
More IOPS for Less: Exploiting Burstable Storage in Public Clouds

Hojin Park, Gregory R. Ganger, George Amvrosiadis
Carnegie Mellon University

Abstract
Burstable storage is a public cloud feature that enhances cloud
storage volumes with credits that can be used to boost per-
formance temporarily. These credits can be exchanged for
increased storage throughput, for a short period of time, and
are replenished over time. We examine how burstable storage
can be leveraged to reduce cost and/or improve performance
for three use cases with different data-longevity requirements:
traditional persistent storage, caching, and ephemeral stor-
age. Although cloud storage volumes are typically priced
by capacity, we find that each AWS gp2 volume starts with
the same number of burst credits. Exploiting that fact, we
find that aggressive interchanging of large numbers of small
short-term volumes can increase IOPS by up to 100× at a cost
increase of only 10–40%. Compared to an AWS io1 volume
provisioned for the same performance, such interchanging
reduces cost by 97.5%.

1 Introduction
Public clouds have democratized access to computing re-
sources for a variety of workloads by offering a plethora of
services to users. For data storage, the broad array of solu-
tions includes products targeted to data expected to remain
cold, accessed at high rates, or accessed at specific granular-
ities. Many storage services, however, follow a cost model
centered around throughput per GiB. Burstable storage is an
emerging storage service type that augments this model by
endowing cloud storage volumes with credits. Each credit
provides an increase in throughput, for a limited time, and is
replenished after a predetermined period of time; these param-
eters are determined by cloud provider policies. This paper
describes systematic ways of leveraging burstable storage to
increase performance at low cost, opening new opportunities
for system designers and challenges for interface designers.

Endowing a cloud storage volume with burst credits is cur-
rently available at no additional cost. Amazon Web Services
(AWS) has provided the burst feature through EBS volumes
since 2016, and recently Microsoft Azure also introduced
burst credits for Azure Premium SSD disks with a policy sim-
ilar to the one provided by AWS. Available credits are used
when the storage volume exceeds the throughput it has been
rated for. During periods when requested throughput is below
this threshold, credits can be re-accumulated.

We observed two interesting characteristics of burstable
storage (§2). First, the bucket of burst credits is initially
full when a burstable volume is created. This allows the

Figure 1: Throughput comparison (left) of three storage con-
figurations of the same cost. 10 small gp2 volumes provide
20× more IOPS (during burst) than a single volume. Purchas-
ing this throughput directly increases cost by 40× (right).

burst duration to be extended by replacing burstable storage
volumes that have emptied their credit buckets with new ones.
Second, burst throughput limits are set per volume, whereas
a volume’s cost is determined by its capacity. In other words,
using two burstable storage volumes, instead of using one
with their combined capacity, doubles the total available burst
throughput without affecting total cost. Figure 1 illustrates
this effect further and is fully explained in Section 2.2.

We show that exploiting these two characteristics of
burstable storage volumes can significantly increase perfor-
mance and/or reduce cost for three use cases with different
data-longevity requirements: traditional persistent data stor-
age (§3.1), tiered storage where the faster storage tier is used
to cache data from the slower tier (§3.2), and ephemeral stor-
age that can be discarded once a given task is completed
(§3.3). We prototyped and evaluated the first two use cases
on AWS. Naturally, less work is involved with interchanging
volumes when the data-longevity requirements are lower—for
ephemeral data, older volumes can simply be discarded in fa-
vor of new empty ones, whereas all data must be migrated for
traditional persistent storage. Still, our experiments show that
aggressive interchanging of burstable storage volumes can
deliver up to 100× more IOPS at only 10-40% higher cost, or
the higher performance level at 97.5% lower cost. Although
we demonstrate our idea on AWS, we believe our approach
can be applied to other public clouds (e.g., Microsoft Azure)
as well, so long as every new burstable storage initially has
full burst credits and there is no penalty for using the credits.

2 Whither Burstable Storage?
This section provides background on current burstable storage
services, and key characteristics of burstable storage volumes
that inform the way we design systems to use them.

2.1 Burstable Storage Services
Many real-world workloads exhibit burstiness in resource
usage. This introduces the classical tradeoff between overpro-
visioning cost and the ability to meet Service Level Objec-
tives (SLOs) for users. To help users navigate this tradeoff,
public cloud providers such as AWS, Google Cloud Engine
(GCE), and Microsoft Azure have started providing services
that allow for resource usage bursts. One example is burstable
instances, which can temporarily absorb CPU usage bursts at
no additional cost. The example we focus on in this paper is
the equivalent service for storage, i.e., the burstable storage
service. When applied to a storage volume, the volume is
converted into a burstable storage volume endowed with I/O
credits that can be redeemed to absorb I/O bursts.

As an example, AWS currently provides gp2 volumes
that are rated for 3 IOPS per GiB of provisioned capacity.
For a volume that is smaller than 1,000 GiB, converting it
into a burstable storage volume allows for a maximum burst
throughput of 3,000 IOPS beyond its baseline throughput
for 30 minutes. This performance boost is accounted for
through I/O credits, used per I/O operation. Initially, each
gp2 volume is assigned 5.4 million I/O credits at creation
time and the rate at which they are used is capped, hence

5.4 million I/O credits
Max Burst IOPS−Current IOPS ≥ 30 minutes. When fewer IOPS
are used than the maximum threshold, I/O credits are accrued.

2.2 Characteristics of Burstable Storage
In our work, we find two important characteristics of burstable
storage volumes. First, every new burstable storage volume
is endowed with enough credits to achieve maximum burst
throughput for at least 30 minutes. Thus, burstable volumes
whose credits are depleted can be replaced by new volumes
to maintain this maximum burst throughput. For workloads
that treat storage as ephemeral this extra throughput comes
at no cost. For other workloads, data will need to be mi-
grated before a volume is replaced. We evaluate the migration
overhead in Section 3 and show that it is negligible enough
compared to the performance benefit.

Second, even though cloud storage is typically priced by
capacity, burstable volume I/O credits are assigned per vol-
ume. Thus, splitting a burstable storage volume into multiple
smaller volumes can result in additional I/O credits. Fig-
ure 1(a) shows a throughput comparison between three 500
GiB gp2 AWS storage configurations. Using the aggregated
burst throughput of 10 gp2 volumes with a capacity of 50
GiB each achieves 20× higher throughput than a single 500
GiB gp2 volume. Note that all three volumes cost the same,
since gp2 charges by capacity. Figure 1(b) shows the cost

difference between two configurations of the same capacity
and IOPS. The blue bar represents a burstable volume that is
rated for 20× less throughput, and the yellow bar represents
a Provisioned IOPS SSD (io1) volume that is guaranteed to
achieve 30,000 IOPS at all times. The price of using 500
GiB of io1 with 30,000 IOPS is $2012.5 per month, which is
40× higher than using gp2. In Section 3, we describe how to
exploit these two characteristics to enhance performance.

3 Burstable Storage Applications
We demonstrate three use cases that can take advantage of
a burstable storage service: persistent data storage (§3.1),
SSD caching (§3.2), and ephemeral data storage (§3.3). Our
experiments emphasize two benefits of burstable storage: high
aggregated burst throughput of small volume collections, and
burst credit renewal through volume replacement.

3.1 Persistent data storage
One of the benefits we identified with burstable storage vol-
umes is that new volumes start with full credits, so they can
be used to replace old ones that have spent their burst budget.
To leverage this characteristic for persistent data, we need to
ensure data is migrated before the old volume is removed, and
that the data remains available during the migration process.

Design. Figure 2 illustrates our prototype design. To ex-
pose a total capacity C, we create a RAID-0 array with N
burstable storage volumes, each with a capacity of C

N . Ini-
tially, only the N volumes are present (Fig. 2(a)), and their
aggregated performance is N times that of a single burstable
volume. As the volumes use up their burst credits, a new set of
N volumes is created and each volume is paired up to an old
volume in a RAID-1 scheme (Fig. 2(b)). Then, the software
RAID rebuild process for each pair migrates data from the
old volumes to the new ones, while maintaining data avail-
ability (Fig. 2(c)). After the rebuild process is complete for
all RAID-1 pairs, old volumes are deleted and we transition
to using the credits available in the new volumes (Fig. 2(d)).

Experimental setup. We evaluate our design with data
capacities of 100 GiB and 300 GiB. For each case, we use
10 gp2 volumes as the individual burstable storage volumes
with capacities of 10 GiB and 30 GiB each, respectively. As
our baseline we use a single gp2 volume with the same total
capacity. Volumes are attached to a c5.9xlarge AWS instance
that supports up to 40,000 IOPS for attached volumes, which
is sufficient to show the performance of our design. Our
evaluation uses two workloads generated by the Flexible I/O
Tester, FIO [6]: random reads, and an equal mix of random
reads and writes. The I/O unit used is 4 KiB, and file sizes
are 80 GiB and 250 GiB for each 100 GiB and 300 GiB of
persistent data storage.

Evaluation. Figure 3 shows an 80-minute window of per-
sistent data storage throughput with total capacity of 100 GiB
and 300 GiB. We limit capacity to 300 GiB per instance be-

Persistent data storage

Burstable volume RAID-0 RAID-1

(a) Exploit aggregated throughput
 of N burstable volumes

(b) Create new burstable volumes
 when burst credits run out

(c) Rebuild between the volumes
 in RAID-1 pairs

(d) Delete the old volumes and use
 new burstable volumes

Rebuilding

Figure 2: Persistent data storage using burstable storage vol-
umes. Initially, (a) the system uses N small volumes to exploit
their aggregated burst throughput. After using up their burst
credits, (b) N new volumes are created, (c) data is migrated
using software RAID, and (d) old volumes are deleted.

cause we are limited by the number of volumes that can be
attached to a single instance, and larger per-volume capacities
would result in using up more than half of the volume’s burst
credits for data migration. Our design’s expected aggregate
throughput is 30,000 IOPS, because we use 10 gp2 volumes
and each volume’s maximum burst throughput is 3,000 IOPS.
Figure 3 shows our design achieves this throughput, which is
100× and 33× higher than the baseline gp2 volume through-
put with a capacity of 100 GiB and 300 GiB, respectively.

The main challenge of using burstable volumes for persis-
tent data storage is data migration for volume replacement.
Since volumes in each software RAID-1 pair are rebuilt at
the block level, the rebuild process duration is proportional to
the volume’s capacity. For 10 volumes of equal capacity that
amount to 100 GiB, 300 GiB, and 500 GiB of total capacity,
we have measured the rebuild time to take 3.6, 12, and 18
minutes out of the 30-minute burst throughput interval.

Although software RAID-1 allows the system to be avail-
able for reading and writing during the rebuild phase, usable
storage throughput decreases. Specifically, write throughput
is degraded because writes must be persisted to both RAID-1
volumes. But as expected, read throughput increases because
data already rebuilt can be read from both of the volumes, at
twice the original bandwidth. Regarding the compute over-
head during the RAID-1 copy, we have measured that the
copy between two volumes only incurs 1-2% CPU utilization
on a single core and 6% for three simultaneous copy opera-
tions. Therefore, we believe that CPU overhead is low even
with multiple on-going RAID-1 copy operations.

Lastly, we study the financial efficiency of our design for
100 GiB of persistent storage. The baseline approach, using a
single 100 GiB gp2 volume costs $10 per month. Our design
uses up to twice the capacity across all burstable storage
volumes during the rebuild phase, which accounts for 10%
of total running time on average. Thus, our approach costs
$11 per month. This means that our approach achieves 100×
higher throughput at 10% additional cost. In the case of 300

0 10 20 30 40 50 60 70 80
time (min)

0K

10K

20K

30K

40K

Th
ro

ug
hp

ut
 (I

OP
S)

(a) 100 GiB of persistent data storage

Burst thpt. of 10 small gp2 - Random Read-only
Burst thpt. of 10 small gp2 - Random R/W 50/50
Baseline thpt. of single large gp2

0 10 20 30 40 50 60 70 80
time (min)

0K

10K

20K

30K

40K

Th
ro

ug
hp

ut
 (I

OP
S)

(b) 300 GiB of persistent data storage

Figure 3: Throughput evaluation of 100 GiB and 300 GiB
persistent data storage. Vertical dashed and solid lines indicate
the start and end of data migration. Our design (blue and
orange lines) shows 33− 100× higher throughput for 40%
additional cost compared to the baseline (green line).

GiB persistent data storage, the cost is 40% higher for 20×
higher throughput.

Implications. Our results indicate that as the total capac-
ity of persistent data storage increases, both cost-efficiency
and average throughput decrease because the rebuild time
increases as well. It is possible to reduce the rebuild time
by using more smaller-capacity burstable volumes, because
data migration time is proportional to the volume capacity,
but the number of volumes that can be attached to the single
instance is limited. We can also mitigate the throughput loss
during the rebuild time by replacing a single volume at a time
instead of replacing all the volumes at once, but the system
will spend a larger percentage of time with at least one rebuild
in progress. The choice of which design to use depends on
the workload characteristics. Nonetheless, even for the least
well-fit of our examples (when all data is long-term and must
be retained), burstable storage can be exploited to significant
benefit.

3.2 SSD caching
SSD volumes are often used as caches due to their high
throughput and low latency compared to HDD volumes, espe-
cially for workloads with lower degrees of sequentiality. The
latter remain an attractive storage solution due to their relative
low cost. The temporal locality of accesses that improves
data cache value is a good match for burstable storage vol-
umes, which provide temporary throughput bursts. Moreover,

HDD

SSD Cache

HDD HDD

HDD

(a) Exploit aggregated throughput
 of N burstable volumes

(b) Use burstable volumes until
 they use up burst credits

(c) Remove SSD cache and delete
 old burstable volumes

(d) Create new burstable volumes
 and use them for SSD cache

Figure 4: SSD caching using burstable storage volumes. Ini-
tially, (a) N burstable volumes are used as an SSD cache. (b)
Cache hits then consume burst credits, and (c) once burst cred-
its are depleted, the volumes are removed and (d) replaced
with new burstable volumes.

cache data need not be persistent (unless write-back caching
is used), so data migration is not necessary when we replace
old burstable volumes with new ones. These characteristics
allow our design to achieve low cost overhead for significant
performance improvement for caching.

Design. Figure 4 demonstrates our design of SSD caching
using burstable volumes. We initially create a RAID-0 array
of N burstable volumes to act as the cache storage (Fig. 4(a)),
which uses the LRU policy. Although the maximum through-
put of this cache is N times higher than the burst throughput
of a single volume of the same capacity, our cache cannot
exploit the maximum throughput before it is populated with
data. Over time burst credits are used, either as the cache stor-
age is organically populated by cache misses, or by requests
served directly (and faster) by the SSD (Fig. 4(b)). Once the
burst credits are used, the cache storage volumes are removed
(Fig. 4(c)) and replaced by a new set of N volumes (Fig. 4(d)).

Experimental setup. We evaluate our SSD cache design
using a cache storage with a total capacity of 100 GiB. For our
design we create this cache storage using 10 gp2 volumes with
a capacity of 10 GiB each. For our baseline we use a single
gp2 volume with a capacity of 100 GiB. For the underlying
HDD storage, we use 2 TiB of Throughput Optimized HDD
(st1) EBS volume, which has a baseline throughput of 80
MiB/s. In both our setup and the baseline, the volumes are
attached to a AWS c5.9xlarge instance. We use two workloads
generated through the FIO benchmark: random read-only and
a mix of 90% random reads and 10% random writes. We
use the Zipfian random distribution with theta 1.2 to generate
the data access pattern (i.e., 90% of requests access 10% of
the total data), 1 MiB I/O unit, and a file size of 200 GiB.
We prototype our design using lvmcache [11] configured as a
write-through cache, with a cache chunk size of 32 KiB.

Evaluation. Figure 5 shows a 200-minute window of SSD
caching performance. We compare the performance of our
design with the baseline, which is using a single 100 GiB gp2
volume as cache storage. For read-only and 90%-read/10%-

0 25 50 75 100 125 150 175 200
time (min)

0

500

1000

Th
ro

ug
hp

ut
 (M

iB
/s

)

(a) Random read-only

Burst thpt. of 10 small gp2
Baseline thpt. of single large gp2
Baseline thpt. of HDD (no SSD caching)

0 25 50 75 100 125 150 175 200
time (min)

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

iB
/s

)

(b) Random r/w 90/10

Figure 5: Throughput evaluation of SSD caching using
burstable storage. Vertical dashed and solid lines indicate
the start and end times of replacing burstable volumes. Our
design (blue line) increases throughput by 14-19×, at 5.2%
additional cost compared to the baseline (orange line). Using
a single SSD cache volume results in worse performance than
using no cache at all (green line) due to the low throughput
of single gp2 volume.

write access patterns, our design performs 18.6× and 13.9×
faster than the baseline on average, respectively.

We measure data access performance of st1 without SSD
caching at 79 MiB/s on average for both access patterns. After
using a single 100 GiB gp2 volume as cache storage, the total
throughput decreases to 56 MiB/s in both cases. Throughput
performance decreases despite the cache storage because the
baseline throughput of gp2 is worse than that of st1. With
our multi-volume design, however, total throughput increases
to 1,047 MiB/s and 784 MiB/s for random read-only and
random read/write workloads, respectively. For the read-only
workload this matches the expected throughput of 30,000
IOPS that is supported by our design. For the workload mix
of 90%-read/10%-writes, the performance is limited by the
write throughput of st1 volume, which is 79 MiB/s.

Next, we study the cost overhead of replacing the burstable
storage volumes for the SSD cache. One of the advantageous
properties of using the burstable volumes as an SSD cache
storage is that cache data does not need to be persistent if a
write-through policy is used. This feature results in a negli-
gible overhead of replacing the burstable volumes since data
migration is unnecessary. Figure 5 illustrates the storage re-
placement duration. In terms of cost overhead, our design
charges almost the same price as the baseline, because the
volume replacement overhead is negligible. The evaluation re-

sults indicate that our approach uses twice the number of gp2
volumes for 5.2% of the total runtime on average, i.e., the cost
increases by only 5.2% for 19× and 14× higher throughput
for read-only and read-write workloads, respectively.

Implications. One of the costs of replacing burstable vol-
umes in our design is that cache state is reset after the replace-
ment. Although the cache warm-up duration seems negligible
in Figure 5, which is in part due to using a data access pattern
based on the Zipfian distribution, we can reduce it even fur-
ther by replacing a single volume at a time. Another notion
is that it is possible to lengthen the volume replacement time
interval. We used a fixed, 75-minute interval in our evaluation,
which is typical of the time it takes for the FIO workloads
to almost exhaust all burst credits. For arbitrary workloads,
it is possible to extend the time interval by monitoring re-
maining burst credits and selecting the best time to reset the
cache. A longer interval would increase cost-effectiveness
further. It is possible to check the remaining burst credits
with small overhead using the monitoring tools (e.g., Amazon
CloudWatch [5]) provided by public clouds.

3.3 Ephemeral data storage
This section discusses one final use case we consider: using
burstable volumes for ephemeral storage. We refer to data
that are temporary and transient as ephemeral data. One of
the appeals of using burstable volumes as ephemeral data stor-
age is the harmony between short burst duration of burstable
volumes and the short-lived nature of ephemeral data. We
specifically discuss two applications that leverage ephemeral
storage: (1) scientific application checkpointing, and (2) local
storage storing ephemeral data such as intermediate computa-
tion results for cloud programming framework worker nodes.

Checkpointing is a common fault tolerance technique used
by scientific applications, which consists of periodically per-
sisting the application’s state to storage. In the event of a fail-
ure, the application can restart from the point in time captured
by the last checkpoint, instead of repeating all the computa-
tion that preceeded the checkpoint. Checkpointing overhead,
however, is becoming increasingly significant as applications
increase in size (alongside the clusters they run on) much
faster than storage bandwidth [12]. Burstable volumes can
play a key role in enhancing the performance of checkpoint-
ing with no additional cost. The design is straightforward:
the system uses a collection of small burstable volumes as
the ephemeral storage backend for checkpointing, exploiting
the aggregated burst throughput and replacing old burstable
volumes as they use up their burst credits. During volume
replacement, no data migration is required. The system can
simply detach the old burstable volumes that contain check-
point data and keep the detached volumes until they are nec-
essary. Further, depending on the application requirements,
if (at least) one complete, recent checkpoint is available after
removing a given volume and is deemed sufficient, then the
removed volume can be discarded to further reduce costs.

Intermediate computation results of cloud programming
frameworks is another type of ephemeral data. Many cloud
programming frameworks generate an extensive amount of
intermediate data in their data pipelines, and they need to
save the intermediate data in storage because of its massive
amount. If the framework saves or checkpoints the interme-
diate data between two consecutive jobs of the data pipeline
to storage, then storage throughput affects the total running
time of the job. Burstable volumes are a cost-efficient option
as ephemeral storage to save the intermediate data with high
throughput. One possible design is using different collections
of burstable storage volumes for each intermediate data. That
is, for each intermediate data generated in different steps of
data pipeline, the system uses new ephemeral storage with
full burst credits. Since each intermediate data lives for a
short duration [13], each ephemeral storage can maintain its
burst throughput throughout the lifetime of the intermediate
data. After the intermediate data is used, the system need not
keep the corresponding volumes. Thus, the system can delete
the volumes without any data migration.

4 Related Work
Several systems [1–4,7–10,14–16] have been proposed to an-
swer the question of how to cost-efficiently exploit resources
in the public cloud while maintaining moderate or even higher
performance. Tributary [7] suggests a cost-effective way of
selecting public cloud resources that satisfy given SLO re-
quirements by using spot instances. Kadekodi et al. [10]
present a client-side packing to lower the cost and improve
the performance in using cloud object stores. Some of the
works [1, 2, 4, 9, 15, 16] focus on analyzing and utilizing
burstable resources in the public cloud. Jiang et al. [9] ana-
lyze the performance of burstable instances theoretically and
present the framework that predicts the performance of provi-
sioned burstable instances. Burscale [4] demonstrates the way
of using burstable instances to lower the cost of autoscaling in
the public cloud. Wang et al. [15] improve cost savings using
both spot and burstable instances to prototype Memcached
in the public cloud. MArk [16] also exploited both spot and
burstable instances to achieve SLO compliance of machine
learning inference serving system cost-effectively. Our work
explores another opportunity in this space, burstable storage,
and how it can be exploited.

5 Conclusion
Burstable storage, as currently offered in public clouds, cre-
ates opportunities for higher performance and/or lower cost
than first appears. For three usage-type examples with differ-
ent data-longevity characteristics, we show that aggressive
interchanging of small burstable volumes can achieve up to
100× higher throughput at only 10–40% higher throughput, or
a given throughput at 97.5% lower cost. These results expose
opportunities for additional exploration of storage application
designs and of less exploitable storage pricing models.

Discussion Topics

In this work, we identified a sweet spot of public cloud
providers’ policy regarding performance and cost of burstable
storage and presented use cases that can benefit from the pol-
icy. We believe that our approach generates several discussion
topics:

1) Is it reasonable to exploit the policies and services of
public clouds for system design? Many works, including
this paper, have investigated ways of exploiting resources of
the public clouds based on the policies set by the public cloud
providers. However, one of the concerns in this approach
is that those policies and services are inherently variable.
Therefore, some of the works can become less performant
or even inapplicable when public cloud providers modify the
policy of their services. The community should discuss how to
deal with this issue from the perspectives of both researchers
and public cloud providers. Further, should public cloud
providers amend their policies to prevent customers from
using these services in an unintended way, with the inevitable
consequence of more complex policies and/or less widely-
effective solutions... or, should they add even more features
and allow customers to exploit them in varied ways to achieve
even better performance?

2) Are there any other suitable application types that
can take advantage of burstable storage? We discussed
three application types that benefit from burstable storage,
yet we believe that there are still other ones not discussed in
this paper. It will be interesting to discuss when and how our
approach can be a practical design choice for real-world ap-
plications. Furthermore, we can also discuss other techniques
for the efficient management of burstable storage volumes.

3) How should cloud storage pricing and SLOs be de-
signed? Several public cloud services, such as serverless com-
puting, burstable instances, and spot instances, have been
studied to identify use cases and ways of using them prof-
itably. Most generally, this points at the consistent challenge
of designing pricing and SLO models. We think that this is
particularly true for cloud storage, which is commonly provi-
sioned as software-capped IOPS or MiB/s for a given price per
GB. Although public cloud providers mention that random
and sequential data access patterns may affect the provisioned
throughput, our empirical evaluation on AWS does not show
the big throughput difference between two different data ac-
cess patterns. This property may simplify storage system
design for clients, but puts pressure on providers to deal with
inefficient access patterns that require more resources. So,
what is the right balance of responsibility and cost between
clients and providers, for not-easily-time-shared resources
like storage access, and how should they be reflected in poli-
cies?

Acknowledgements

We thank the anonymous reviewers and Mahesh Balakrishnan,
our shepherd, for helping us improve the presentation of the
paper. We also thank the members and companies of the PDL
Consortium—Alibaba, Amazon, Datrium, Facebook, Google,
Hewlett Packard Enterprise, Hitachi, IBM Research, Intel,
Micron, Microsoft Research, NetApp, Oracle, Salesforce,
Samsung, Seagate, and Two Sigma. Hojin Park is supported
in part by Korea Foundation for Advanced Studies.

References

[1] A. Ali, R. Pinciroli, F. Yan, and E. Smirni. CEDULE:
A Scheduling Framework for Burstable Performance in
Cloud Computing. In 2018 IEEE International Confer-
ence on Autonomic Computing (ICAC), pages 141–150,
Sep. 2018.

[2] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia
Smirni. It’s Not a Sprint, It’s a Marathon: Stretch-
ing Multi-Resource Burstable Performance in Public
Clouds (Industry Track). In Proceedings of the 20th
International Middleware Conference Industrial Track,
Middleware ’19, page 36–42, New York, NY, USA,
2019. Association for Computing Machinery.

[3] Ahmed Ali-Eldin, Jonathan Westin, Bin Wang, Prateek
Sharma, and Prashant Shenoy. SpotWeb: Running
Latency-Sensitive Distributed Web Services on Tran-
sient Cloud Servers. In Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’19, page 1–12, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[4] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Ur-
gaonkar. BurScale: Using Burstable Instances for Cost-
Effective Autoscaling in the Public Cloud. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
SoCC ’19, page 126–138, New York, NY, USA, 2019.
Association for Computing Machinery.

[5] Amazon CloudWatch. https://aws.amazon.com/
cloudwatch/.

[6] Flexible I/O Tester. http://freshmeat.
sourceforge.net/projects/fio.

[7] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gre-
gory R. Ganger, and Phillip B. Gibbons. Tributary:
spot-dancing for elastic services with latency SLOs. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 1–14, Boston, MA, July 2018. USENIX
Association.

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
http://freshmeat.sourceforge.net/projects/fio
http://freshmeat.sourceforge.net/projects/fio

[8] Yu-Ju Hong, Jiachen Xue, and Mithuna Thottethodi. Dy-
namic Server Provisioning to Minimize Cost in an IaaS
Cloud. In Proceedings of the ACM SIGMETRICS Joint
International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’11, page
147–148, New York, NY, USA, 2011. Association for
Computing Machinery.

[9] Yuxuan Jiang, Mohammad Shahrad, David Wentzlaff,
Danny H. K. Tsang, and Carlee Joe-Wong. Burstable
Instances for Clouds: Performance Modeling, Equilib-
rium Analysis, and Revenue Maximization. In 2019
IEEE Conference on Computer Communications, IN-
FOCOM 2019, Paris, France, April 29 - May 2, 2019,
pages 1576–1584. IEEE, 2019.

[10] Saurabh Kadekodi, Bin Fan, Adit Madan, Garth A. Gib-
son, and Gregory R. Ganger. A Case for Packing and
Indexing in Cloud File Systems. In 10th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud 18),
Boston, MA, July 2018. USENIX Association.

[11] lvmcache(7) - Linux manual page. http://man7.org/
linux/man-pages/man7/lvmcache.7.html. [On-
line; posted 30-November-2019].

[12] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and
Bronis R. de Supinski. Design, Modeling, and Evalua-
tion of a Scalable Multi-Level Checkpointing System.
In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’10, page 1–11, USA,
2010. IEEE Computer Society.

[13] Kai Ren, YongChul Kwon, Magdalena Balazinska, and
Bill Howe. Hadoop’s adolescence: an analysis of
Hadoop usage in scientific workloads. Proceedings
of the VLDB Endowment, 6:853–864, 08 2013.

[14] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar,
Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov,
Feng Yan, and Yue Cheng. InfiniCache: Exploit-
ing Ephemeral Serverless Functions to Build a Cost-
Effective Memory Cache. In 18th USENIX Confer-
ence on File and Storage Technologies (FAST 20), pages
267–281, Santa Clara, CA, February 2020. USENIX
Association.

[15] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta,
George Kesidis, and Qianlin Liang. Exploiting Spot
and Burstable Instances for Improving the Cost-Efficacy
of In-Memory Caches on the Public Cloud. In Proceed-
ings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, page 620–634, New York, NY,
USA, 2017. Association for Computing Machinery.

[16] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. MArk: Exploiting Cloud Services for Cost-
Effective, SLO-Aware Machine Learning Inference
Serving. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 1049–1062, Renton, WA, July
2019. USENIX Association.

http://man7.org/linux/man-pages/man7/lvmcache.7.html
http://man7.org/linux/man-pages/man7/lvmcache.7.html

	Introduction
	Whither Burstable Storage?
	Burstable Storage Services
	Characteristics of Burstable Storage

	Burstable Storage Applications
	Persistent data storage
	SSD caching
	Ephemeral data storage

	Related Work
	Conclusion

