
Why can’t I find my files?
New methods for automating attribute assignment

Craig A. N. Soules, Gregory R. Ganger
Carnegie Mellon University

Abstract

Attribute-based naming enables powerful search and or-
ganization tools for ever-increasing user data sets. How-
ever, such tools are only useful in combination with accu-
rate attribute assignment. Existing systems rely on user
input and content analysis, but they have enjoyed min-
imal success. This paper discusses new approaches to
automatically assigning attributes to files, including sev-
eral forms of context analysis, which has been highly
successful in the Google web search engine. With ex-
tensions like application hints (e.g., web links for down-
loaded files) and inter-file relationships, it should be pos-
sible to infer useful attributes for many files, making
attribute-based search tools more effective.

1 Introduction

As storage capacity increases, the amount of data belong-
ing to an individual user increases accordingly. Soon,
storage capacity will reach a point where there will be
no reason for a user to ever delete old content – in fact,
the time required to do so would be wasted. The chal-
lenge has shifted from deciding what to keep to finding
particular information when it is desired. To meet this
challenge, we need better approaches to personal data or-
ganization.

Today, most systems provide a tree-like directory hier-
archy to organize files. Although this is easy for most
users to reason about, it does not provide the flexibility
required to scale to large numbers of files. In particular,
a strict hierarchy provides only a single categorization
with no cross-referencing information.

To deal with these limitations, several groups have pro-
posed alternatives to the standard directory hierarchy [5,
9, 11]. These systems generally assign attributes to files,
providing the ability to cluster and search for files by
their attributes. An attribute can be any metadata that de-
scribes the file, although most systems use keywords or�
category, value � pairs. The key challenge is assigning

useful, meaningful attributes to files.

To assign attributes, these systems have suggested two
largely unsuccessful methods: user input and content

analysis. Although users often have a good understand-
ing of the files they create, it can be time-consuming and
unpleasant to distill that information into the right set of
keywords. As a result, users are understandably reluctant
to do so. On the other hand, content analysis takes none
of the user’s time, and it can be performed entirely in
the background to eliminate any potential performance
penalty. Unfortunately, the complexity of language pars-
ing, combined with the large number of proprietary file
formats and non-textual data types, restrict the effective-
ness of content analysis.

A complementary alternative to these methods is context
analysis. Context analysis gathers information about the
user’s system state while creating and accessing files, and
uses it to assign attributes to those files. This can be use-
ful in two ways. First, such context is often related to
the content of a file. For example, a user may read an
email about a friend’s dog and then look at a picture of
that same dog. Second, the context may be what a user
remembers best when searching for some files. For ex-
ample, the user may remember what they were working
on when they downloaded a file, but not what they named
the file.

This paper discusses two categories of context analysis:
access-based context analysis and inter-file context anal-
ysis. The first gathers information about the state of the
system when a user accesses a file. The second prop-
agates attributes among related files. Combining these
methods with existing content analysis and user input
will increase the information available for attribute as-
signment.

The remainder of this paper is organized as follows.
Section 2 discusses background and related work. Sec-
tion 3 describes access-based context analysis. Section 4
discusses recognition and use of inter-file relationships.
Section 5 presents some initial findings. Section 6 dis-
cusses some challenges facing this work, and ideas on
how to approach them.

2 Background

Users already have difficulty locating their files. There
exist a variety of tools for locating files by searching

Joan Digney
Proceedings of the Ninth Workshop on Hot Topics in Operating systems, USENIX Association, May 2003.



through directory hierarchies, but they don’t solve the
problem. Several groups have proposed attribute-based
naming systems that rely on user input and content anal-
ysis to gather attributes, but they remain largely unused.
Web search engines, however, have found greater suc-
cess obtaining attributes by combining content analysis
with context analysis. This section discusses common
approaches to file organization, proposed systems, and
relevant web search-engine approaches.

2.1 Directory Hierarchies

There are three key factors that limit the scalability of
existing directory hierarchies. First, files within the hi-
erarchy only have a single categorization. As the cat-
egories grow finer, choosing a single category for each
file becomes more and more difficult. Although linking
(giving multiple names to a file) provides a mechanism to
mitigate this problem, there exists no convenient way to
locate and update a file’s links to reflect re-categorization
(since they are unidirectional). Second, much informa-
tion describing a file is lost without a well-defined and
detailed naming scheme. For example, the name of a
family picture would likely not contain the names of ev-
ery family member. Third, unless related files are placed
within a common sub-tree, their relationship is lost.

One way to try and overcome these limitations is to pro-
vide tools to search through these hierarchies. Today, on
UNIX systems, many users locate files via tools such as
find and grep. These tools provide the ability to search
throughout a hierarchy for given text within a file, pro-
viding rudimentary content analysis. Glimpse [14] is a
system that provides similar functionality, but utilizes
an index to improve the performance of queries. Mi-
crosoft Windows’ search utility provides a similar index-
ing service using filters to gather text from well-known
file formats (e.g., Word documents). Going a step fur-
ther, systems such as LXR and CScope [22], perform
content analysis on well-known file formats to provide
some attribute-based searching features within a hier-
archy (e.g., locating function definitions within source
code).

2.2 Proposed Systems

To go beyond the limitations of directory hierarchies,
several groups have proposed extending file systems to
provide attribute-based indexing. For example, BeFS ex-
tends the directory hierarchy by adding a new organiza-
tional structure for indexing files by attribute [8]. The
system takes a set of

�
file, keyword � pairings and cre-

ates an index allowing fast lookup of an attribute value
to return the associated file. This structure is useful for

files that have a set of well-known attributes on which to
index (e.g.,

�
email message, sender � ).

The semantic file system [9] provides a way to assign
generic

�
category, value � pairings to files, increasing the

scope of their namespace. These attributes are assigned
either by user input or by file content analysis. Content
analysis is done by a set of transducers that each under-
stand a single well-known file format. Once attributes
are assigned, the user can create virtual directories that
contain links to all files with a particular attribute. The
search can be narrowed by creating further virtual sub-
directories.

Several groups have explored other ways of merging hi-
erarchical and attribute-based naming schemes. Sechrest
and McClennen [21] detail a set of rules for construct-
ing various mergings of hierarchical and flat namespaces
using Venn diagrams. Gopal [10] defines five goals for
merging hierarchical name spaces with attribute-based
naming and evaluates a system that meets those goals.

Other groups have looked at the problem of providing
an attribute-based naming scheme across a network of
computers. Harvest [3] and the Scatter/Gather system [5]
provide a way to gather and merge attributes from a num-
ber of different sites. The Semantic Web [1] proposes
a framework for annotating web documents with XML
tags, providing applications with attribute information
that is currently not available.

These systems provide a number of interesting variations
on attribute-based naming. But they all rely upon user
input and content analysis to provide useful attributes,
with limited success.

2.3 Context Analysis

Early web search-engines, such as Lycos [15], relied
upon user input (user submitted web pages) and content
analysis (word counts, word proximity, etc.). Although
valuable, the success of these systems has been eclipsed
by the success of Google [4].

To provide better search results, Google utilizes two
forms of context analysis. First, it uses the text associ-
ated with a link to decide on attributes for the linked site.
This text provides the context of both the creator of the
linking site and the user who clicks on the link at that
site. The more times that a particular word links to a
site, the higher that word is ranked for that site. Second,
Google uses the actions of a user after a search to decide
what the user wanted from that search. For example, if
a user clicks on the first four links of a given search, and
then does not return, it is likely that the fourth link was
the best match. This provides the user’s context for those
search terms; the user believes that those terms relate to



that particular site.

Unfortunately, Google’s approach to indexing does not
translate directly into the realm of file systems. Much
of the information that Google relies on, such as links
between pages, do not exist within a file system. Also,
Google’s query feedback mechanism relies on two prop-
erties: users are normally looking for the most popular
sites when they perform a query, and they have a large
user base that will repeat the same query many times.
Unfortunately, neither of these properties are true in file
systems: (1) users usually search for files that have not
been accessed in a long time, because they usually re-
member where recently accessed files reside and access
them directly, and (2) there is generally only a single
user for each set of files; thus, it is unlikely that frequent
queries will be generated for any given file.

3 Access-based Context Analysis

This section outlines two approaches to automatically
gathering attributes when a file is created or accessed.
These approaches use the context of the user’s session at
the time a file is accessed to assign attributes. The first
uses application assistance, and the second uses existing
user inputs.

Application assistance: Although most computers can
provide a vast array of functionality, most people use
their computer for a limited set of tasks. Most of these
tasks are performed by a small set of applications, which
in turn access and create most of the user’s files. Modi-
fying these applications to provide hints about the user’s
context could provide invaluable attribute information.

For example, if a user executes a web search for “aspara-
gus” and downloads several pictures, it is likely that these
are pictures of “asparagus.” Similarly, if a user saves
an email attachment and the subject of the email is “Re:
Marketing report” then it is likely that the attachment is
related to both “marketing” and “report.”

Existing user input: Although most users are not will-
ing to input additional information, they already are will-
ing to choose a directory and name for the file. Each of
the sub-directories along the path and the file name itself
probably contain context information that can be used to
assign attributes. For example, if the user stores a file in
“ � /papers/FS/Attribute-based/Semantic91.ps,” then it is
likely that they believe the file is a “paper” having to do
with “FS,” “attribute-based,” and “semantic.”

Like Google, an attribute-based file system can obtain
information from user queries. If a user initially queries
the system for “semantic file system” and chooses a file
that only contains the attribute “semantic,” then the addi-

tional terms “file” and “system” could be applied to that
file. Also, if the possible matches are presented in the
order that the system believes them to be most relevant,
having the user choose files further into the list may be an
indicator of success or failure. Also, as is done in some
web search engines, a system could elicit feedback from
the user after a query has completed, allowing them to in-
dicate the success of the query using some sort of scale.
Unfortunately, as mentioned above, individual files are
likely to have few queries, reducing the amount of infor-
mation available through this method.

4 Inter-file Relationships

Once relationships are established, attributes can be
shared between related files. This helps to propagate at-
tributes among individually hard-to-classify files. In con-
junction with approaches that generate attributes (such as
application assistance or content analysis), such propaga-
tion should categorize a much broader set of files. This
section outlines two approaches to automatically gather
inter-file relationships. The first approach leverages user
access patterns, and the second approach examines con-
tent similarities between potentially related files.

User access patterns: As users access their files, the
pattern of their accesses provides a set of temporal re-
lationships between files. These relationships have pre-
viously been used to guide a variety of performance en-
hancements [12, 16, 23]. Another possible use of this
information is to help propagate information between re-
lated files. For example, accessing “SemanticFS.ps” and
“Gopal.ps” followed by updating “related.tex” may indi-
cate a relationship between the three files. Subsequently,
accessing “related.tex” and creating “WhyCantIFindMy-
Files.ps” may indicate a transitive relationship.

Inter-file content analysis: Content analysis will con-
tinue to be an important part of automatically assign-
ing attributes. In addition to existing per-file analysis
techniques, our focus on creating context-based connec-
tions between files suggests another source of attributes:
content-based relationships. For example, some current
file systems use hashing to eliminate duplicate blocks
within a file system [2, 18], or even locate similarities
on non-block aligned boundaries [13, 17]. Such content
overlap could also be used to identify related files, by
treating files with large matching data sets as related.

Often, users (or the system [19]) will keep several
slightly different versions of a file. Although these files
generally contain differences, often the inherent informa-
tion contained within does not change (e.g., a user may
keep three instances of their resume, each focused for
a different type of job application). This gives the sys-



tem two opportunities for content analysis. First, con-
tent comparison can identify related files. Second, by
performing content analysis solely on the differences be-
tween versions, it may be possible to determine version-
specific attributes, making it easier for users to locate in-
dividual version instances.

5 Initial Findings

This section discusses insights drawn from trace analysis
of user activity.

5.1 Exploring Creation-time Attributes

Figure 1 shows two charts indicating the percentage of
files created by different programs within a single user’s
home directory. This data was gathered from a trace of
a single graduate student’s “home” directory tree over a
one month period. The first chart shows a breakdown
of every file created within the directory tree. The sec-
ond chart shows a breakdown of files explicitly organized
by the user (rather than created and named by a pro-
gram for itself) and believed to have some permanence
(rather than being temporary or scratch files). This ex-
cludes things such as caches, logs, program configura-
tion files, compiler output, and CVS source repositories,
which are all organized by an external entity (generally
the programs that create them).

Although a large number of files were created within this
user’s home directory, most of the files were organized
by user-invoked programs rather than by the user them-
selves. Most of the user-organized files in the trace were
created by three applications: a text editor/email pro-
gram (emacs), a web-browser (mozilla), and document
creation tools (latex). The others were created by vari-
ous manual FS tools (e.g., “cp,” “cat,” etc.).

Examining these results suggests how a combination of
the automated attribute assignment techniques described
above can provide useful context information:

� The web-browser can generate hints for the files
that it creates. For example, in this trace, the file
“ � /docs/online.pdf” was downloaded after doing
a search for “SML Robert Harper” and clicking
through Robert Harper’s home page until the SML
programming guide was located.

� Files created by text editors are generally accessed
in conjunction with various other files, creating
inter-file relationships. In this trace, several source
code files were accessed in conjunction with a
file named “ � /class/814/homework2.tex,” indicat-

��� ����� � �
	
������������ � � �
	��

��	����������� �!�� "��
#$��� � ��	
��
%&��� � � ��	��

')(+*�,�-/.101(

2�354 67 8 -/9,;:�<
8 (>=>?A@CB 4 ? D+97 @;E�- 4 F

GH- 6 (+9,�9 (/-1? 4 DJI
,�D+E 6/4 F (+9
K L�M1D5N/O ,�DJIQP 4 NSR 4 F (5O

R+<;T ? D/D F O

8 (>=>?A@CB 4 ? D/97 @;E�- 4 F

')(+*UC9 D1V�O1(/9

K F F W OX? 9 -1? D+9

GC- 6 (+9,�9 (5-1? 4 DJI

')(+*YUC9 D>V�O1(/9

Figure 1: Programs that create files. Shows the programs that
created files within a single graduate student home directory. The chart
on the left shows a breakdown of every created file. Most of the files in
this category are caches of either web pages or email, although archived
source code (Tar & Gzip) and CVS repositories also figure in heavily.
The chart on the right shows only those files explicitly organized by
the student. These include those files downloaded from the web, hand
edited files, files created by paper creation tools, and an image of a
technical poster (Illustrator).

ing that the files probably all related to “class,”
“814,” and “homework.”

Z Document creation tools like LaTeX take input from
several different files and output a single postscript
file (such as “homework2.ps”). This many-to-one
relationship can be used to distill all of the input
attributes into a smaller set of shared attributes that
can be assigned to the output file. Also, these shared
attributes could be passed back to any input files that
do not have them.

Z Illustrator (an image manipulation program) was
used to create a poster outlining this work, im-
porting text and images from a variety of related
sources, resulting in a similar many-to-one relation-
ship.

5.2 Exploring Inter-file Relationships

To further examine inter-file relationships, we created
a simple tool to extract inter-file relationships from the
trace. This tool tracks the last file access made by a pro-
gram, and relates that file to the next file accessed. These
relationships form groupings of related files.

Using this method, the tool successfully groups many
files correctly (based on manual inspection by the
owner). For example, a source tree was grouped with
its resulting program output and backup tarballs, while a
variety of unrelated source files were separated. Unfor-
tunately, also grouped with the source tree were a variety
of unrelated files (false positives). An examination of



the false positives showed that many were created by oc-
casional use of find and grep. The graduate student in
question uses find and grep to search by content for par-
ticular files. In a attribute-based naming system, find and
grep would be replaced by an integrated searching sys-
tem. This both removes the false positives, and could po-
tentially improve accuracy using the feedback from user
queries as described in Section 3.

6 Ongoing Challenges

Although our initial results are encouraging, there are
still a large number of challenges beyond what has al-
ready been described. This section outlines some of
these challenges, and initial ideas on how to approach
them.

6.1 System Evaluation

One of the toughest research challenges faced when ex-
ploring automated attribute assignment is evaluating its
accuracy. Although several groups have done automated
file content analysis, little evaluation of the accuracy of
these mechanisms has been reported. This is probably
due to the difficulty of such an evaluation: what is “ac-
curate?” More importantly, the true value of this kind
of system is in helping users locate lost files, which is
difficult to demonstrate without long-term deployment.
Unfortunately, getting users to use such a system with-
out first proving its value is difficult, resulting in a classic
“Catch-22.”

One possible approach is to feed a trace of user activity
and application hints into the attribute assignment system
and then compare its results to attribute assignment done
by that same user. Unfortunately, this approach fails to
account for user behavior. Although the user may ini-
tially categorize a file one way, they may later use it or
look for it in another way. For example, the search terms
they use a year after file creation may end up differing
from their initial categorization.

6.2 Mechanisms

Although successfully assigning file attributes is one step
in creating an attribute-based naming system, there are
two other important aspects: the mechanism for storing
attribute mappings and the user interface to the system.
As mentioned in Section 2, several groups have looked at
methods for storing attribute mappings. Until now, these
methods have generally worked with a small number of
attributes. By automatically identifying large numbers of
attributes, two challenges arise. First, the existing meth-
ods may need to be extended to handle large numbers of

attributes. Second, the system must identify the most rel-
evant attributes for a file from the large set of associated
attributes (i.e., weighting and false positive removal).

Several groups have also looked at the problem
of user interfaces for attribute-based naming system.
MyLifeBits [7] stores

�
file, attribute � pairings within a

database, and provides a variety of file visualizations that
help a user locate their files. Lifestreams [6, 20] pro-
vides a time-ordered stream of incoming information to
the user, as well as a simple interface for filtering and
sorting this information using a variety of attributes. Our
work complements these and may provide useful insight
into these two aspects of attribute-based naming.

6.3 User Context Switches

Context information has the potential to provide a large
number of useful attributes. When a user switches con-
text, however, the relationships created may be invalid. It
would be helpful if the system could notice user context
switches. One solution is user input, where the user indi-
cates to the system what they are currently working on.
If the user is not diligent, however, then the system may
create more false positives than before. Another possi-
bility is to infer user context switches from their actions.
For example, switching to or from a particular applica-
tion (e.g., the email browser) may consistently indicate a
context switch.

7 Conclusions

As the data set associated with a user grows, organizing
that information becomes more difficult. Although hier-
archies have several useful aspects, they do not scale. A
more flexible, attribute-based naming scheme is needed
to effectively manage large personal data sets. This pa-
per proposes automating attribute assignment using at-
file-access context analysis and inter-file relationships.
By obtaining many new attributes, these schemes should
greatly increase the utility of attribute-based naming.

Acknowledgments

We thank the members and companies of the PDL
Consortium (including EMC, Hewlett-Packard, Hitachi,
IBM, Intel, Microsoft, Network Appliance, Oracle,
Panasas, Seagate, Sun, and Veritas) for their interest, in-
sights, feedback, and support.



References
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.

Scientific American, 284(5):34–43, 2001.

[2] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single
instance storage in Windows 2000. USENIX Windows Systems
Symposium, pages 13–24. USENIX Association, 2000.

[3] C. M. Bowman, P. B. Danzig, U. Manber, and M. F. Schwartz.
Scalable internet resource discovery: research problems and ap-
proaches. Communications of the ACM, 37(8):98–114, 1994.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertex-
tual web search engine. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[5] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey.
Scatter/Gather: a cluster-based approach to browsing large docu-
ment collections. ACM SIGIR International Conference on Re-
search and Development in Information Retrieval, pages 318–
329. ACM, 1992.

[6] S. Fertig, E. Freeman, and D. Gelernter. Lifestreams: an alterna-
tive to the desktop metaphor. ACM SIGCHI Conference, pages
410–411, 1996.

[7] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong.
MyLifeBits: fulfilling the Memex vision. ACM Multimedia,
pages 235–238. ACM, 2002.

[8] D. Giampaolo. Practical file system design with the Be file sys-
tem. Morgan Kaufmann, 1998.

[9] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole Jr.
Semantic file systems. ACM Symposium on Operating System
Principles. Published as Operating Systems Review, 25(5):16–
25, 13–16 October 1991.

[10] B. Gopal and U. Manber. Integrating content-based access mech-
anisms with hierarchical file systems. Symposium on Operat-
ing Systems Design and Implementation, pages 265–278. ACM,
1999.

[11] D. R. Hardy and M. F. Schwartz. Essence: a resource discovery
system based on semantic file indexing. Winter USENIX Tech-
nical Conference, pages 361–373, 1993.

[12] G. H. Kuenning and G. J. Popek. Automated hoarding for mobile
computers. ACM Symposium on Operating System Principles.
Published as Operating Systems Review, 31(5):264–275. ACM,
1997.

[13] J. MacDonald. File system support for delta compression. Mas-
ters thesis. Department of Electrical Engineering and Computer
Science, University of California at Berkeley, 2000.

[14] U. Manber and S. Wu. GLIMPSE: a tool to search through entire
file systems. Winter USENIX Technical Conference, pages 23–
32. USENIX Association, 1994.

[15] M. L. Mauldin. Retrieval performance in Ferret a conceptual in-
formation retrieval system. ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 347–355. ACM
Press, 1991.

[16] G. Memik, M. Kandemir, and A. Choudhary. Exploiting inter-
file access patterns using multi-collective I/O. Conference on File
and Storage Technologies, pages 245–258. USENIX Association,
2002.

[17] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth
network file system. ACM Symposium on Operating System
Principles. Published as Operating System Review, 35(5):174–
187. ACM, 2001.

[18] S. Quinlan and S. Dorward. Venti: a new approach to archival
storage. Conference on File and Storage Technologies, pages 89–
101. USENIX Association, 2002.

[19] D. S. Santry, M. J. Feeley, N. C. Hutchinson, R. W. Carton,
J. Ofir, and A. C. Veitch. Deciding when to forget in the Elephant
file system. ACM Symposium on Operating System Principles.

Published as Operating Systems Review, 33(5):110–123. ACM,
1999.

[20] Scopeware, http://www.scopeware.com/.

[21] S. Sechrest and M. McClennen. Blending hierarchical and
attribute-based file naming. International Conference on Dis-
tributed Computing Systems, pages 572–580, 1992.

[22] J. L. Steffen. Interactive examination of a C program with
Cscope. Winter USENIX Technical Conference, pages 170–175.
USENIX Association, 1985.

[23] S. Strange. Analysis of long-term UNIX file access patterns for
applications to automatic file migration strategies. UCB/CSD–
92–700. University of California Berkeley, Computer Science
Department, August 1992.




