
O 150 Kom i mm e k- m ke * ¥ -
@ 1004 . N —
® 50 L
- 0 L L L L L L L
0 2 4 6 8 10 12 14
Throughput (MQPS)
(a) Queries for cached keys with Zipf 0.99 workloads.
600
= 500] —— Look-aside[Average||  |(99th Percentild i
s 400 —— Look-through L |
g 300 —e— Switchkv - ‘_’___A// L
8 200 ——————= 1 | at
® 1087 r— L
0 2 4 6 8101214 0 2 4 6 8 10 12 14
Throughput (MQPS) Throughput (MQPS)
(b) Queries for uncached keys with uniform workloads.
600
% 500] —— Look-aside(Average]|  [[99th Percentile |
2 400 —— Look-through o e e———" L
3 300 —— Switchkv S L
9 200 s——e—x—m o4 .___.___._’J,
&
® 1001 o |

O L L L L L L
0 5 10 15 20 0 5 10 15 20
Throughput (MQPS) Throughput (MQPS)
(¢) Zipf 0.99 workloads with 10000 items in cache.

Figure 13: End-to-end latency as a function of throughput.

the cache, so the system throughput with skewed write
workload quickly decreases as the write ratio increases.
With the uniform write workload, load across the back-
ends is always uniform, so increasing the write ratio only
decreases the effective throughput of the cache.

4.3 Benefits of the New Architecture

This section compares the system performance between
SwitchKV and traditional look-aside and on-path look-
through architectures. As summarized in Table 1, com-
pared to traditional architectures in which the cache
handles all queries first, the cache in SwitchKV is
only involved when the requested key is already cached
(with high likelihood), and thus uncached items are
served with only a single machine transit. As a result,
we expect SwitchKV to have both lower latency and
higher throughput than traditional architectures, which
is strongly supported by our experimental results.

Latency. We first compare the average and 99'” per-
centile latency of different architectures, as shown in
Fig. 13. To measure the end-to-end latency, the client
tags each query packet with the current timestamp.
When receiving responses, the client compares the cur-
rent timestamp and the previous timestamp echoed back
in the responses. To measure latency under different
throughputs, we disable the client’s self rate adjustment,
and manually set different send rates.

Fig. 13a shows the latency when the client only sends
queries for keys in the cache. In all three architectures,
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P D S
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- )
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Figure 14: System throughput scalability as the number of
backend nodes increases, for SwitchKV and look-aside archi-
tecture with Zipf 0.99 workload and at most 10000 items in
cache. On-path look-through has the same throughput as look-
aside. Each backend node is rate limited at S0K queries per
second, cache is rate limited at 5 million queries per second.
Look-through has similar performance to look-aside.

the queries will be forwarded to the cache by the switch
and the cache reply directly to the client. Accordingly,
they have the same latency for cache hits.

Fig. 13b shows the latency when the client generates
uniform workloads and the cache is empty, which re-
sults in all queries missing the cache. Look-aside has the
highest latency because it takes three machine transits
(cache—client—backend) to handle a cache miss. Look-
through also has high latency because it takes two ma-
chine transits (cache—backend) to handle a cache miss.
In comparison, queries for uncached keys in SwitchKV
cache will directly go to the backend nodes.

Fig. 13c shows the overall latency for a Zipf 0.99
workload and 10000-item cache. As shown in Fig. 10,
about 38% of queries will hit the cache under these set-
tings. The average latency is within the range of cache
hits and cache misses. The 997" percentile latency is
about the same as cache miss latency. As all queries must
go through the cache in look-aside and look-through ar-
chitectures, we cannot collect latency measurements be-
yond the 14 million QPS mark for them, as the cache is
unable to handle more traffic. This result illustrates one
of the major benefits of the SwitchKV design: requests
for uncached keys are simply not sent to the cache, allow-
ing a single cache node to support more backends (higher
aggregate system throughput).

Throughput. We then compare the full system through-
put under a Zipf 0.99 workload as the number of back-
end nodes increase, for different architectures. For each
architecture, the cache node stores at most 10000 items.

In order to emulate more backend nodes in this exper-
iment, we scale down the rate capacity of each backend
node to at most 50K queries per second, and limit the
cache to serve at most 5 million queries per second. The
performance improvement ratio of SwitchKV to other ar-
chitectures will be the same as long as the performance
ratio of the cache to a backend node is 100:1. To achieve
the maximum system throughput, the cache may store
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fewer items when it becomes the performance bottleneck
as the backend cluster size increases.

Fig. 14 shows the experiment results. The throughput
of the look-aside architecture is bottlenecked quickly by
the cache capacity when the number of backend nodes
increases to 64, while the throughput of SwitchKV can
scale out to much larger cluster sizes. When the num-
ber of backend nodes goes beyond 400, the throughput
begins to drop below the maximum system capacity, be-
cause the cache is insufficient for providing good load
balance for such a cluster. To retain linear scalability as
the cluster grows, we would need to have a more power-
ful cache node or increase the number of cache nodes.

Less skewed workloads will yield better scalability for
SwitchKV, but will hit the same performance bottleneck
for both look-aside and look-through architectures. Due
to space constraints, we omit these results.

4.4 Cache Updates

This section evaluates the effectiveness of SwitchKV’s
hybrid cache-update mechanisms. In these experiments,
we keep the workload distribution (Zipf 0.99) the same,
and change only the popularity of each key. The work-
load generator in the client actually generates key indices
with fixed popularity ranks. We change the query work-
loads by changing the mapping between indices and key
strings. We use three different workload change patterns:

1. Hot-in: Move N cold keys to the top of the popularity
ranks, and decrease the ranks of other keys accord-
ingly. This change is radical, as cold keys suddenly
become the hottest ones in the cluster.

2. Hot-out: Move N hottest keys to the bottom of the
popularity ranks, and increase the ranks of other keys
accordingly. This change is more moderate, since the
new hottest keys are most likely already in the cache
if N is smaller than the cache size.

3. Random: Replace N random keys in the top K hottest
keys with cold keys. We typically set K to the cache
size. This change is typically moderate when N is
not large, since the probability that most of the hottest
keys are changed at once is low.

A note about our experimental infrastructure, which
affects SwitchKV’s performance under rapid workload
changes: The Pica8 P-3922 switch’s L2 rule update is
poorly implemented. The switch performs an unneces-
sary linear scan of all existing rules before each rule in-
stallation, which makes the updates very slow as the L2
table grows. We benchmark the switch and find it can
only update about 400 rules/second when the there are
about 10K existing rules, which means the cache can
only update 200 items/second on average. Some other
switches can update their rules much faster (e.g., 12K
updates/second [33]). Though still too slow to support
the update rate needed by traditional caching algorithms,
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Figure 15: Throughput with hot-in workload changes, i.e.,
change 200 cold keys into the hottest keys every 10 seconds.

these switches would provide much higher performance
with SwitchKV under rapidly changing workloads.

All experiments use Zipf 0.99 workloads and a 10000-
item-sized cache. Each experiment begins with a pre-
populated cache containing the top 10,000 hot items.
Each backend node sends reports to the cache as fol-
lows: its top five hot keys every second, and keys that
were visited more than eight times within the last two
hundred queries instantly. The choice of parameters for
periodic and instant updates is flexible, determined by
the performance goals, cache size, and update rate limit.
For example, the size and threshold of the ring counter
for instant reports determines when a key is hot enough
to be immediately added to the cache. A threshold that
is too low may cause unnecessary cache churn, while a
threshold that is too high may make the cache slow to re-
spond to bursty workload changes. We omit a sensitivity
analysis of these parameters due to space limits. We also
compare SwitchKV with a traditional update method, in
which backends try to add every queried key to the cache.

We first evaluate system throughput under the hot-in
change pattern. Since this is a radical change, we do not
expect it to happen frequently. Thus, we move 200 cold
keys to the top of the popularity ranks every ten seconds.
Fig. 15 shows the system throughput over time. A tradi-
tional cache update method has very poor performance,
as it performs many cache updates for recently-visited
yet non-hot keys. With periodic top-k reports alone, a
backend’s hot keys are not added to the cache until its
next report (once per second). The throughput is reduced
to less than half after the workload changes, and recovers
in 1-2 seconds. The bottom subfigure shows SwitchKV’s
throughput using its complete cache update mechanism,
which includes the instant hot key reports. The new hot
keys are immediately added to the cache, resulting in a
lower performance drop and a much faster recovery af-
ter a sudden workload change. This demonstrates that
SwitchKYV is robust enough to meet the SLOs even with
certain adversarial changes in key popularity.
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Figure 16: Throughput with hot-out workload changes, i.e.,
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Figure 17: Throughput with random workload changes, i.e.,
replace 200 out of the top 10000 keys every second.

Our next experiment evaluates SwitchKV’s through-
put under a hot-out change pattern. Every second, the
200 hottest keys suddenly go cold, and we thus increase
the popularity ranks of all other keys accordingly. As
shown in Fig. 16, the complete update mechanism can
handle this change well. With instant reports only and no
periodic reports, the system cannot achieve its maximum
throughput: the circular log counter can detect only very
hot keys, not the keys just entering the bottom of the top-
10000 hot-key list. These keys are only added to cache as
they further increase in their popularity when more of the
hottest keys move out. Note that this gap becomes par-
ticularly apparent as the system reaches its steady state
50 seconds into the experiment; at this point, none of the
pre-populated cached keys remain in the cache.

Fig. 17 shows the throughput with a random change
pattern, in which we randomly replace 200 keys in the
top 10000 popular keys every second. The complete up-
date mechanism is able to handle the workload changes.
There are occasionally short-term small performance
drops, which occur when the hottest keys are replaced.
The throughput would be lower, however, if SwitchKV
were to omit either its instant or periodic reports.

Fig 18 shows the effectiveness of SwitchKV’s rule
buffer in handling bursty workload changes (see §3.2.3).
The maximum delay for cache eviction and rule deletion
is set to 2 seconds. With a switch rule buffer and prior-
itizing rule installation, the 600 new keys can be added
to the cache within 1.5 seconds. Without the rule buffer,
this installation time would double. The rule buffer thus
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Figure 18: Throughput with hot-in workload changes with 600
new hottest keys every time, which requires 1200 rule updates
and will take the switch at least three seconds to finish them.
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Figure 19: Throughput with different workload change pat-
terns as a function of change rate.

reduces any throughput impact and allows faster recov-
ery during bursty workload changes.

Fig. 19 shows the average throughput with different
change patterns and rates. The switch can update 400
rules per second, which can support 200 cache updates
per second. The system throughput is near maximum
for random and hot-out change patterns when the change
rate is within 200 keys per second, and then goes down
as the change rate increases. Throughput drops quickly
under increasing hot-in changes, as the cache is less ef-
fective when more of the hottest keys change every sec-
ond. Once all patterns change more than 10000 of the
hottest keys per second, all three patterns yield similar
throughput, as all patterns replace the entire cache every
second. Still, even at this point the cache can still keep up
to 200 of current hot keys, and most of the hottest keys
are likely to added to the cache from the instant reports,
so throughput is still much higher (by 3x) than that of
the system lacking a cache. The performance under fast
changing workloads would be higher with switches that
can update their rules faster.

5 Conclusion

SwitchKYV is a scalable key-value storage system that can
maintain efficient load balancing under widely varying
and rapidly changing real-world workloads. It achieves
high performance in a cost effective manner, both by
combining fast small caches with new algorithm design,
and by exploiting SDN techniques and switch hardware.
We demonstrate SwitchKV can meet the service-level
objectives for throughput and latency more efficiently
than traditional systems.
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